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A microscopic theory of the paramagnetic linewidth and line shift for an amorphous transition-
metal —metalloid alloy spin glass has been given in the Mori-Kawasaki formalism. The linewidth

has been calculated as being due to random single-ion anisotropy and the magnetic dipole-dipole an-

isotropic interaction, which are considered to be small perturbations. The contribution of the
single-ion anisotropy has been found to be smaller. %hile it is noted that for T & T~ there is no stat-
ic component of the random dipolar magnetic field the dynamic component of this field does exist.
Taking the point of view of Souletie and Tholence [Phys. Rev. 8 32, 516 (1985)] that the autocorre-
lation time of the dynamic component increases as the temperature is lowered to T~ and attains the
saturation value of 2m/m at T = T~{e), we predict that at this temperature the EPR response should

be an inhomogeneously broadened Voigt line shape. The very limited data available have been com-

pared with a rough numerical estimate of the linewidth at T{u) and reasons have been suggested
for the lack of good agreement. At higher temperature the dynamic component will be partially
averaged out by the EPR probe and the linewidth is expected to be less and the line shape more
Lorentzian. It has been found that the critical part of the linewidth and line shift for all frequencies
should obey dynamic scaling down to and including T~{m). Also their temperature and frequency
dependence shows trends similar to those for the canonical spin glasses. It is noted that more de-

tailed data on the line shape close to T~{w) and accurate determination of the single-ion anisotropy
constant are needed for a check on the above predictions. A justification has been given for the ap-
plicability of the Mori-Kawasaki formalism at least for the higher frequencies. The regime of appli-

cability of the theory is expected to be about T & 1.2ST~.

I. INTRODUCTION

A formalism developed by Mori and Kawasaki' (MK)
has been adapted by Levy eI; al. to explain the position
and width of EPR lines of crystalline transition-metal
spin glasses (SG). Such SG are believed to acquire mag-
netic anisotropy due to the Dzyaloshinski-Moriya (DM)
interaction on experimental grounds. Huber has used
this theory with the input of neutron spin-echo data of
spin-correlation functions to analyze the recent experi-
ments on Ag:Mn SG. He has found that the critical
part of the linewidth follows the dynamic scaling law
down to but possibly not exactly at Tz. He has also
pointed out that this is possible only because of the insen-
sitivity of the spin-correlation function to the applial
magnetic field. The important point to note is that it was
uncertain if scaling would be obeyed at Ts from the point
of view of his theory. The experimental finding was that
the linewidth did not diverge at T~.

The detailed experimental work of Uemura et al. has
shown, inter alia, that for T & Ts the depolarization of
muon spins in Cu:Mn SG, which is due to dynamic ran-
dom dipolar fields does not change due to an applied
magnetic field up to 640 G. This is an important finding
in relation to our work. Another important experimental
observation was that the spin-autocorrelation time did not
diverge but only saturated at Tz. Further, as has been
pointed out by Souletie and Tholence, if one accepts that
the SG transition is a phase transition then it is natural to
expect that the usual power-law variation will be valid

down to T~. They have pointed out how this is consistent
with the finite value of the spin-autocorrelation time, r, at
Ts because of the frequency dependence of Ts. Thus, in
effe:t, they proposed,

T
T —Ts(0)

ZV

with r=2tr jw at T =Ts(w). By analysis of known data
they have obtained ~0 and zv for various SG. v and z are
the usual critical exponents. Anticipating our results, we
shall see in the following that near Ts(w) the linewidth
scales as r and so the ideas of Refs. 6 and 7 justify the
opinion that in spite of the saturation of linewidth,
dynamic scaling law may be considered to be valid down
to and including Ts(w).

The purpose of this work is to investigate the EPR
hnewidth and line-shift variation with temperature in the
critical regime for amorphous transition-metal —metalloid
(TM-M) SG and to theoretically demonstrate, if possible,
dynamic scaling in this case. Dynamic scaling, as in the
canonical SG, is expected as there is no basic difference
from the point of view of spin dynamics except in the
range of interaction and the crystal structure. %'hat is
more, any uncertainty regarding the validity of scaling is
now removed. For macroscopically homogeneous materi-
al one does not expect a different universality class for the
amorphous SG (Ref. 8) but both short-range interaction
and the presence of random local fields (which we shall
discuss later) will reduce the effective dimensionality (Ref.
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9). This will change the critical exponents which we have
not tried to calculate here. In Sec. II we have calculated
the linewidth and line shift in terms of ~, among others.
In Sec. III there is a numerical estimate of the theoretical
expression for the linewidth. Section IV contains a dis-
cussion of the methodology and results of the calculation
and, in particular, comments on the effect of the random
dipolar fields. Also, in this section we have compared the
numerical estimates with experimental linevvidth data and
have justified the use of the MK formalism used in Sec.
II. There is a short summary in Sec. V.

