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%e investigate the three-dimensional semi-infinite Blume-Emery-Griffiths (BEG) model using the
Migdal-Kadanoff renormalization-group method. The parameter space is six dimensional. %'e find
69 fixed points describing a large variety of critical behaviors and discuss various semi-infinite
models which are special cases of the BEG model such as the Blume-Capel model. For this last
model we determine the various generic types of phase diagrams according to the values of the in-

teractions on the surface and in the bulk of the system.

I. INTRODUCTION

Semi-infinite systems have been the subject of
numerous studies, and a detailed review article containing
an extensive list of references has been published by
Binder. ' Most works have been devoted to systems which
undergo second-order phase transitions. A relatively
small number of papers have considered semi-infinite sys-
tems which exhibit first-order and tricritical phase transi-
tions.

Recently the three-dimensional semi-infinite spin-1 fer-
romagnetic Ising model with a crystal field has been stud-
ied. The spin-1 ferromagnetic Ising model with a crystal
field has been introduced independently by Blume and

Capel and is often called the Blume-Capel model.
As a function of the ratio R of bulk and surface in-

teractions and the ratio D of bulk and surface crystal
fields all the possible phase diagrams have been deter-
mined using mean-field approximation. Eight generic
types of phase diagrams have been found. They show a
variety of phase transitions and multicritical points.

One aim of this paper is to study the three-dimensional
semi-infinite Blume-Capel model using a real-space
renormalization-group technique. In order to achieve
such an aim, we shall investigate the more general three-
dimensional semi-infinite Blume-Emery-Griffiths (BEG)
model.

The infinite BEG model is described by the following
reduced Hamiltonian:

pII= —J ps, s, —z gs, 's,'+ags, ',
where the spins (S = —1,0, 1) are located on the sites of a
cubic lattice and the first and second summations run
over all neighboring pairs of spins. J, K, and 5 denote,

respectively, the reduced bilinear exchange, biquadratic
exchange, and crystal-field interactions. This model is an
extension of the Blume-Capel model, which corresponds
to K=O.

Using a real-space renormalization-group techique, it is
not possible to restrict our study to the Blume-Capel
model, since in the three-dimensional parameter space
( J,K, b, ) the subspace K=O is not invariant.

II. THE INFINITE BEG MODEL

This model was introduced to describe phase separation
and superfiuid ordering in He- He mixtures and was sub-
sequently reinterpreted to describe phase transitions in
simple' and multicomponent fluids. " ' In this section
we shall determine the phase diagram in the (J,E,h)
space for the two- and three-dimensional infinite BEG
models using the Migdal-Il adanoff renormalization-group
method. '~'5

This method will be used in the following section to
study the three-dimensional semi-infinite system, and
since in this case the recursion relations have a large num-
ber of fixed points, the results obtained for the infinite
systems will help in understanding the meaning of the
various fixed points. The infinite BEG model has been
studied by many different methods. Most references can
be found in a revie~ article on the theory of tricritical
points by Lawrie and Sarbach. ' In what follows, we shall
first briefly describe the results obtained by the mean-field
approximation and those of Berker and Wortis, ' who
used a different real-space renormalization-group tech-
nique.

The different phases of the BEG model can be charac-
terized by two parameters: the magnetization m =(S;)
and the quadrupole parameter q = (S; ). Since the lattice
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FIG. l. BEG phase diagram obtained with the mean-field
approximation described in Sec. II. Wavy lines denote smooth
continuation of surfaces.

is translationally invariant, m and q do not depend upon
the site i.

