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Role of single-ion anisotropy in amorphous ferrimagnetic alloys
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The effects of single-ion anisotropy on transition and compensation temperatures in the amorphi-
zation of binary ferrimagnetic square lattice are investigated by the use of effective-field theory with
correlations. A number of interesting phenomena are obtained for the behavior of the two quanti-
ties, which arise from both the single-ion anisotropy and the random distribution of exchange bonds
in sign. Further research on new amorphous ferrimagnetic alloys may reveal such interesting
behavior.

I. INTRODUCTION

Amorphous rare-earth —transition-metal (RE-TM) al-
loys have proved extremely suitable for thermomagnetic
recording and magneto-optical readout applications. The
magnetic properties of the alloys are sensitive to slight
compositional changes. Experimental data confirm their
untypical behavior. Because of the potential device appli-
cations, the compositional dependencies of the Curie tem-
perature T, and the compensation temperature T„~
have been extensively investigated; being ferrimagnetic,
some of them possess a compensation-point temperature
which varies in the vicinity of room temperature by prop-
er choice of composition. The thermoinagnetic writing
and erasing can be carried out at the compensation point
near the room temperature, because of the high coercivity
around the compensation point. '

Theoretically, in order to analyze the magnetic proper-
ties of amorphous ferrimagnetic alloys, namely, the tem-
perature and the concentration dependencies of T, and

T«m~, mean-field theory has been applied in the recent
past; the theory provides a simple solution to the prob-
lems. However, as discussed in previous works, ' the
usefulness of this has been marred in the past by the ex-
istence of too many adjustable parameters and by the
neglect of the fluctuation of exchange interactions. In
amorphous magnets, the fluctuation of exchange interac-
tions (or the structural fluctuation) is in fact considered
an important ingredient for the appearance of characteris-
tic behavior, such as the depression of the reduced mag-
netization curve, reentrant phenomena, and the oc-
currence of a spin-glass phase. On the other hand, when
we use the mean-field theory, it is known that the effect
of the structural fluctuation on T, cancels out and does
not appear, and its effect on T„ is very small. Thus, it
is necessary to investigate the effects of the structural
fluctuation on the magnetic properties within the frame-
work over the standard mean-field approximation (MFA).

Very recently, the present author ' has discussed the
concentration variation of the transition temperature T,
and of T„~ for two (disordered and amorphous) ferri-
magnetic, binary, Ising alloys within the effective-field

theory with correlations (EFT). The EFT, which sub-
stantially improves on the standard MFA, has been suc-
cessfully applied to a variety of other physical problems.
In the previous works, ' the lattice model of amorphous
magnets was used, in which the structural disorder is re-
placed by random distributions of exchange interactions.
In contrast with disordered ferrimagnetic alloys, in which
RE and TM ions are randomly distributed in a lattice, we
have found that a number of interesting phenomena com-
ing from the random distribution of exchange bonds, such
as the reentrant ferrimagnetic phase, may be expected in
the new amorphous ferrimagnetic alloys, although at the
present time, the main interest of experimentalists is
directed towards obtaining an amorphous ferrimagnetic
alloy which has a compensation point in the vicinity of
room temperature.

In this paper, we assume that the rare-earth element is
subject to single-ion anisotropy of the simplest kind, and
we study the effects of single-ion anisotropy on T, and

T„~ in the lattice model of amorphous magnets within
the same framework, as in the previous works. ' We
have found that the effects of the negative anisotropy con-
stant on T, are dramatic, although the changes of T, and
T

p with a positive anisotropy constant show rather
unique behavior, depending on the value of the structural
fluctuation.

The outline of this paper is as follows. In Sec. II, we
briefly review the formulation of amorphous ferrimagnet-
ic binary Ising alloys in the EFT'. The formulation is ap-
plied to the square lattice with random bonds. In Sec. III,
the effects of single-ion anisotropy on T, and T„~ in the
square lattice model of amorphous magnets are numeri-
cally studied. For the special case with only RE ions, the
system reduces to the so-called Hlume-Capel model, and
the system is especially investigated in the Appendix, in
order to obtain the tricritical point within the EFI'.