+ =Ho +Haniso ~

where

(2)

Ho ———g J~S;.S~ —it,„,gS

3—4 kG, we can ignore this possibility. 0 can cause re-
laxation directly also in addition to via ~. This possibility
we exclude at this time though the calculations can be
done without great difficulty.

In this calculation we set X, V, gpss, and A all equal to
unity. We take,

II. CALCULATIONS

As usual, we consider the relaxation of the macroscopic
transverse magnetization vector to be due to anisotropic
magnetic interaction. This anisotropy has to be a small
perturbation on the Hamiltonian made up of the exchange
and Zeeman terms. In the case of amorphous materials
DM anisotropy is ruled out. ' The magnetic dipole-dipole
interaction is always present in magnetic systems. A can-
didate typically suited for the amorphous SG is the local
random single-ion magnetocrystalline anisotropy. " In the
case of TM-M alloys this anisotropy is of the order of
10 J/atom (Ref. 12) and is small enough to be con-
sidered a perturbation. The applied field may also contri-
bute to the relaxation. However, if we assume that the re-
sult of Ref. 6 mentioned before is true for substantially
higher fields than had been applied actually, i.e., about

l

H,„;„=—K2 g(S; n;) —3+(rj"S;)(rj"SJ )rj . (3)

The first term on the right is the single-ion anisotropic
term and the second is the anisotropic part of magnetic
dipole-dipole interaction. n; is the direction of the local
easy axis at site i and I( 2 is the appropriate anisotropy
constant. The single-ion term is suitable for amorphous
SG and has been found to give good results in realistic
cases. ' We consider the dynamics of the total transverse
magnetization vector,

S T+(t) =i [H,„;„,Sr+(t)],

where ST ——g, S;+ and S+=S"+is» etc. Using the usu-
al commutation relations,

S+= tX, + I 2(S—,')'a, y; [S,s; ],—p;y; [S,S ]+y—,'

+[S,',S+]+~,p, +[S,',S, ]+p', +2(S,'-)'p, y, I
—3 g(r;, &&S;)+(r;,"S,};,'.

The last term on the right had been obtained in this form
by Huber. ' Here a;=(u; iu;)/2, —p;=(u;+iu;)/2, and

y; =tu; where u;, U;, and w; are the direction cosines of
n;. [. . . , . . . ]+ indicates an anticommutator. Here we
have to average the Kubo-Mori inner product'
(S T(t)

I
S r } over the random directions n;. In this con-

nection one notes the following nonzero values obtained
by this averaging,

& I~ y; I'&=&
I P y; I'&=-',

& I~;P; I'&=& IP; I'&= —', ,

and

(y,')= —,
' .

(Unlike the preceding equations, in the following the an-
gular bracket indicates average over canonical ensembles. )
All the other averages over a; vanish. After some algebra
one gets the averaged single-ion term in the Kubo-Mori
inner product,

K', g([s;+(t),s (t)]+ I [S, (t),SJ (t)]+) .

This expression has four terins each of which, by defini-
tion, has the form

P
(A(t) IB)=f dA(e A(t)e " B)=P(A(t)B), (6)

with p '=kit T. The last form is the high-temperature
approximation. Thus each of the four terms is a four-spin
correlation function. One decomposes them in the follow-
ing manner

(S;+(t)S (t)S, S,') = (S;+(t)S, )(S {t)s,')
+(S;+(t)S,')(S (t}S, ) .

All the four terms give the same result on decomposition.
The second term on the right side of Eq. (7) disappears if
we assume the total z component of magnetization to be a
constant of motion as is usual in magnetic resonance. Us-
ing Eq. (6) the expression in (5) then becomes,

4'', p g &s,+(t)s, )(s,'(t)s,') .
—

Using transverse macroscopic symmetry,

(S,+(t)S, ) =2(s;"(t}sg) .
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8K',pg(&S,"(r)S,"&)' .

Here we have assumed that autocorrelation in the z direc-

(10)

Ignoring spatial correlation for T ~ Ts the expression in

(8) then becomes,
tton is independent of It,„, and is equal to those in the
transverse direction.