The BEG phase diagram in the ( J,K, b, ) space obtained
with the mean-field approximation is represented in Fig.
1. The notations are those of Berker and Wortis. Accord-
ing to the values of m and q, three different phases can be
distinguished as follows:

Paramagnetic I': m =0, q ~ —,
'

Paramagnetic I'+. m =0, q ~ —,
'

Ferromagnetic F: m&0, q
+~—,'

The ferromagnetic phase F is separated from the
paramagnetic phase I'+ by the second-order transition
surface CTOE3L, and from the paramagnetic phase P
by the first-order transition surface F3TOE3L ~ Oil the
other hand, the two paramagnetic phases are separated by
the first-order transition surface F2GEzL. These two
phases have no different symmetry, and one can continu-
ously pass from one to the other without crossing the
three transition surfaces mentioned above. These three
surfaces, which have in common the hne E&L, are bound-
ed by the tricritical line TOE3, the critical line GE2, and
the three-phase coexistence line E2E3. The E3I- line is
the locus of points where a second-order transition line
meets a first-order transition line. A point of this kind
will be called a critical end point.

Berker and %ortis studied the two-dimensional BEG
model using a block transformation. Their phase diagram

FIG. 2. Distribution of the crystal-field term between the
surrounding bonds in the case d=2.

(St+2S2+$3) .
2d

The coefficient in the crystal-field term takes into account
the coordination of the sites 1, 2, and 3 in the d-
dimensional hypercubic lattice (Fig. 2). Perform the trace
over spins S2 to obtain the transformed reduced Hamil-
tonian

/3H = —JSiS3 —KSiSi+ (S, +S3) .
2d

(3)

The renormalized one-dimensional interactions J, E, and
b, are given as functions of J, K, and b by

is qualitatively similar to that obtained with the mean-
field approximation, except that the three-phase coex-
istence line E2E3 shrinks into the so-called Potts point
[cf. (c), Sec. IV] in renorrnalization theory. These authors
found three trivial fixed points which correspond to the
three phases P, P+, and F, and ten nontrivial fixed
points characterizing the various phase transitions. These
fixed points have been classified according to their rela-
tive stability and connectivity.

The Migdal-Kadanoff renormalization-group technique
we have used gives very similar results: the same number
of fixed points and the same phase diagram. This renor-
malization technique being tractable in all space dimen-
sionalities, we shall give the recursion relations for a d-
dimensional hypercubic model. Let us briefly describe the
method. Choose a scale factor b=2 and consider a one-
dimensional chain of three spins S~, S2, and Si. The re-
duced Hamiltonian of this three-spin cluster reads

/3H = —J(SiS2+S2S3) K(S]S2+S/S3)

1+2 cosh(2J)exp(2K —b, /d )

1+2exp(2K —b, /d)

(1+2exp —b/d) [1+2exp(2K —5/d)][1+2cosh(2J)exp(2K —b, /d)]
[1+2 cosh( J)exp(K —b /d )]

1+2 cosh( J)exp(K —6/d )

1+2 exp( b ld)— (4)
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FIG. 3. Bond moving in the case d=2. Open circles remain

after decimation has been performed.

The Migdal-Kadanoff recursion relations for the d-

dimensional hypercubic lattice are obtained using the usu-
al moving procedure, as illustrated in Fig. 3. They are
given by

J'=2" 'J(J K b, )

K'=2 'K(J K b)

b, '=2 'b, lJ K b)

These relations have been obtained by first performing the
trace and then moving the bonds. We could have first
moved the bonds and then performed the trace. This last
procedure would have given recursion relations of the fol-
lowing form:

J'=J(2 'J, 2 'K 2" 'b)

K'=K(2" 'J, 2 'K 2" 'b )

b, '=h(2" 'J 2" 'E 2" 'b)

where J, K, and b, are the functions defined by (4).
In general, the first procedure underestimates critical

temperatures, while the second procedure overestimates
them. To obtain more precise values, we used a sym-
metrized procedure which gives the following recursion
relations:

J'= —[2 'J(J K b)+J(2 'J 2 'K 2 'b)]

[2d —1K(J K g)+K(2d —1J 2d —lK 2d —lg)]

6'= —,
' [2 'A(J, K,h)+b(2 'J, 2 'K, 2 'b, )]

The various fixed points of this transformation have
been determined for d=2 and d=3. Their coordinates
and the phase transitions they characterize are given in
Table I. %e used the Nienhuis-Nauenberg criterion' to
determine which fixed points characterize first-order
phase transitions.

