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Crystal and electronic structure of metallic lithium at low temperatures
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With the use of traditional Hartree-Fock small-atomic-cluster techniques to simulate perfect in-

finite Li crystals, ab initio total-energy calculations have been performed for several competing Li
crystal structures. Despite the inherent limitations and approximations of the method, the results of
the calculations are in accord with Overhauser's prediction about a low-temperature complex 9R
phase. Furthermore, using clusters of varying size and complexity, several key physical quantities
of the 9R, bcc, fcc, and hcp phases have been calculated with good accuracy for the experimentally
known quantities. The predictions for the yet unmeasured quantities suggest simple alternative ex-
perimental tests of the calculation.

Recently' Overhauser has suggested that the ground-
state crystal structure of metallic lithium is of the 9R
complex close-packed type, similar to the structure of
samarium. Contrary to earlier suggestions about the new
phase resulting by a structural phase transformation on
cooling at low temperatures, a recent studyi has shown
that the ground-state crystal structure is neither hexago-
nal close packed (hcp) nor face-centered cubic (fcc). The
9R complex close-packed structure, suggested by
Overhauser fits all crystallographic requirements of the
observed polycrystalline diffraction pattern at low tem-
peratures (4.2 K). This work was strongly motivated by
Overhauser's proposal and the intriguing possibility of
testing this and also of examining the electronic features
of the low-temperature structure in the most computa-
tionally economical way.

After considering most of the possible advantages and
disadvantages, the ab initio unrestricted Hartree-Fock
(UHF) cluster method was adopted for this work (for lack
of anything better under the circumstances). Both, the
choice of the UHF to perform the extensive total energy
calculations together with the finite-cluster-size represen-
tation of the infinite metal can be criticized, not quite un-
justifiably, as rather poor. On the other hand, besides the
legitimate but trivial argument of judging the suitability
of a method of calculation from the results it can produce,
there is some further evidence for the plausibility of this
choice. Marshall et al. have concluded by comparing re-
sults for small Li clusters that the UHF method is the
most accurate available simple Hartree-Fock type of
method which also produces results in fair agreement
with the often accepted as more accurate Xa method.
These conclusions have been also verified by more recent
calculations, which, although pointed out the need for in-
clusion of the configuration interaction (CI), confirmed
that considering a balance of reliability and computational
cost, the UHF is the most appropriate method in compar-
ison to other simple approaches to study metal clusters.
With reference to the finite size of the cluster, available
evidence from Be clusters tends to suggest that several ex-
perimental quantities, such as the work-function approach

the bulk value by the time the cluster size is about 10—15
A." This "criterion" for the size of the clusters is more or
less satisfied in the present calculation. However, binding
energies of metallic systems are expected to depend
stronger on the cluster size and, more important, on corre-
lation effects. Kunz and Klein have examined, in more
detail, the general problem associated with the finite clus-
ter size. The problem of correlation should be addressed
within the framework of the CI cluster method, or within
second- (and higher-) order perturbation theory. 7 Both
methods appear to require an enormous computer time
and space often at the expense of cluster size and number
of basis functions. Note however that sometimes proper
correlation corrections for the infinite system, when in-
cluded for finite clusters often are counterbalanced by
short-range correlations due to the relaxation of the orbi-
tals. In any case, most of these effects are expected to
depend only weakly on to the cluster geoinetry for given
nearest-neighbor distance, cluster size, and basis set, and
for not large variation of the coordination number.
Therefore, since this is mainly a comparative study of to-
tal binding energies to search for the geometrical structure
with the highest binding energy among the best candi-
dates, most of the drawbacks mentioned above could be
assumed to be less serious. Other secondary approxima-
tions usually made in such types of calculations' do not
seem to have any significant effect here.

Four different geometrical structures bcc, fcc, hcp, and
9R have been mainly examined here. The basis functions
and the cluster size are approximately the same in all four
cases, in order to reduce spurious effects resulting from a
difference of basis sets or number of atoms in the cluster.
To this end, as mill be explained in this section, parallel
sets of calculations have been run with rich basis but
small clusters on one hand (not smaller than 13 atoms),
and poor basis and larger clusters on the other. The small
set of basis functions (set 1) is comprised of five
Gaussian-type orbitals (GTO) for each Li atom, contract-
ed out of twelve primitive Gaussians. The larger set (set
2) consists of nine GTO's contracted out of the same
twelve primitive Gaussians but without any s contrac-
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TABLE I. GTO—basis set used for Li. Note: Set 2 of basis

functions is the same as set 1 but without any s contractions.

Orbital
type Exponents

266.274 69
40.048 14
9.028 71
2.433 00
0.71063
0.047 79

Set 1

Contraction
coefficients

0.006 38
0.047 00
0.20000
0.479 13
0.420 24
1.00000

0.08000
0.02000

0.738 88
0.673 84

tions, giving more flexibility to the s-type orbitals. The
contraction coefficients and exponents of both sets are
shown in Table I.