%e now calculate the dipole-dipole anisotropic interac-
tion term in the Kubo-Mori inner product. This term is
given by,

—3 g(r J XS;)+(rJ SJ)r 1
—3 g(r~j )&S;) (r J SI)r~j

After some algebra involving detailed expansion of the ex-

pression and using Eqs. (6)—(9) above this becomes,

9P g(r,—,'+z,,'r,,-') &S,"(r)S,"& &S,"(r)S,"& .

12Pg rq g( & S,"(t)s; & ) (12)

It can be easily seen that the cross terms in the inner prod-
uct disappear on averaging over n;. One notices that in
expressions (10) and (12) the quantity under site summa-
tion is the same.

It is known that the spin-autocorrelation (or relaxation)
time has a hierarchy of values. We, however, assume a
single effective correlation time i and set,

(13)

Again, ignoring spatial correlation,

Because of the random location of the magnetic atoms

z;~ =r;~/3 on averaging. Also, as pointed out in a similar
case in Ref. 2 the above summations over the "lattice"
and the spin correlations can be performed separately as
an acceptable approximation in this kind of perturbational
calculations. Thus the magnetic dipole-dipole contribu-
tion to the Kubo-Mori inner product is

r

Iml'(w, T)= ——', 2K2+3+ r/ S(S+1)wr /(4+w r ).

(17b)

Eqs. (17a) and (17b) give, respectively, the linewidth and
line shift. We notice that both obey the dynamical scaling
hypothesis in the whole critical regime for all frequencies
as r is expected to do so down to Ts(w). The particular
form of Eq. (17) arises because of the form assumed in

Eq. (13) which is an approximation.
For T~~Ts it is expected from Eq. (1) that wry&1

and Eq. (17) becomes

and

ReI (w, T) —', Kz+grj S(S+1)r,
J

(18a)

ImI (w, T)=— —,'K2+ zgrz S(S+1)wr . (18b)
J

For T & Ts from Eq. (1) we=2m and Eq. (17) becomes

ReI (w, T) 0.061K2+0.092 g rz S(S+1)r, (19a)
J

and

ImI'(w, T) — 0. 188K&+0.29 + r~ S(S+1)r . (19b)
J

'2
g(&S,"(r)S,"&)'= g&(S;")'& (14) At T=T (w) from Eq. (1) wr=2n and if we assume

Eq. (17) still valid, we have

From Eq. (6) and transverse symmetry,

(Sr+
i S;)=2PQ&(S,")'& . (15)

Rel"(w, T)= 0.38K&+0.58 + rz S{S+1)/w, (20a)

and

Now, in the first approximation in the MK formalism the
self-energy is'

I (w, T)=f dte ' '(Sr+(t) iS r)/(S, iSz. ), (16)

where w is the resonance frequency. From Eqs. (10) and
(12)—(16),

ImI (w, T)=— 1.18K2+1.82+ rj S(S+1)/w .

(20b)
Thus at T = Ts(w) both linewidth and' line shift vary in-
versely as w. Also, from Eq. (17) for w =0 in all relevant
temperature regimes,

I (w, T)= 4K +6+r. g&(S,")
& J

J and

Rel {w,T)= , Kz+grj S(S—+1)r,
J

(21a)

which on integration gives,

Rel (w, T)= —3(2Kz+3+r~ ) S( 5+1)r (/4+we ),

(17a)

ImI (w, T) =0 . {21b)

From Eq. (17b) it follows that there is a minimum in
the line shift versus w curve. Equations (20a) and (20b)
indicate frequency-dependent saturation of linewidth and
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line shift. These characteristics have been already found
in canonical SG (Refs. 4 and 5) and are now expected in
TM-M alloy SG also.

III. NUMERICAL ESTIMATES

It is in order to make an estimate of the numerical
values of I as given by Eq. (17) and also the relative im-

portance of the single-ion and dipole-dipole contributions.
Due to our initial choice of units, the single-ion term of
Eq. (17) has to be divided by gplifi=1. 95&(10 J s T
and the dipole-dipole term multiplied by
(po/4m') (gp i)i' '=6 07X10 J T s '. Because of
the small I s coupling expected in this case we ignored the
pseudodipolar interaction in comparison with the pure
dipole-dipole interaction; hence g has been set equal to 2.

E2 can be estimated experimentally by measuring the
approach to saturation of the magnetization. ' Fihnle
and Egami' have estimated E2 for Fe4ONi408qo to be of
the order of 10 J/atom. Other TM-M amorphous al-

loys are also expected to have Ki of the same order but it
is necessary to perform individual measurements.

