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Corrections to late-stage behavior in spinodal decomposition:
Lifshitz-Slyozov scaling and Monte Carlo simulations
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The Lifshitz-Slyozov theory of the late stages of diffusion-limited spinodal decomposition
(Ostwald ripening) is generalized to apply for arbitrary volume fractions of the two phases. Correc-
tions to the asymptotic R (t)—t' 3 scaling are considered; they are due to excess transport in inter-

faces and are therefore of relative order R '(t), where R (t) is the average domain size. That the

asymptotic exponent —, has not been observed in Monte Carlo simulations of Ising models can be at-

tributed to such corrections. Further simulations of the square-lattice Ising model are performed:
The results are consistent with the generalization of the Lifshitz-Slyozov theory. The recent work

of Mazenko et al. that proposes instead R (t) -logt is criticized.

I. INTRODUCTION

The kinetics of domain growth in the late stages of
diffusion-limited spinodal decomposition (Ostwald ripen-

ing) have been studied by a variety of methods. ' How-
ever, disagreement remains as to the asymptotic time
dependence of the average linear domain size, R (t), for
long times, t. The classic paper of Lifshitz and Slyozov'
examined the case of widely spaced domains of one phase
growing and shrinking in a matrix (one large domain) of
the second phase. They found that the domain growth at
long times is limited by diffusion through the matrix; the
asymptotic long-time form they obtained is a power-law
growth,

R(t)-t",
with exponent n = —,'. More recent work that considers
interactions between domains finds no change in this
asymptotic growth law (see, for example, Ref. 4). The
analysis in Refs. 1 and 4 applies when the volume fraction
of the first phase forming isolated domains is inuch
smaller than that of the second phase forming the matrix.
When the total volumes of the two phases are comparable,
as in a near critical quench, the geometry of the resulting
domains is quite different, but one can still argue (see
below) that R (t) —t'~i at long times.

Simulations of spinodal decomposition at zero total
magnetization after cooling below the critical tempera-
ture, T„in spin-exchange Ising models ' ' have found ex-
ponents n in the range 0.17—0.25 when fitting the domain
size to the power-law form (1). Lebowitz et al. suggest
that the asymptotic time dependence of R(t) probably
does have exponent n = —, and the lower observed ex-

ponents are due to insufficiently long simulation times.
This view will be argued for in this paper, also. Mazenko
et al. , on the other hand, have argued that R (t)-lnt at
long times. Their conclusions are based on analysis of
data for the square lattice Ising model at temperatures
T ~0.6T, and times t &2000 attempted exchanges per
spin. Criticism of their approach is offered at the end of

this paper.
In this paper I argue that the Lifshitz-Slyozov growth

law, n = —,, should apply even for a critical quench with

equal volume fractions for the two phases. Similar argu-
ments have recently been made by Glicksman and
Voorhees for the coarsening of dendrites. At finite times
an effective exponent

d [lnR (t)]
d [Int]

can be defined. It is argued below that this effective ex-
ponent should behave at long times as

T

Ro
tl ff(te) =— 1 — +O(R (t))

3 R(t)
(3)

where the length Ro depends on the temperature and rela-
tive volumes of the two phases and is positive for near
critical quenches when the diffusion constants in the two
phases are approximately equal. Simulations of the two-
dimensional spin-exchange Ising model are then per-
formed for times up to 40000 attempted exchanges per
spin (Metropolis algorithm). The results are consistent
with (3), with n,tt(t) definitely increasing with time, in
contrast to the decrease with time if R (t)-lnt. However,
the simulation times are fairly short and an extrapolation
of n, tt(t) for t ~ oo [assuming it is a smooth function of
1/R (t)] yields n =0.29+0.04 for the asymptotic ex-
ponent. Thus the uncertainty in the numerically mea-
sured exponent n is still disappointingly large.