II. FORMULATION

We consider a binary ferrimagnetic alloy of the type
A&8& z randomly occupied by two different species of
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magnetic ions A and 8 with different spins (SA ———, and

Sa ——1). We assume that the 8 iona are subject to single-
ion anisotropy of the simplest kind. The Harniltonian of
the system is then

g [JAA5iA5jA +JBB5iB5jB
l QJ

+JAa(5 A5ja+5 B5jA )]S'Sj'-S kj.

where parameters a and b are constants. '

The main problem is now the evaluation of the mean
values, (SA ) and &Sa ), where the angular brackets
denote the usual thermal averages. As previously dis-
cussed in a series of works, the starting point for the
evaluation of (S „) with S„=+—,

' is the exact Callen
identity

D—g (Si)'5iaki

where the Jj's are the exchange interaction between type-i
and type-j ions, and the sum of the first term is over all
nearest-neighbor pairs. g; is a random variable which
takes the value of unity or zero, depending on whether the
site i is occupied by a magnetic atom or not. D is the an-
isotropy constant. 5; (a=A or 8) expresses that a site i
is occupied by a type-a ion. Performing the random aver-

age denoted by ( )„the average value of g; has a re-
striction

(2)

where (g; A )„=p is the concentration of A atoms. For
the lattice model of amorphous magnets, the nearest-
neighbor exchange interactions are given by independent
random variables as

P(JAA ) 2 [5(JAA —J—~)+5(JAA J+~J)]
P(JAa) =

2 [5(JAB &J ~')+—5(JAB uJ+~')]-
P(JBB ) = , [5(JBB bJ—M"—)+5—(Jaa bJ+ b,J")]—,

8 =A =g(JAA5jA+ JAB5ja gjSj'

where p= I/ka T. On the other hand, the mean value of
(S; B ) with Sa ——+1 and 0 is also given by the exact re-
lation"

2 sinh(g; a(8(9; a )

2cosh(i; e()(); e)+exp( PDi; e)—I
'

with

e(=a =g (JBB5ja+JAB5,A C,SJ .
J

As discussed in Refs. 3 and 4, within the framework of
the E2 I', the averaged total and sublattice magnetizations
are given by [from Eqs. (4) and (5)]

m =(&S,') )„=Pm„+(1—P)m, ,

JAA JAA
m& —— P cosh D +2m& sinh D

2

+(1 P)[qa(cos—h(JABD))„+ma(sinh(JABD)), +1 qa] f(x)— (7)

JAB- J~a—
mz ——P cosh D +2m& sinh D

2 f 2

+(1 P)[qa(cosh(J—BBD)),+ma(sinh(JBBD)), +1 qa] f(x)—

with with

f(x)= —,tanh —x
2

2 sinh(Px ) (10)
2cosh(Px) ~exp( —PD)

'

where D=il/ilx is a differential operator. Z is the num-
ber of nearest neighbors. The parameter q& is here de-
fined by"

2 cosh(Pg; BO; a)
(S,' B)'

Zcosh(()i; s(); s)+exp( —D()i;=s))

In order to obtain the sublattice magnetizations, therefore,
it is necessary to calculate the parameter q~. The parame-
ter q~ is given by, in the same way as the evaluation of
mg,



T. KANEYOSHI 34

J~a- J~a—
qg = ' I cosh D +277lg smh D

2 2 p

+(1 P—)[qadi(cosh(J&+D))„+mz(sinh(Js&D)), +1 q~—] h(x) (13)

with

2 cosh(Px )
(14)

2 cosh(Px ) +exp( —JP3D )

As discussed in a great number of works, ' ' ' '" these
equations can be easily evaluated by applying a
mathematical relation e f(x) =f(x+a).

At this point, it is worth commenting that in compar-
ison with the previous works ' with zero anistropy con-
stant (D =0), the only differences are the definitions of
functions g (x) and h (x). Therefore, the equations in Ref.
3 for evaluating T, and T„~ can be easily extended to
the present problem.

For the ferrimagnetic square lattice (Z =4) with ran-
dom bonds, namely, the amorphization of ferrimagnetic
square lattice, the critical surface characterizing the ferri-
magnetic phase stability limit is determined by, as dis-
cussed in Ref. 3,

(Ai —l)(82 —1)=ApBi .

obtained in real ainorphous RE-TM ferrimagnetic alloys
which may be assumed to be Z=12. In real systems,
Jzz, Jz~, and Ja~ correspond to TM-TM, RE-TM, and
RE-RE interactions, respectively. The magnitudes of
exchange interactions are usually taken as
Jzz & —Jzz &Jzz. In gadolinium-based alloys the
single-ion anisotropy is believed to be negligible. This is
due to the fact that Gd is an s-state ion with little or no
interaction with the crystal electric field. Terbium, for in-
stance, is known to couple strongly to the electric field
and create large amounts of single-ion anisotropy. It may
be expected that the model for amorphous Tb-TM alloys
is one that includes both the single-ion anisotropy of Tb
and the structural fluctuation.