We have next to perform the "lattice" sum g. r~ . To
be specific, let us take the typical TM-M SG alloy
FeioNi70Pzo. Direct calculation of the sum does not seem
possible as neither its density nor its structure is known.
We can, however, make a rough estimate on the basis of
general ideas about the amorphous structure. ' The
short-range structure of amorphous materials is
icosahedral with the number of nearest neighbors of in-

creasing order 12,20,24, . . . (Ref. 19). So the average
number of nearest neighbors (NN) and next nearest neigh-
bors (NNN) of the same type for an Fe atom in our typi-
cal material is —1.2 and 2.0, respectively. The TM-TM
NN distance found by x-ray scattering in Fe7~82~ and
Fe75Si~582O is -2.4 A. This distance should be more with
larger metalloid atoms and their higher concentration.
Notice, however, that the difference in regard to this dis-
tance between these two materials is almost negligible
even though rs; ——1.10 A and rz ——0.91 A. The concen-
tration dependence also works up to a point. Noting
rp rs we might have concluded that TM-TM NN dis-
tance in Fe~oNi7OPqo would be slightly less than that in
Fe75Si~581o. By the same token we might conclude simi-
larly for Fe4ONi40Pi4B6. But the relevant distance for this
material is -2.5 A rather than something less than 2.4 A.
A safe conclusion would be to take the TM-TM NN dis-
tance in our material also to be -2.4 A.

In some of these amorphous materials because of the
TM-TM-TM collinear configuration the TM-TM NNN
distance is about t~ice the NN distance. We do noi know
if there is a collinear configuration in this case. By ignor-
ing the NNN term in the "lattice" sum we change the
latter by only -2.5%. Hence we calculate here by assum-
ing such a configuration. Thus the "lattice" sum is,

=10~(1.2X2.4 '+2X4.8-'+ )

J

=6.4X 10 mks .

The alloys under consideration are intermetallic com-
pounds and 5, the total angular momentum quantum

number of the magnetic species is determined by the band
structure. It is known that in these materials the magnet-
ic moment of Fe, Co, and Ni atoms are, respectively, 2, 1,
and 0 Bohr magnetons. Taking g =2,
2[S($+1)]'~ =2 and 1 for Fe and Co, respectively.
Thus these materials behave like Heisenberg magnets with
nonintegral spins. For Fe we find 5 =0.618.

We have not found the temperature variation of r here.
Using linearized Glauber dynamics for the well-known
Sherrington-Kirkpatrick (SK) model in the case of an Is-
ing system a power-law variation for r was derived with
zv= 2. This approach cannot be carried through
mathematically at this time for the materials in question,
which are believed to have short-ranged interaction, fer-
romagnetic with NN and antiferromagnetic with the
NNN. ' In addition, we have Heisenberg systems here.
Because of the topological disorder of the ainorphous
structure these interactions will have a random com-
ponent also. It has been shown that short-range materials
cannot have an SG transition and additional symmetry-
breaking interaction is needed to effect such a transi-
tion. ' No way seems to have been found yet to take ac-
count of these terms and the short-range interaction while
finding zv. Using an elaborate dynamical approach, Zip-
pelius has found for an Ising system with only nearest-
neighbor interaction with a Gaussian distribution about
zero mean that zv=1 for mean-field theory. When this
calculation is extended by renormalization-group analysis
an ambiguous value is found for z.

It thus appears that at this time experimental methods,
e.g., that using Eqs. (17)—(21) or that of Ref. 6 would be
helpful in determining zv and ro for real systems.

Thus while at higher temperatures there is the problem
of lack of knowledge of r, at T =Tz(w) taking the cue
from Ref. 7 we set wr=2ir The linew. idths at two fre-
quencies at T = Tz(w) evaluated from Eq. (20) are the fol-
lowing.

(i) For 9.3 GHz the single-ion contribution is 33.8 G
and the dipole-dipole contribution is 390 G; (ii) for 1.1

GHz the two respective contributions are 286 and 3260 G.
It is thus found that the dipole-dipole contribution is quite
significant here.