The phase diagrams for d=2 and d=3 are very simi-
lar. A typical one, on which the locations of the various
fixed points have been indicated, is represented in arbi-
trary units in Fig. 4. It is qualitatively similar to that ob-
tained by the mean-field approximation, except that like
Berker and Wortis, we found that the three-phase coex-
istence line E2E3 shrinks to the Potts point P.

The ferromagnetic phase F is separated from the
paramagnetic phase P+ by the second-order transition
surface CTOPL, and from the paramagnetic phase P by
the first-order transition surface F2GPL. These three sur-
faces, which have in common the line PL, are bound by
the tricritical line TOP and the critical line GP. Like in

TABLE I. Coordinates and classification of the fixed points of transformation (7) for d =2 and d =3.

Fixed points Type
{J,K,A*) coordinates

6(=2 cf=3
Domain in the
( J,K, A) space

P+
C
FJ

T

G

sink for (m~0,
sink for {m =0,
sink for {m =0,
second order
first order

q)+ 2 ) phase

q~ z) phase

q) 2) phase

first order

first order

first order
smooth continuation
between P and P+
ordinary tricritical
critical end
critical
Potts

(ao, —ao, —ao)

(0,0, ao )

(0,0,—ao )

(0.456, —0.068, —ao }

( ao, ao, ao )

6*))J ))E
(a), ao, ao)

( ao, ao, ao }
J*((I( * ((5*
(0, ao, 2K*+0.462)
(0,0,0)

(1.56,0.053,3.11)
(0.456, ao, 2%*+0.665)
(0,1.82,4.34)
(0.520, 1.56,4.16}

( ao, —ao, —ao )

{0,0, ao )

(0,0,—ao )

(0.163,—0.003, —ao )

( ao, ao, ao )

(ao, ao, ao }

(ao, ao, ao }

(0, ao, 3I( *+1.2)
(0,0,0)

(0.259,—0.011,0.214)
(0.163, ao, 3K*+1.3)
{0,0.68,2.55)
(0.206,0.618,2.47)

volume F
volume P
volume P+
surface CTOPL
portion of surface
F3 TOPL
line in surface
F3 TOPL
remainder of surface

F3 TOPL
surface FqGPL
surface SGPTO

line TOP
line LP
line GP
point P
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FIG. 4. Phase diagram obtained by the Migdal-Kadanoff
renormalization-group treatment. %'avy lines denote smooth
continuation of surfaces. Arrows indicate the relative stability
and connectivity of fixed points.

the case of the phase diagram obtained by the mean-field
approximation the line PL is the locus of points where a
second-order transition line meets a first-order transition
one.

III. THE SEMI-INFINITE BEG MODEL

Ka ——, [4K(Ja,Ka, ha )+K(4J—a,4K', 4hs )],
ha ——, [46(Ja,Ka, ha )+6(4'—,4K@,4b ii )],
Js = i [2J(Js Ks hs)+ J(2Js 2Ks 2bs)

+2J(Ja,Ks, ha )],

(9a)

Ks = i [2K(Js,Ks as)+K(2Js, 2Ks, 2as) (9b)

+2K(Js,Ka, b,a )],
~s = ,

' [2b(Js Ks ~s)+~(2Js 2—Ks»as)

+26(Ja,Ks, bs)],

The three-dimensional semi-infinite cubic BEG model
is described by the following reduced Hamiltonian:

PH = —Js Q S;SJ—Ks $ S;~Si + b,s Q Si~

(i,j) (i,j) l

—Ja g SkS& —Ka g SaSi+ba QSk
(k, l) (k, I) k

where the first and second summations run over all pairs
of neighboring spins located on the two-dimensional sur-
face of the system, the fourth and fifth summations run
over all pairs of remaining neighboring spins, the third
summation runs over all spins located on the surface, and
the last summation runs over all spins located in the bulk.
The subscripts S and 8 refer, respectively, to the surface
and the bulk.