The clusters used to approximate the four crystal struc-
tures under study fall roughly into two categories. The
clusters in the first category, utilize the large basis set
(nine GTO's) and include at least first and second near
atomic neighbors, thus stressing the importance of the
right coordination and rich basis set to get better binding.
In the second class of clusters, the smaller set of basis set
is used, but a larger number of atoms is contained em-

phasizing the packing of layers along the c axis of the
hexagonal unit cell. Let us loosely call, for brevity, the
former class of clusters the "binding clusters" and the

l

second category the "packing clusters. " The binding clus-
ter for the fcc structure contains, in a cubic set of axis
with cube edge a, the atom at (0,0,0) and its twelve nearest
neighbors obtained from the "prototype" atom at
(+a/2, +a/2, 0) by interchanging signs and position of
the 0. In the same cubic set of axis the bcc binding cluster
includes, besides the atom at the origin, the eight first and
six second nearest neighbors, obtained, as before, from the
atoms at (+a/2, +a/2, +a/2) and (+a,0,0), respectively,
by changing signs and position of 0. The coordinates of
the thirteen atoms of the hcp binding cluster are shown in
Table II under the columns of layers A and B (seven
atoms from the column of layer A with z =0 and six
atoms from the coluinn of layer B with z =+—,

' ). Simi-

larly to the hcp, the reference binding cluster for the 9R
phase can be constructed from Table II by taking the
seven A atoms with z =0, the three 8-type atoms with
z =+ —,', and the three C-type atoms with z = ——,'. This
cluster as is, without the use of additional packing clus-
ters, cannot be uniquely associated with the 9R phase
since the sequence BAC of packing layers also appears,
for instance, in the 4H structure AB AC AB AC. . . . The
need for the so-named "packing clusters" now becomes
evident. In Table II, as has been already mentioned, the
coordinates (lattice and cartesian) of the cluster atoms in
the three packing types A, 8, and C are given in standard
notation. The vertical coordinate of the layers, z, is ex-
pressed in units of c=v'8/3a, and takes the values
+2, + —,', + 1, + —,',0. Thus, the longest 9R cluster has
length —', v'8/3a, which is also the length of the c axis of
the 9R hexagonal unit cell. The largest 9R packing clus-
ter should include the sequence of layers:

B(+2) C(+ —, ) B(+1)C(+ —,
'

) A (0) C( ——,
'

) A ( —1)B ( ——,
'

)A ( —2),

where the nuinbers in the parenthesis, after the packing
symbol denote the value of z in units of c. However, for
the purpose of uniquely distinguishing between the two
9R and the 6R sequences, which possess the two largest

periodicities, the two extreme layers B(+2) and A ( —2)
are not needed and have been eliininated from the above
sequence. Thus, the 9R packing cluster consists of the se-
quence:

TABLE II. Coordinates. of the layers A, B,C in units of the hcp lattice lengths (a, a,c). c =v 8/3a.
For the fcc lattice c =v 6a.

Layer A

Lattice Cartesian
(a,a, c) (a,a,c)

Lattice
(a,a, c)

Layer 8
Cartesian

(a,a, c)

Layer C
Lattice Cartesian
(a,a, c) (a,a, c)

0,0,z

1,1z

O, l,z

—1,0, z
—1, —1,z

0, —1,z

1,0, z

—,', v 3/z, z

——,', v 3/2, z

—1,0, z
——,', —V 3/2, z

—,', —V'3y2, z

2 1 z3

1 1—z3s 3&

1 2 z3 i 3

T~, v 3/6, z

——,', v 3/6, z

0, —V 3/3, z

I 2 z3i 3&

1 1 z3~ 3&

2 1——z3

—,', —V'316,z

——,, —V 3/6, z

O, V 3/3, z
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C(+ —,
'

) 8(+1)C(+ —, ) A (0) C( ——, ) A ( —1)8 ( ——, ),
which includes 25 atoms [three atoms for each layer above
or below the reference layer A (0) which includes seven
atoms as in Table II] and a total of 125 basis functions
(set 1 in Table I). This number of basis functions and
atoms almost exhausts the practical limitations of com-
puter time and space, especially in view of the repeated
number of calculations required, for several packing se-

quences and distances. The corresponding packing cluster
for the 6R structure is

A (+ —, ) 8(+1)C(+ —, ) A (0) C( ——, ) 8( —1) A ( ——', ),

0.000—
I

~@ GO08~

illx
QJ

ilJ

Q ao&6I-

g

hcp&, y r98

with similar construction for the hcp ( A8 A8. . . ) and the
4H packing clusters. It should be mentioned here that al-
though these packing clusters can by no means describe
correctly the binding process of the corresponding bulk
crystals, nevertheless it is believed (after testing a few dis-
tinct cases) that they should be able to provide relative en-

ergy differences with estimated errors smaller than the
magnitude of these energy differences. In addition to
these large clusters, smaller size clusters were also used,
where necessary, for comparisons with the corresponding
binding clusters. The common reference cluster between
the binding and the packing clusters was primarily the
hcp thirteen-atom cluster and to a smaller degree the
thirteen-atom fcc cluster. The thirteen-atom fcc packing
cluster is obtained from Table II [seven A (0) atoms, three
8( ——,