In a recent experiment, Marsh and Glicksman have
studied the coarsening of dendrites of succinonitrile im-
mersed in liquid succinonitrile. On short length scales,
before gravitational effects enter, this process is limited by
heat diffusion. They measure the depression hT of the
temperature below the melting temperature; AT is propor-
tional to the average interface curvature and therefore to
the inverse of the average domain size. They find the
Lifshitz-Slyozov growth law AT-t ' over a range of a
factor of 50 in time, from a few minutes to a few hours.
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II. LIFSHITZ-SLYOZOV ARGUMENT GENERALIZED

The coarsening of isolated, widely spaced domains of
one phase in a matrix of a second phase occurs by the
shrinking due to evaporation of the smaller domains and
the growth by condensation of the larger domains. ' The
rates of both processes are limited by the rate at which
diffusion into and out of the matrix can occur. On length
scales small compared to the domain size each neighbor-
hood is near to local equilibrium and the local field conju-
gate to the diffusing density (of atoms, molecules, spins,
energy, etc.) varies slowly with position. The time neces-
sary to approach local equilibrium on length scale I. is
proportional to L /D, where D is the diffusion constant.
If the domain size is growing according to R(t)-(Dt)
then the system can be near local equilibrium on scales
L «R(t) if R «Dt This. will occur at long times
whenever n ~ —,.1

Mazenko et ar. have suggested that local equilibrium
near the interfaces is never approached at low tempera-
tures in spin-exchange Ising models because diffusion
across the interface is activated. However, the activation
energy is finite, leading to a nonzero diffusion constant
for transport across the interface. At low temperatures
this transport is slow, so local equilibrium will not be ap-
proached at early times, but provided n & —,

' the diffusion
must eventually catch up with the domain growth and
cause an approach to local equilibrium at sufficiently long
times. Therefore the I.ifshitz-Siyozov argument as gen-
eralized below should work at long times for any nonzero
temperature.

Let us then consider a near critical quench, where the
volume fractions of the two phases are comparable and we
do not at all have isolated domains, but instead highly
connected interpenetrating domains of a complicated and
random geometry. An example is shown in Fig. 1 of the
pattern obtained after 16000 attempted exchanges per
spin (Metropolis algorithm) on a square lattice spin-
exchange Ising model quenched instantly from infinite
temperature to T=0.9T, . This is a lattice of size
108X108 with periodic boundary conditions and zero to-
tal magnetization. Similar pictures with a 400)&400 tri-
angular lattice at T=0.6T, and comparable times are
given in Ref. 5. For such complicated patterns one can
still define a typical or average linear domain size, R (t}:
The order parameter correlation function, G(r, t}, which
for the Ising model is

G (r, t) = (S(0,t)S(r, t) ) —(S & (4)

where S(r, t) is the spin at position r and time t, falls off
with r in an oscillatory fashion, as is illustrated in Fig. 2.
Here we define R (r) as the position of the first zero of
G(r, t), which is one measure of the typical domain size.

Let us assume that our system is near local equilibrium
on length scales small compared to R (t), as should be the
case at long times when n ~ —,'. For the Ising model it is
the up and down spins that are the diffusing species and
the local relative "chemical potential" for these two
species is simply a local magnetic field h. For the
remainder of this paper the language appropriate for the
Ising model will be used. The interfaces between domains
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FIG. 1. Domain configuration obtained after quenching a
square lattice spin-exchange Ising model with zero total magnet-
ization instantly from infinite temperature to 0.9T, and then
annealing for 16000 Monte Carlo steps per spin. The spin-up
phase is dark and the spin-down phase white. The sample con-
sists of 108 spins. See Ref. 5 for similar pictures of larger sam-
ples.

of the two phases have local radii of curvature of order
R (r) or greater. For a portion of such a curved interface
to be in local equilibrium requires that the pressure due to
its tension cancel that due to the local field h. If the in-
terfacial tension is X, then the former pressure is of order
X/R (t), while the latter is of order hM, where M is the
order parameter. Therefore the local field is of order