The extension of the Migdal-Kadanoff renormalization
technique to semi-infinite systems is straightforward. '

In the particular case of the semi-infinite BEG model we
have

Ja = ,
' [4J(Ja,Ka, ha )+—J(4',4K', 4ds )],

where J, K, and b, are the functions defined by (4). The
determination of the various fixed points of these recur-
sion relations seems at first sight a rather complicated
problem. However, as usual for semi-infinite systems, the
renormalized bulk interactions given by (9a) depend only
upon the initial bulk interactions Js, Ks and b,s (see the
Appendix).

Therefore, in order to determine the six coordinates of
each fixed point, we shall first determine the ( Ja,K&,bs)
coordinates from (9a), which is a problem we already
solved in Sec. II, and subsequently, determine the remain-
ing (Js,Ks, bs) coordinates from (9b) after having re-
placed Ja, Ks, and b,a by the different values of Js, Ks,
and ba taken from Table I (for d=3). This procedure
shows that in the six-dimensional parameter space there
are 13 three-dimensional invariant subspaces in which the
fixed points are determined by recursion relations (9b).

To denote the various fixed points in the six-
dimensional parameter space, we shall use the symbols de-
fined in Table I. More precisely, each fixed point will be
denoted by a pair (X, Y) where the symbol X refers to the
coordinates ( Js,Ks, b,a ) and Y to the coordinates
( Js,Ks, bs ) of the fixed point (see the Appendix).

The procedure we followed to determine the various
fixed points implies, therefore, that the symbol X charac-
terizes the three-dimensional invariant subspace in which
the fixed point (X, Y) is located.

In order to classify the different fixed points, we shall
distinguish the following cases. The coordinates of fixed
points which can be found from Table I will not be given.

(a) In the invariant subspace X =F there is only one
fixed point: Y=F. This means that if the bulk is fer-
romagnetic, the surface is also necessarily ferromagnetic.

(b) In the invariant subspace X =P there are six fixed
points: Y=P,FJ,A, FK,L,F2. The first is trivial and
characterizes the paramagnetic phase P of the surface.
The remaining five are nontrivial but are all located at in-
finity. In this ease the surface cannot exhibit a phase
transition at a finite temperature.

(c) In the invariant subspace X=P+ there are three
points: Y =F,P+,C. The first two are trivial and charac-
terize, respectively, the ferromagnetic F and the paramag-
netic P+ phase of the surface. The last point is nontrivi-
al. It characterizes the five-dimensional second-order
transition hypersurface in the six-dimensional ( Js,
Ks, h&,Js,Ks, bs) phase diagram between the phases F
and P+ on the surface, the bulk being in the paramagnet-
ic P+ phase. This phase transition is similar to the "sur-
face transition in three-dimensional semi-infinite Ising
models. See the Appendix for a description of the termi-
nology of phase transitions in a three-dimensional semi-
infinite system.

(d) In the invariant subspace X =C there are three fixed
points: Y=F,C, C, The first poi.nt characterizes a five-
dimensional hypersurface in the phase diagram which
corresponds to the transition in the bulk between phases F
and P+, the surface being in the ferromagnetic phase.
This phase transition is similar to the "extraordinary"
phase transition in thrm-dimensional semi-infinite Ising
models. The coordinates of the point ( C, C) are
((0.163,0.029),( —0.003, —0.819),( —oo, —oo ) ). The coor-
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dinates of a fixed point in the six-dimensional parameter
space are denoted ((Js,Js ),(Kii,Ks ),(hei, bs )). It charac-
terizes a five-dimensional transition hypersurface. At a
point of this hypersurface, the bulk and the surface of the
system exhibit a transition between the phases I' and P+.
Such a phase transition is similar to the "ordinary" phase
transition in three-dimensional semi-infinite Ising models.