Figure 1 shows T, and T« „versus D for an alloy
with p=0.5. Exchange interactions are then chosen as

The coefficients A i, Az, Bi, and 132 are given only by re-
placing the functions h(x) and g(x) in Ref. 3 with the
new Eqs. (10) and (14). On the other hand, in the ferri-
magnetic materials, the sublattice magnetizations do not
have the same sign, and there may be a compensation
temperature T„~ at which the total magnetization
m =0, even though mz&0 and mii&0. For Z =4, the
effect of D on T«z can be evaluated from Eqs. (30)—(32)
in Ref. 3 with new functions (10) and (14), if a compensa-
tion temperature exists.

In the next section, we shall investigate the role of D in
the behavior of T, and T„~ for the amorphization of
ferrimagnetic square lattice by solving these equations nu-

merically.

0 2-
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/
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III. ROLE OF ANISOTROPY CONSTANT
IN THE AMORPHIZATION OF FERRIMAGNETIC

SQUARE LATTICE

Let us now investigate the behavior of T, and T, „ in
the presence of a finite D for the amorphization of ferri-
magnetic square lattice. As discussed in previous
works, it is extremely tedious to treat the fluctuations of
exchange interactions in general, so that we also take

O. I-

P= 0.5

5J 2'' 2'"
J J J

The parameter 6 is often called the structural fluctuation
in amorphous magnets.

Before showing the numerical results, it is first worth
commenting on some relations between the results ob-
tained within the present formulation (Z =4) and those

D/g

FIG. 1. Curie and compensation temperatures versus single-
ion anisotropy constant D for a binary A~8& ~ system with
p=0.5, in which exchange interactions defined by (3) are fixed
as a = —0.12 and b=0.02, and the structural fluctuation 6 de-
fined by (16) is varied; curve a is for 6=0, curve b is for 5=0.1,
and curve c is for 5=0.4. Solid lines denote T, and dashed lines
are for T,
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Jzz ——J(1+5), Jzs ———J(0.2+0.55), and Juris ——J(0.02
+0.55), values which may be consistent with the experi-
mental data for amorphous Tb-TM alloys. ' The + sign
of exchange interactions are taken with equal probability,
according to the definitions (3). As discussed in Ref. 3,
the coinpensation temperature T„~ is allowed for a sys-

tem with p in the region of p ~ —,', so that for a small
value of 5, the change of T« ~ versus D (D & 0) is found
in the figure.

As is seen from the figure, curves a and b with 5=0.0
and 5=0.1 express typical behavior for the change of D;
for D&0, T, and T„~ increase at first, and then ap-
proach constant values upon increasing the value of D.
For D ~0, T, at first decreases rapidly and approaches to
a finite value, on decreasing the value of D. The T«mz in
curve a cannot be defined at the point near D/J= —0.1.
Therefore, in curve b, T ~ versus D is only plotted for
D & 0. The results labeled b express that the exchange in-
teraction Jzz takes positive and negative values randomly,
so that T, and T«mz for 5=0.1 have small values in
comparison with those of curve a. Physically, the in-
creases of T, and T« ~ for D &0 come from the fact
that for D &0, spins at 8 sites more preferably take the
direction parallel to the z axis. On the other hand, for
D g0, spins at 8 sites are apt to direct perpendicularly to
the z axis and hence the T, decreases rapidly at first and
then approaches to the value of T, mainly determined
from the contribution of A atoms.

A particularly interesting result is obtained for curve c
in Fig. 1. The structural fiuctuation 5 is chosen as 5=0.4.
The exchange interactions Jzq and Jqq can then take pos-
itive and negative values randomly. The behavior of T,
versus D is in contrast with a and 5 in the figure. In this
case, T„~ cannot be obtained for any value of D, be-
cause of the large value of 5. The result may be under-
stood as follows. Upon decreasing the value of D from
D =0, as mentioned above, spins at 8 sites behave like
"nonmagnetic atoms" for the estimation of T, . The most
important aspect of the "dilution" is to break out the frus-
tration in A spins, which comes mainly from Jzs. There-
fore, the value of T, for D= 2J becomes larger —than
that for D =2J, where the frustration due to Jzs and Juris

is fully taken into account.
In Figure 2, the exchange interactions are chosen as

Jgg ——J(1+5), Jgs ———J(0.25+0.55), and Jsg ——J(0.1

+0.55). The values of T, and T„„for D=O in the
curves labeled a are equivalent to those of Fig. 6 in Ref. 3.
As shown in Ref. 3, when we take the values of the ex-
change interactions and the value of 5 is not so large, the
compensation temperature is found only for a system with

p in the region 0.5 &p g —', . %hen 5=0.4 is chosen as for
curves a', b', and c' in Fig. 2, the exchange interaction
Jz& can take positive and negative values with equal prob-
ability.