IV. DISCUSSION

The question whether Eq. (1) holds down to and includ-

ing T = Tg has been debated as experimentally ~ has been
found to saturate instead of diverging. Since phase transi-
tion at SG transition and dynamic scaling hypothesis are
now generally accepted, and Tg is known experimentally
to be a function of w, the viewpoint of Ref. 7 seems
reasonable. If, as expected, Eqs. (17)—(21) are found ap-
plicable to a real amorphous TM-M SG, EPR measure-
ments can also help in the confirmation or otherwise of
this view. In this connection it may be of interest to note
that in the course of EPR experiments one can easily
determine Tz(w). If one knows Tz(0) this gives a way
of finding ro and zv.

We have implied that Eq. (17) could be used down to
Tg(m). %'e have restricted ourselves to the first order in
the MK perturbation approach. The use of four-spin
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perature at which we can make a comparison is
T =Ts(w), where we can calculate the Lorentzian width
by using Eq. {20). For higher temperatures comparison is
not possible as ~ is not known in this case.

The authors of Ref. 25 do not take account of the
change of Ts with w. However, from Figs. 1 and 2 of
Ref. 25 we extract at T =Ts the widths of the lines at
both 9.3 and 1.1 GHz to be -2.5 kG. %'e have not done
the appropriate "folding" of the Gaussian width of 1020
G with the Lorentzian width. However, the width of the
Voigt line is approximately the sum of the two widths.
Thus we find for 9.3 and 1.1 GHz the respective
linewidths —1450 and -4570 G. Subtracting a Korringa
broadening of about 10% from the experimental linewidth
we find no agreement with the theory. In particular, at
the higher frequency we are much lower than the mark
and vice versa for the other case.

Some comments are in order in this connection. First,
as already mentioned, Eq. (20) from which the relaxation-
al part of the width has been calculated is of doubtful va-
lidity. Most likely the inverse proportionality to m is not
correct and the w dependence is weaker. This seems to us
the most important reason for the lack of agreement.
Secondly, the fact that the experimental width is almost
independent of the frequency indicates that it is the
dynamic component of the dipole field which dominates
the width at T =Ts(w). This field is independent of fre-
quency. Further, our calculation of the "lattice" sum is
rather rough because of lack of knowledge about the
structure. We have used only the estimated order of mag-
nitude of Ei for calculating the single-ion contribution.
In fact, this contribution can be substantially different
from the calculated value. Lastly, the experimental
linewidth -2.5 kG pertains to a temperature T & Ts(w)
because of the expected increase of Ts with w. If one
were able to keep to the exact Ts(w) the linewidth would
be less as seen froin Ref. 25 itself.

A comparison in the regime of validity can be done
only when more detailed data on linewidth and line shift
are available. It would be desirable to measure ~ also by
some independent method, e.g., Ref. 6.

Regarding the condition for the cutoff at the first order
of the MK formalism, namely, '

ReI «w/y«r, '/y, y=gp, afi. (24)

(r, is the correlation time of the appropriate "random
force."} We note that unlike the case of Brownian motion
the "random forces" in MK formalism do not necessarily
have any physical reality except that they are introduced
to satisfy a mathematical requirement as has been noted
in sifnilar other cases. In particular, there is a hierarchy
of "random forces" and one can choose ~, of the ap-
propriate time scale. We find that the relaxational width
-424 G at 9.3 GHz easily satisfies the condition (24)
while the same -3550 G at 1.1 GHz does not. In any
event, this theory is of doubtful applicability at T = Ts(w)
and the linewidths known to be sma11er in the regime of
applicability are not available. Our conclusion is that this
theory should work for T&1.25T~ for frequency -9
GHz and higher and possibly also for —1 GHz.

The radial part vanishes on directional averaging. In the
same manner as in Eq. (22) we find the "lattice" sum in
Eq. (23) =1.05 X 10 mks which leads to the width corre-
sponding to the amplitude, a~, about —,ao-1020 G. A
dynamic field of this width wi11 combine with the
Lorentzian width as calculated in Sec. III. The only tem-

decomposition and other approximations is estimated to
define the regime of validity of this kited of theory to
about T o 1.25T~. This decomposition is equivalent to a
mean-field approximation which underestimates the fluc-
tuations. Changes in fluctuation will only change the crit-
ical exponents but, as already mentioned, we have not cal-
culated zv here. One could carry forward the MK pertur-
bation to higher order also. Though we have not done the
calculation we have doubts if Eq. (17) with a suitable zv
will be valid down to Ts(w).