The coordinates of the point ( C,Cq ) are

((0.163,0.386),( —0.003,—0.566),( —ao, —ao )}. It charac-
terizes a four-dimensional transition hypersurface. At a
point of this hypersurface the bulk and the surface of the
system exhibit a transition between the phases I' and P+.
However, in this case the critical exponents are different
from the previous case. Such a phase transition is similar
to the "special" phase transition.

(e) In the three invariant subspaces X =F1, X =A, and
X=Fx there is only one fixed point in each of them,
namely, (FJ,FJ), (A, A), and (Fx,Fx). At a point of the
hypersurface characterized by these fixed points, the bulk
and the surface exhibit an ordinary first-order transition
between the phases F and P.

(f) In the invariant subspace X=F2, there are three
fixed points Y =A,F2L. The point (Fz, A) characterizes a
first-order transition on the surface between the phases F
and P, while the bulk undergoes a first-order transition
between the two paramagnetic phases.

The point (F2,Fz } characterizes a five-dimensional hy-

persurface on which the bulk and the surface of the sys-
tem exhibit an ordinary first-order transition between the
two paramagnetic phases.

The point (F2,L) characterizes a four-dimensional hy-
persurface on which the bulk undergoes a first-order tran-
sition between the two paramagnetic phases while the sur-
face exhibits a critical end phase transition.

(g) The determination of the fixed points located in the
invariant subspace X =5 is very simple. Their
(J&,K&,bz} coordinates are equal to zero and their
( Js,Ks, hs) coordinates are those of the two-dimensional
infinite system given in Table I. In this case, the bulk ex-
hibits a smooth continuation between P+ and P, while

the surface can be in any of the three phases F, P+, and
P or it can undergo one of the ten different phase tran-
sitions of an infinite system.

(h) In the invariant subspace X =L there are three fixed
points Y =A, L,L, T.he fixed point (L,A) characterizes a
three-dimensional hypersurface on which the bulk exhibits
a critical end phase transition, while on the surface the
phases F and P are coexisting.

The coordinates of the fixed point ( L,L ) are
((0.163,0.029),( oo, oo ), ( ao, oo )). It characterizes a three-
dimensional hypersurface on which the bulk and the sur-
face undergo an ordinary critical end phase transition.

The coordinates of the fixed point (L,L, ) are
((0.163,0.386),(ao, ao), (oo, ao)). It characterizes a two-
dimensional hypersurface on which the bulk and the sur-
face undergo a special critical end phase transition.

(i) In the subspace X=T there are 12 fixed points.
Their classification and Js, Ks, and b,s are indicated in

Table II. For the bulk undergoing a tricritical phase tran-
sition we shall only give information concerning the sur-
face. The fixed points (T,C) and (T,C, ) characterize
similar phase transitions. The first one is said to be ordi-
nary and the second one special. They have different crit-
ical exponents and if we denote by dim(X, Y) the dimen-
sionality of the hyperspace characterized by the fixed
point (X, Y), we have dim( T, C, )=di (mT, C) —1. This re-
mark is valid for all the following couples of fixed points:
(T,T) and (T,T, ), (T,L) and (T,L, ), and (T,P) and
( rP, ). This nomenclature has been adopted in analogy
with what occurs for the usual semi-infinite Ising model
(see the Appendix).

(j) In the subspace X=6 there are 12 fixed points.
Their classification and ( Js,Ks, hs) coordinates are indi-
cated in Table III. For the bulk undergoing a critical
phase transition, we shall only give information concern-
ing the surface. As in the previous case, we have special
phase transitions.

(k) In the subspace X=P there are ten fixed points.
Their classification and ( Js,Ks, hs) coordinates are indi-
cated in Table IV. For the bulk undergoing a Potts phase

TABLE II. Classification and coordinates of the fixed points located in subspace X = T. Dim. is the

dimensionality of the domain in the ( Jq, K~, A~, Js,Ks, hs ) space.