X/MR(t) and the variations in this field from place to
place are of the same order. These variations occur over
distances of order R (t), resulting in field gradients of or-
der X/MR (r). In response to these gradients there are
currents of order A,X/MR (t), where A, =DX is the spin
conductivity and 7=8M/Bh is the susceptibility. Due to
these currents, interfaces are moving with velocities of or-
der A,X/M Ri(t). It is due to this interface motion that
the domain structure coarsens and R (t) increases. Thus
we expect

for large R(t). This simple equation is the result of two
reasonable assumptions: (1) the usual scaling assumption
that the domain pattern can be characterized by a single
length scale R (t); (2) that the rate of evolution of the pat-
tern is limited by diffusion through the domains. The re-
sulting growth law R (r) —r' is the same as obtained by
Lifshitz and Slyozov. ' Their approach has been general-
ized in the reasoning leading to Eq. (5) to apply to a near
critical quench, in a fashion that is very much in the spirit
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of Lifshitz' later paper' on domain growth urithout

order-parameter conservation. Glicksman and Voorhees
have recently formulated a very similar argument.

Now let us consider what sort of finite-time corrections
to (5) we should expect. One correction is due to trans-
port in the interfaces. The local conductivity will be
enhanced in the interface for many systems" because
there are more low-energy processes available to cause
transport. This is certainly the case for lattice Ising
models. For the square lattice spin-exchange Ising model
with nearest-neighbor couphngs J only, the bulk conduc-
tivity A, in a pure phase vanishes as exp( —SJ/T) as
T~O, because the transport is carried out by overturned
spins in the ordered phase that cost energy 8J to create.
An overturned spin in contact with an interface, on the
other hand, costs only energy 4J, so the excess conductivi-
ty along an interface running parallel to a nearest-
neighbor direction vanishes as exp( —4J/T) for T~O.
Thus transport along the interfaces can dominate at low
temperatures. I have measured the local conductivity
along an interface in Monte Carlo simulations of the
square lattice Ising model and find that this enhanced in-
terface conductivity persists up to 0.9T,. Presumably it is
always present for T & T„it would be interesting to know
its critical behavior.

When the domain size is R (t), the amount of interface
present per unit volume is of order 1/R(t). The excess
conductivity in the interfaces will enhance the ripening
process at this order. At intermediate volume fractions
where both phases have large tortuous domains, like in
Fig. 1, transport both along and across interfaces is im-

portant. In the dilute limit of isolated domains, only
transport across interfaces plays a role in ripening. There
do not appear to be any physical processes available that
could generate corrections to the Lifshitz-Slyozov growth
law (5) at lower relative order than 1/R. Including this
enhanced interface conductivity in (5) yields

III. SIMULATIONS
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I have performed extensive Monte Carlo simulations of
the square lattice spin-exchange Ising model with isotro-
pic nearest-neighbor couplings J in order to test the ideas
presented in the preceding section of this paper. The
Metropolis algorithm was used; a pair of nearest-neighbor
spins being selected randomly and exchanged (a) with
probability one if there is no increase in energy; (b) with
probability exp( —b E/T) if the exchange increases the en-

ergy by hE. Since the bulk conductivity I, is activated,
the domain growth process goes faster as temperature is
increased, even very near T, =2J/ln(1+v 2) where the
driving force X/M is decreasing. In order to get to the
largest domain size in a given time, most of the simula-
tions were performed at temperature T =0.9T, . At this
temperature, the correlation length is still less than two
lattice spacings so critical phenomena are not playing an
important role for the domain sizes studied. At low tem-
peratures the domain growth is slower, see, e.g.,
T =0.5T, in Fig. 3. The simulations were always started
at time t =0 with a completely random initial configura-
tion. The unit of time is one attempted exchange per spin.

The correlation function G(r, t), Eq. (4), was recorded
for spacings r parallel to the lattice axes, results are
shown in Fig. 2. The domain size R (t) was calculated by
fitting the three points in G(r, t) closest to its first zero

t) R (t) C2 C3
O(R 4)

R'(t) R'(t)
(6)

—0.1-
where C2&0. Note that when the correction speeds
ripening, C» 0. Solving (6) for large R, t, yields

R(t)=(3C,t)'~'+C, /2C, +O(t '") .