As is seen from the curves labeled a in Fig. 2, the
behavior of T, and T«m~ versus D are very similar to
those labeled a in Fig. 1. For the system with p=0.6 and
6=0.4, however, the increase of T„z with positive D is
rather insignificant, although the change of T, with D is
also similar to that of curve b in Fig. 1. Thus, it seems
that the effect of D on T„~ is reduced for a large value

0.5

0.3

0.2

FIG. 2. The behavior of T, (solid line) and T„„{dashed
line) versus D for two systems with 5=0 and 0.4, in which
curves a, b, and c are for 5=0, and curves a', b', and c' are for
5=0.4. Exchange interactions defined by (3) are fixed as
a = —0.25 and b=0.1. Concentration p is varied; curve a is for
p=0.6, curve b is for p=0.43, and curve c is for p=0.4. Black
point in curves b', c and c' denotes a measure for the tricritical
point.

of 5.
In Fig. 2, the behavior of T, versus D is furthermore

depicted for two selected values of p, namely p=0.43 and
p=0.4. Curve b with p=0.43 and 5=0 changes continu-
ously with D, but for curve c with p=0.4 and 5=0, any
solution of T, cannot be obtained below a critical value of
D (or the black point in the curve) by solving Eq. (15) nu-
merically. The abrupt change of T, behavior versus nega-
tive D is in fact observed in the concentration range
0.42 &p &0.43. The result reminds us the following fact:
&hen we take Jz~ ——0 and Jzq ——0, namely, the bond-
dilution problem of A atoms, the critical percolation con-
centration p, is given by p, =0.4284 within the present
formulation (EFT). Therefore, as the concentration p ap-
proaches p„ the contribution of 3 atoms to T, reduces,
and for the value of p below p„ the effect of 8 atoms on
T, becomes dominant. On the other hand, the special
case with p =0 and 5=0, namely the "pure" system with
only 8 atoms (pure means 5=0), just corresponds to the
so-called two-dimensional Blume-Capel model. It is
well-known that for a negative value of D, the Blume-
Capel model exhibits a tricritical point at which the sys-
tem changes from the second-order phase transition to the
first-order one. Thus, the black point in curve c may in-
dicate the tricritical point, although the point is obtained
by solving Eq. (15) numerically. Therefore, it is
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magnetic model with randomly distributed exchange in-
teractions among neighboring iron atoms, as suggested in
the previous works and the present work. That is to say,
when we compare the transition temperature of crystalline
ferrimagnetic TbFe2 alloy with that of amorphous TbFe2,
the reduction in ordering temperature amounts to
T, (amorphous)/T, (crystal)=0. 57, ' a value too large to
be explained directly in terms of a reduction in the effec-
tive Tb-Fe exchange coupling. As discussed in Fig. 4, on
the other hand, the ratio for 5=1.2 is 0.75. However,
when we take 5=1.5 in the case of Fig. 4, the ratio is
given by 0.59, even for D =0. Thus, the large reduction
in ordering temperature can be easily attained from our
model, although the true situation for the reduction of T,
in the amorphous Tb-Fe alloy may be thought to be ran-
dom directions of the anisotropy axis.

Finally, at the present time the main interest of experi-
mentalists is directed towards obtaining an amorphous
ferrimagnetic alloy which has a compensation point in the
vicinity of room temperature, because of its potential de-
vice applications, such as thermomagnetic recording. As
shown in Sec. III, a number of interesting phenomena
coming from the random distribution of exchange bonds
and the single-ion anisotropy of the simplest kind may be
also expected in new amorphous ferrimagnetic alloys, al-
though they may not be of technical importance, but only
important academically.

APPENDIX

In this part, we study the spin-1 Ising model with
crystal-field interactions on a square lattice (Z =4),
namely, the two-dimensional Blume-Capel model, by the
use of the EFT, in order to clarify whether the critical (or
black) point obtained from Eq. (15) is a measure for the
tricritical point. The Hamiltonian is given by

J gs,'s,'—D g(s,')', (A 1)

m =43)m+48)m +12C)mq+12D)mq +4E)mq

where the first summation runs over all pairs of nearest
neighbors.