T
T.
L
I.,
I'
I',

Type

sink for (m~o, q~& —,') phase

second order
special second order
first order

first order

first order

ordinary tricritical
special tricritical
critical end
special critical end
Potts
special Potts

(Js Ks hs)

(Oop (X)p OO)

(0.0865,—0.738, —oo )

(0.306,—0.580, —oo )

(OO, OO, aO)

(Oa, OO, OO)

J -K*-6
( OO, (X), OO )

(0.047, —0.088, —0. 120)
(1.23„0.286,3.35)
(0.086, oc, oo )

(0.306, oo, oo )

(0.049,1.75,4.69)
(0.429, 1.51,4.48)

Dim.
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TABLE III. Coordinates and classification of the fixed points located in subspace X =G. Dim. is

the dimensionality of the domain in the ( J~,K~, A~, Js,Ks, hs) space.

C
C,
FJ

I'2
I.
6
6,
P
P,

Type

sink for (m&0, q~ z ) phase

second order
special second order
first order

first order

first order

first order
critical end
critical
special critical
Potts
special Potts

(Js Ks*hs}

( oo, —oo, —oo )

(0,—0.8664, —oo )

(0.4294, —0.5645, —.oo )

( oo p oo p oo )

J
( oo, oo, oo ),
JQ

{oo, oo, oo )

(0, oo, 2Es +2.86)
(0.429, oo, 2ECs + 1.1)
(0,0.116,0.504)
{0,1.58,4.32}
{1.00,0.443,3.18)
(0.561,1.19,3.98)

Dim.

transition, we shall only give information concerning the
surface. Here again we find special phase transitions.

IV. DISCUSSIONS, APPLICATIONS,
AND CONCLUSION

The results obtained from our investigation of the
three-dimensional semi-infmite BEG model are rather
complicated. In the six-dimensional parameter space we
found 69 fixed points. Referring to the 13 fixed points of
the infinite BEG model, the fixed points of the semi-
infinite system have been classified and denoted by a sym-
bol (X, Y), where the first symbol refers to the bulk and
the second to the surface. This notation is illustrated in
the Appendix in the case of the much simpler three-
dimensional semi-infinite Ising model. Some models are
particular cases of the BEG model and we can deduce
their phase diagram from our investigation of the BEG
model.

(a) If 6 && —1, the configurations in which all spins are
nonzero dominate completely the ensemble averages.
Therefore' the J component of fixed point C for the in-
finite model should give the critical temperature of the
spin- —, Ising model. For d=2 we found 0.456 in good
agreement with the exact Onsager value 0.441, and for
d=3 we found 0.163 in fair agreement with 0.221 ob-
tained by series expansions.

In the region 5= —co, the recursion relations for the
infinite BEG model have only three fixed points, namely,
F, P+, and C. In the case of the semi-infinite BEG, the
recursion relations have only seven fixed points for
bq ———00 and bz ———oo [see Sec. III, subsections (a), (c),
and (d)], namely, ( F,F), ( P+,P+ ), ( P+, C), ( P+,F),
(C,F), (C,C), and (C,C, ), in complete agreement with
what has been found for the semi-infinite Ising model (see
the Appendix).

(b) Griffiths pointed out that the BEG model reduces

TABLE IV. Coordinates and classification of the fixed points located in subspace X =P. Dim. is the
dimensionality of the domain in the ( J~,Kq, hq, Js,Es,hs) space.

Type

sink for (m&0, q +&
z ) phase

second order
first order

first order

first order

critical end
critical
special critical
Potts
special Potts

(Js Xs' as)

( oop oop —oo )

(0.0483, —0.789, —oo )

( oo, oo, oo )

(oo, oo, oo)
J*-E
(oo, oo, oo)
J4 g4
(0.083, oo, 2Es )

(0.034,0.102,0.382)
{0.0347, 1.60,4.33}
(1.014,0.353,2.99)
(0.481,1.29,4.04)

Dim.
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FIG. 6. Domains of existence in the (A, D) plane of the dif-
ferent phase diagrams for the three-dimensional semi-infinite
Blume-Capel model. The symbols on the transition lines and
multicritical points refer to the fixed points characterizing the
transition.