The question of the effect of dipolar fields on the
linewidth and whether in view of the likely strong dynam-
ic random fields the MK formalism is at all applicable is
important. We note that the random fields ean affect the
line shape in three different ways. First, if there is a static
component of this field it will increase the linewidth by
inhomogeneous broadening. For T ~ T~ this component
of the random dipolar fields is absent. Secondly, the
dynamic component of these fields which exists above Ts
may require the introduction of the Kubo-Toyabe (KT)
approach. Again from Ref. 7 we notice that the charac-
teristic time r of the dynamic component satisfies
r &(w/2m) ' for known cases at T ~ Ts(w). Thus in this
temperature regime the effect of the dynamic component
will be at least partially averaged out by the EPR probe.
So a typical KT approach may not be essential. Only
when T =Ts(w}, r=(w/2m) ', and the full amplitude of
the dynamic field will be sampled by the probe. In this
regime, therefore, we should see the inhomogeneous
broadening of the EPR line. Such a line has the Voigt
line shape which is neither Lorentzian nor Gaussian.
This is true for all SG whatever the type. Thirdly, the an-
isotropic part of the dipole-dipole interaction will influ-
ence the relaxation and hence the line shape.

The only relevant published work on the EPR spectros-
copy of these materials concerns FesNi72Pzo and
Fe&oNizoPzo (Ref. 25) and covers the temperature regimes
both above and below Tz. These data have been analyzed
by a different approach and the published data are not de-
tailed enough for comparison with the theory presented
above. The comments of the authors that at T = Ts the
lines are neither Lorentzian nor Gaussian is of interest. It
would be desirable to verify if the line shape fits a Voigt
function with appropriate inhomogeneous, broadening.
Above Ts(w) the amplitude of the dynamic random dipo-
lar field at any magnetic atom equals the full amplitude
of the magnetic field at the given atom due to the other
magnetic atoms. This is what Uemura et a/. have indi-
cated by aq ——ao for T & Ts. Noting $($+1)=1 here
and by directional averaging of the polar part of the dipo-
lar field, pgsain8 r/, which leads to the prefactor n/4, .
the full amplitude of the dipolar field, ao, is given by

ao= gpa g r, (po/4~) T .
4 (23)
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In summary, we have tried to present a simple micro-
scopic theory for EPR linewidth and line shift for amor-
phous TM-M SG alloys applicable in the regime
T) 1.25Tg. We are not able to take account of the
characteristic exchange interaction for SG. But we have
used the anisotropic energy most suitable for an amor-
phous SG and have included the magnetic dipole-dipole
interaction. We have predicted that at T = Ts(w), the line
shape is likely to be a Voigt function which is due to inho-
mogeneous broadening by the dynamic random dipolar
field. The general trend of frequency and temperature
dependence is the same as that for canonical SG and the
critical part of the linewidth and line shift should obey
dynamical scaling down to Ts(w) for all frequencies. De-
tailed experimental data are not available at this time for
comparison with the theoretical prediction. Further de-

tai. ls about the predicted inhornogeneous broadening are
given in the Appendix.

APPENDIX

Because of approximations Eq. (20) of the text may not
be accurate. But whatever the width, in this theory we ex-

pect a Voigt line shape at T = Ts(w). An individual EPR
line has an elementary characteristic line shape which is
either Gaussian or Lorentzian. This presupposes that all

spins responsible for the line are in identical situations.
However, in the case considered in the text, at T =Ts(w)

different groups of spins at a given instant of time will

sample, in addition to the fixed external field, different
values of the dynamic random dipolar field. At every
spatial location this field is expected to have a Gaussian
distribution in time, and for T & T~ we do not expect any
spatial correlation. Thus the total Gaussian distribution
of the dynamic random dipolar field will be sampled by
the spin system. So, to find the resultant line shape one
has to "fold" the elementary line with an appropriate
function representing the variation of the total field which
has a Gaussian-like distributed component now. As the
elementary line shape is considered to be Lorentzian in
this case the "folding" will produce the Voigt line shape.
The absorption amplitude of this line shape is given by

where b =&ln2 bH, &2/ bHi&2 and U =2Vln2(H
—Ho)/ bHi~2. Ho is the line center and ~i&2 and
AH

~ ~2 are the Gaussian and Lorentzian linewidths,
respectively. The former is proportional to ad and the
latter is given by ReI of the text. If indeed the line shape
is a Voigt function by a suitable fitting procedure one
could disentangle the two contributions and make separate
comparisons. Since the above integral is not integrable its
values for various values of b and U have been tabulated.
We hope to consider in the near future the details of the
problem of obtaining the F versus H curve for the inho-
mogeneously broadened line by using these tables.
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