Using Eq. (g) with @=0„the magnetization m is given

by (within the Et 1 )

K, =cosh'(DJ )sinh(DJ )g (x )
~ „

K2 ——cosh(DJ)sinh (DJ)g(x)
~ „p,

K, =cosh (DJ)sinh(DJ)g(x)
~
„=p,

K4 ——sinh (DJ)g(x)
~ „

K, =cosh(DJ)sinh(DJ)g(x}
~
„p,

K6 ——sinh(DJ)g(x)
~ „

(A4)

with

+1262m q+6H2m q +I2m (A5)

A2 ——Lg,

82 ——Ls —Lg,

C2 ——L6 —2L8+Lg,

D, =L,—3L,+3L,—I,
E2 ——L )

—4L4+6L6 —4L8+Lg,

H2 ——L2 —2L 5 +L7,
I2 ——L3,

where the coefficients L; (i = 1 to 9) are defined by

L i
——cosh"(DJ)h(x)

~ „p,
L2 ——cosh2(DJ)sinh (DJ)h (x) ~,

L., =sinh'{DJ)I (x)
~ „,,

L4=cosh (DJ)h(x)
~ „

L& ——cosh(DJ)sinh (DJ)h(x)
~ „

L6 ——cosh (DJ)h(x)
I x p,

L7 ——sinh (DJ)h(x)
~ „

(A6)

(A7)

L=sscho(DJ )h { )x~ „
L9 ——h(0) .

On the other hand, the parameter q defined by
q=((Si*) ) is given by [from Eq. (13) with p =Oj

q=A2+48zq+6C2q +4D2q +E2q +6Fqm

+4F)m q,

with

A) ——E6,
8) ——E4,
C) ——E5 —Eg,
D) ——E6—2E5+E3,
E) ——E) —3E3+2Eg —E6,
F) ——E2 —E6,

where the coefficients K; (i = 1 to 6) are defined by

(A2) Here, the coefficients E; and L; can easily be calculated
by applying a mathematical relation e f(x)=f(x +a).

At this point, when we replace q in (A2) by its expres-
sion taken from (A5), we obtain an equation for

m =am+em'+em'+

The second-order phase transition line in the T-D plane is
determined from a =1, i.e.,

1=43 i + 12Ciqp+ 12D, (qp) +4Et(qp)

where qo is the solution of

qp ——Ap+482qp+6C2(qp) +4D2(qp) +E2{qp)
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The right-hand side must be positive. If this is not the
case, the transition is of the first order and in the T D-

plane, the point at which a =1 and b =0 is the tricritical
point. ' In order to obtain the expression for b, we must
solve (A5) for small m. The solution is of the form

(A12)

where q ~ is given by

m 6F2+ 1262qo+6H2(qo)

1 482 ——12C2qo —12D2(qo ) —
4&2 (qo )

(A13)

The parameter b is then given by

p= o.o
Jsa= J & =48, +12Ciq, +24Diqoqi+12Ei(qo)'qi

+4~iqo (A14)

FIG. 5. Curie temperature versus D for the Blume-Capel
model in square lattice {z=4). The point 6 in the curve
denotes the tricritical point obtained from the framework dis-
cussed in Appendix. Black point in the curve corresponds to a
critical point obtained from Eq. (15), below which any solution
cannot be obtained from Eq. (15)~

In the vicinity of the second-order transition line, the
magnetization is given by

(Al 1)

By solving (A9), (A10), and (A14) numerically, the
behavior of T, versus D is depicted in Fig. 5. The tricriti-
cal point (b in the figure) is given by D, = —1.8804J and
k sT, = I. 033 6J. When we use the reduced units defined
by 5, =

~
D,

~

IzJ and 8, =ks T, /zJ, 5, and 8, are given by
5, =0.470 and 8, =0.258, which values are in quite good
agreement with those from high-temperature series expan-
sion method and represent a remarkable improvement on
the MFA predictions (see Table I in Ref. 16). On the oth-
er hand, the results obtained from Eq. (15) for the system
with p =0 and Jq~ ——J also gives the same curves until the
black point in Fig. 5 below which any solution cannot be
obtained from Eq. (15). Thus, the critical (or black) point
in Figs. 2 and 4 obtained from Eq. (15) is a good measure
for the tricritical point.
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