FIG. 5. Phase diagrams of the infinite Blume-Capel model

determined by the Migdal-Kadanoff renormalization-group

technique for (a) d=2 and (b) d=3. The symbols P and F
refer, respectively, to the paramagnetic and ferromagnetic
phases. First- and second-order phase transitions are represent-
ed by dashed and solid lines, respectively,

to a spin- —, Ising model in a zero external field if J=O
and 6=1K+ln2. The exchange interaction is then equal
to K/4, and therefore the coordinates of the fixed point G
should be (0,1.763,4.219) for 1=2, and (0,0.887, 1.358) for
d=3. Here again the agreement with our numerical re-
sults is good for d=2. For d=3, the agreement is fair for
the K component but bad for the b, component. Note also
that the fixed point S, which is the intersection of the line
J=O, h=dL+ln2, and the 6 axis should be located at
(0,0,1n2) instead of (0,0,0) (cf. Table I).

On the line S,G,F2 we have three fixed points. For the
spin- —,

' Ising model these points play, respectively, the role
of the fixed points I', C, and I'.

In the case of the semi-infinite system in the invariant
subspaces S, 6, and I'2, for Jz ——0 and Jz ——0 we only
found the fixed points (S,S), (S,G), (S,Fi), (G,F2),

(G, G), (G, G, ), and (Fq,Fi) in agreement with what has
been found for the semi-infinite Ising model.

(c) It can be shown' that the three-state Potts model is
a special case of the BEG model. Therefore, the exact lo-
cation of the fixed point I' which characterizes the phase
transition of the Potts model for d=2 is (0.503,1.51,4.02),
in satisfactory agreement with our result (0.520, 1.56,4.16).

(d) The infinite BEG model reduces to the Blume-Capel
model if K=O. In Figs. 5(a) and 5(b) are represented the
phase diagrams in the plane J ', b,J ' obtained by the
Migdal-Kadanoff renormalization-group technique for
d=2 and d=3. Note that for the Blume-Capel model
there is no distinction between paramagnetic phases P+
and I' . For the semi-infinite model, according to the ra-
tios 8 =Js/Js and D =bslb, s, different types of phases
diagrams are a priori expected. As mentioned in the In-
troduction, this model has been studied within the mean-

field approximation by Benyoussef, Boccara, and Saber
(hereafter referred to as BBS), and eight generic types of
phase diagrams have been obtained. In this section we

shall determine the various phase diagrams in the

Jz ', h&Jz
' plane given by renormalization theory. Tak-

ing into account the nature of the fixed points found in
the previous section, if the surface of the system is fer-

romagnetic, the bulk cannot undergo a first-order phase
transition, since no fixed point of the following types ex-

ist: (FJ,F), ( A, F) or (F~,F).



A. BENYGUSSEF, N. BOCCARA, AND M. EL BOUZIANI 34

1.80--

0.67
0.60

I

I

I

I

I

I

I

1.68 2.5

BP

(b)

7.5

This fact forbids many phase diagrams found in BBS,
namely, types 2, 3a, 4a, 41, and 4c. Moreover, since no
fixed points of types (C,Fg), (C,A), (C,F~), and (C,F2)
have been found, the surface cannot undergo a first-order
phase transition while the bulk exhibits a second-order
phase transition. This fact forbids the phase diagram of
type 3c in BBS.

Therefore, we can observe three types of phase dia-
grams which are schematically represented, and their
domain of existence is indicated in Fig. 6. For R~0.54
the surface and the bulk orders at the same temperature.
This ordinary phase transition, according to the value of
b,s/Js, can be first order, second order, or tricritical (type
1 in BBS).