This results in an effective exponent (2) of
p~O g

4 0 0
0 p 0

, n(tr)t= —— +O(R ) .
3 6C R(t

For C3 & 0 we therefore should expect to find that the ef-
fective exponent is less than —,

' and for t~ ao approaches
—,
'

linearly in R '(t). We may write (8) as

3n,«(t)= 1 R, /R(t)+O(R —'(t)),
where Ro is a length which should be microscopic, except
for near T, where, by scaling, we expect it is proportional
to the correlation length and for T~O, where for fully
connected geometries it might diverge due to excess trans-
port along the interfaces.

-0.1 l

0

FIG. 2. Correlation function 6 (r, t) [Eq. (4)] at various times
t after a quench to 0.9T, from infinite temperature. The
domain size R(t) is defined so the first zero crossing is at
r =8 (t}. The data are plotted versus scaled distance ~/8 (t) to
show that they are well represented by one scaling function [see
Eq. (11)].
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reasonably well in the regime studied here. The only devi-
ation from this simple scaling (11) that can be discerned is
in the first minimum of G(r, t), which deepens slightly as
time progresses. This correction to scaling is too weak to
measure with any useful accuracy. That the Fourier
transform of G(r, t) scales in a similar fashion was shown
in Refs. 2 and 3, so this is not a new result. The fact that
the scaling form (11) works well at times when the effec-
tive growth exponent (see below) far from its asymptotic
value says that the geometry of the domains is not very
sensitive to the excess transport in the interfaces.

%hat has not been done in previous simulation studies
is to measure R(t) with sufficient accuracy and over
enough of a time range to measure the time variation of
the effective exponent n,ri(t} as defined in Eq. (2). It is
clear from the upwards curvature of the data in the log-
log graph of Fig. 3 that n, rr is increasing with time. A
numerically measurixl effective exponent is extracted from
this data using the simple definition
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FIG. 3. Domain size R (t) as a function of time for quenches
to 0.9 T, (solid points) and 0.5 T, (open circles).

(10)

crossing to a quadratic function of r and defining R (t) as
the value of r where this function vanishes. The results
for R (t) are shown in Fig. 3. All data shown here were
taken on square or rectangular lattices with periodic boun-
dary conditions and both linear dimensions greater than
or equal to 192 lattice spacings. Runs on smaller lattices
showed that finite-size effects did not alter R (t) by more
than 1% until it reached approximately one-third of the
lattice size. Therefore with the lattices of size greater
than or equal to 192 the error in R (t) due to finite-size ef-
fects must be much smaller than the statistical error in all
data shown here. The error bars shown are +b,R(1),
where

n ff(t}=logio[R ( 10t)/R (t)] (12)

0.3 '—
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The results are shown in Fig. 4. The generalized
Lifshitz-Slyozov theory [Eqs. (8) and (9) above] says that

ff(t) should approach —,
'

as 1 /R ~0 with a finite slope
on the graph in Fig. 4. Unfortunately, only a rather small
range of 1/R was accessible, due to the slowness of the
domain growth. However, the results are certainly con-
sistent with the theory, and the length Ro needed to fit
the data to (9) is of order 1 or 2 lattice spacings at the
temperatures studied, which does not seem unreason-
able. ' The results are clearly inconsistent with the pre-
diction of Ref. 6 that R (r)-int, since this gives an n, rr(t)
that decreases with time, vanishing as n,ff(t)-1/R (t) for
t~(x).

and E is the total number of spins in the simulation. This
is chosen so that the relative error in R (t) is equal to the
inverse of the square root of the total number of correla-
tion volumes in the sample. The statistical error as calcu-
lated from the variation between different runs was ap-
proximately equal to that given by (10). The total area
simulated (using various lattices of size 192 )&M,
192 &M &2304) for T =0.9T, was N =21X 192
=774 144 for t & 4000 and one-third of that for t & 4000.
For T =0.5T, one run of a sample size
192X960= 184 320 was performed.

The standard scaling ansatz for the correlation function
is that

Q.2 I

Q. I 2
0

I

0.2
I/R

Q4

G(r, t) =f(r/R (r)),
for large R(t), where f is the scaling function. The re-
sults in Fig. 2 show that such a scaling ansatz works

FIG. 4. Effective exponent n,qq(t j as a function of 1/R (t) for
the quenches to 0.9T, and 0.5 T, shown in Fig. 3. The exponent
is obtained from the ratio of R (t) to R (10t); see Eq. (12).
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The reader may find it disturbing that the last few
points for T =0.9T, are all lower than expected, but this
may be a statistical fiuctuation. The errors on these
points are highly correlated because they are all obtained
from the same runs. If we do not assume that we know
the exponent n in (1), but do make the reasonable assump-
tion that the leading corrections are of order 1/R (t), then
we obtain n =0.29+0.04 by allowing any reasonably
smooth extrapolation of the data in Fig. 4 for T =0.9T, .
I must admit that this uncertainty in n is rather disap-
pointing, but to improve it requires significantly more
computer time; to go to twice the R (t) with comparable
accuracy will require approximately fifty times as many
attempted exchanges. This work took approximately 6
CPU hours on a Cray I.

A possibility for future simulations is to attempt to in-

dependently adjust the interfacial and bulk conductivities
in order to reduce the magnitude of the leading correction
to scaling Ro. This could be done by making the ex-
change probability smaller in interfacial regions than it is
in the model simulated here. If successful, this might
yield a more accurate estimate of the asymptotic ex-

ponent, n, as well as more information about the correc-
tions to scaling.

IV. DISCUSSION

It is worth noting why the data used by Mazenko
et, al. in their Monte Carlo renormalization-group
analysis are not relevant for the long-time behavior. Since
there are processes with different activation energies in
this square lattice spin-exchange Ising model, there are
probably three different time regimes in the growth pro-
cess at low temperatures. First, for times t «exp(4J/T)
only nonactivated processes occur and the domains grow
to a finite size of order unity and then stop, as is seen in
zero-temperature simulations. Then, for exp(4J/T) « t
«exp(8J/T), the processes with activation energy 4J are
occurring, but not those with activation energy 8J. It is
not clear what growth law holds in this regime; probably
the domains just grow a little larger and then stop again
because to go to large domains appears to require process-
es with activation energy 8J. Finally, for long times,

t »exp(8J/T), significant conduction through the bulk
domains finally can occur and the Lifshitz-Slyozov
growth law holds, with the finite-time corrections dis-
cussed above. In Ref. 6 they worked at low temperatures
and such short times that they never entered the last re-
gime. Therefore their data has nothing to do with the
long-time growth behavior. The simulations reported in
this paper, on the other hand, are performed at high
enough temperatures and for long enough times that plen-
ty of time is available for the activated conduction to
occur and most of the data is in the long-time regime.

The renormalization-group analysis of Mazenko et al.
that leads to their conclusion 8-Int assumes that the
same zero-temperature fixed point governs the long-time
behavior at T =0 and T g 0. It is this assumption that is
the source of their disagreement with Lifshitz-Slyozov.
%hat long-distance or long-time properties does an or-
dered phase have that must be properties of the zero-
temperature fixed point governing it'? One is the depen-
dence on interfacial orientation of the interfacial tension:
For two-dimensional Ising models on regular lattices the
interfacial tension is an analytic function of interfacial
orientation for T & 0, while at T =0 it develops singulari-
ties at certain orientations. ' In this respect the fixed
point governing T =0 is very different from those govern-
ing T &0. Another property of the ordered phase is the
bulk spin conductivity k. This is strictly zero for T =0,
while for T & 0 it is nonzero. This again makes the fixed
point governing T=0 special. I argue that the fixed
point governing the T=0 behavior governs the T ~0
behavior only for times t «exp(8J/T), when activated
conduction is not occurring. At later times the behavior
is governed by a very different fixed point which allows
conduction and ripening and yields the Lifshitz-Slyozov
growth law. ' Therefore, it appears that a proper
renormalization-group treatment of this problem must al-
low for both fixed points, unlike Ref. 6 where only one
fixed point was permitted.
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