For R & 0.54, according to the value of D, two different

types of phase diagram have been found. If D &0.99, ac-
cording to the value of hs/Js, we can observe ordinary
first-order, ordinary second-order, extraordinary second-
order, and surface second-order phase transitions. For
two particular values of bs/Js (which depends upon D)
we can also observe an ordinary tricritical point and a
multicritical paint described by the fixed point (C,C, )

(type 3b in BBS). If D&0.99, according to the value of
b,s/Js, we can observe ordinary first-order, extraordinary
second-order, and surface second-order phase transitions.
For a particular value of 4s/Js (which depends upon D),
we can also observe a multicritical point described by the
fixed point ( T,C, ). Figures 7(a), 7(b), and 7(c) represent
three typical phase diagrams calculated, respectively, far
(R =0.25, D=1.25), (R =0 25, D.=0.1), and (R =0.75,
D= 1.25).

It is well known that mean-field theory very often
predicts phase transitions that do not exist. The results
reported in this section confirms this fact once again.
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FIG. 7. Typical phase diagram for the three-dimensional
semi-infinite Blume-Capel model calculated for (a) 8=0.75,
a=1.2S, (b) 8=0.25, D=0.1, and I'c) 8=0.25, a=1.25. The
symbols SP, BP, SF, and 8F denote, respectively, surface
paramagnetic, bulk paramagnetic, surface ferromagnetic, and
bulk paramagnetic phases.

APPENDIX

The three-dimensional semi-infinite simple-cubic spin-
—, Ising model is described by the reduced Hamiltonian

PH = —Js g o';cr& —Jg g 0'ko'I,
(~,jj (k, l}

where Jz is the reduced coupling constant between neigh-
boring spins located on the two-dimensional surface, and
J~ the reduced coupling constant between remaining
neighboring spins. This system exhibits four types of
phase transitions associated with the surface. The accept-
ed terminology ' is the following: If the ratio
R =J~/Jz is greater than a critical value R„ the system
orders at the bulk ferromagnetic transition temperature.
This is the ordinary phase transition. If R is less than R„
the system exhibits two successive transitions. The sur-
face orders at a temperature higher than does the bulk,
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Jii ——2 In[cosh(2J& )],
Jq ——in[cosh(2Js )]+—,

'
ln[cos(2J+ )] .

(A 1)

(A2)

To determine the various fixed points of these recur-
sions relations, we note that the renormalized bulk in-
teraction Jii given by (Al) depends only upon the initial
bulk interaction Jii. Therefore, in order to determine the
(Jii,Js) coordinates of each fixed point in the two-
dimensional parameter space, we first determine Jii from
(Al) and then determine Jq from (A2) after having re-
placed Jz by Ji'i. Since (Al) has three fixed points, name-

and as the temperature is lowered in the presence of the
ordered surface, the bulk orders at the bulk transition
temperature. These two phase transitions are, respective-
ly, the surface and the extraordinary transition. If 8 =R,
the system orders at the bulk transition temperature but in
this case the critical exponents differ from those of the or-
dinary transition. This is the specia/ phase transition.

The Migdal-Kadanoff recursion relations for this
model are easy to derive. ' For a scaling factor i=2 we

have

ly, J~ ——Oo, Jz ——0, and J5 ——0.261, respectively denoted
I', P, and C in the two-dimensional parameter space there
are three invariant subspaces. As explained in Sec. III,
each fixed point in the two-dimensional parameter space
will be labeled by a symbol (X,Y), where X will refer to
Jz and F to Jz. In the invariant subspace X =I', there is
only one fixed point, nainely (F,F). It is trivial, and
characterizes the ferromagnetic phase.

In the invariant subspace X=P, there are three fixed
points, namely, (P,F},(P,P), and (P,C). The first two are
trivial, and they characterize, respectively, the ferromag-
netic and paramagnetic phases of the surface, the bulk be-

ing paramagnetic. The third point is nontrivial and
characterizes the surface phase transition. Its coordinates
are (0,0.610).

In the invariant subspace X =C, there are three fixed
points, namely, ( C,F), ( C, C), and ( C, C, ). They all are
nontrivial. The first characterizes the extraordinary phase
transition, the second the ordinary phase transition, and
the third the special phase transition. The coordinates of
(C,C) and (C, C, ) are, respectively, (0.261,0.077) and
(0.261,0.502}.
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