'
) atoms, and three C(+ —,

'
) atoms] by setting

c =&6a.
The procedure used in this calculation was first, to es-

tablish that the 9R structure has the lower possible total
energy compared to the other structures considered, and
second, to include corrections into the 9R binding energy
by considering the differences in energy between the bind-

ing and packing clusters. %ithin the expressed limita-
tions of the method of calculation and well within the ex-
pected errors the first part was confirmed by both type of
clusters. The corrections of the second part were incor-
porated by scaling down the difference in total energy per
atom between the hcp and 9R packing and binding clus-
ters for given values of the lattice constant a. These "ra-
tionalized" differences were then algebraically added to
the 9R binding energy given by the small binding cluster.
The magnitude of this correction was also checked by
comparing the 9R and hcp total energies with the fcc
values. This procedure, was repeated for each value of a,
giving the total binding energy as a function of nearest-
neighbor distance. The final total binding energy curves
for all four structures are shown in Fig. 1.

It can be seen clearly from Fig. 1, as was already stated,
that the 9R phase has the lowest energy with a difference
of 0.08 eV from the bcc phase. This energy difference
seems to be unrealistically large because in an order of
magnitude estimate it appears to imply a much larger
transi. tion temperature than the 70 K found experimental-
ly. This exaggerated energy difference besides the main
approximations (adiabatic, UHF, etc.) should in a sub-
stantial part be traced to spurious effects due to the "re-
normalization process" of the energy differences described
earlier and to the small size of the clusters, which could

50 Xo
NN DISTANCE {bohra)

8.0 9.0

FIG. 1. Total binding energy per atom versus nearest-
neighbor distance. Solid line represents the 98 structure.
Long-dashed line stands for the bcc structure, dashed-dotted
line represents the fcc structure, and short-dashed line the hcp
structure.

create unrealistic "surface effects. " Wherever possible
these effects have been checked and their magnitude was
estimated to be quite smaller than the energy differences
themselves. The same comments should apply also to the
nearest-neighbor distance which shows some unrealistical-
ly large fluctuations for the different phases. Contrary to
the differences in the binding energies, the absolute values
of the binding energies are greatly underestimated as was
expected from earlier calculations of metallic clusters and
from the discussion about the drawbacks of the method
above. Simple remedies to correct the absolute values of
the binding energies were not attempted since this is a
comparative study and only the differences in binding en-
ergies are important. On the other hand, the shape of the
binding-energy curves around the minimum seems to be
extremely well described. The force constant ( CF), direct-
ly related to some type of averaged phonon frequency,
CF =m (m ), calculated out of the bcc binding curve is in
extremely good agreement (well within the uncertainty)
with the experimental value quoted in the literature. "
Similarly, the value for the bulk modules 8 obtained here
8=0.099X10" dyn/cm is in fair agreement with the
experimental value of 0. 11)(10' dyn/cm . These results
are very important, since they have been obtained by such
a simple method and with this type of success. Good
values of 8 for the bcc phase have been also obtained ear-
lier in a similar type of calculation. ' Several important
results of this calculation, besides the binding energy and
the force constants, have been summarized in Table III.
With the exception of the binding energies all other quan-
tities are in reasonable to very good agreement with exper-
iment for the bcc phase. For the other phases, not known
experimental data exist at this time to test the predictions
of this work. The column marked "estimated" cohesive
energy is simply obtained from column 2 by adjusting the
bcc binding energy to have the correct value, for the pur-
pose of predictions. The work functions in the fourth
column are simple Koopman's values. If the relaxation of
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TABLE III. Results of this calculation for the four structures of Li examined here, together with the corresponding experimental

data for the bcc phase. NN denotes nearest neighbor.

Structure

bcc
9R
fcc
hcp

exp
(bcc)

Equillibrium
NN distance

(bohrs)

5.57
6.25
5.70
5.50

Calculated
binding

energy per atom
(mhartree/atom)

10.12
13.01
9.67
7.60

55.15'

Force const.I (co'&

(eV/A )

0.81
0.86
0.87
1.35

0.73'

%ork
function
W (ev)

3.3
4.1

3.8
4.0

2.38'

Fermi
energy
cF (eV)

4.1

5.0
5.1

3.6

3 95'

"Estimated"
cohesive
energy

{eV/atom)

1.50
1.58
1.49
1.43

1 50'

Li 1s binding
energies/(eV)

—59.50
—60.86
—61.40
—60.44

—59.48

'Values quoted in Ref. 4.
This value estimated in Ref. 11 from the Debye temperature SD, carries an error of up to 25%%uo.

'Augmented plane wave value quoted in Ref. 11.
From Ref. 14.

the orbitals is taken into account by performing ASCF
(SCF, self-consistent field) calculations the bcc value be-
comes 2.5 eV in much closer agreement with experiment.
Finally and most important, the last column gives the 1s-
core binding energies obtained by ASCF-UHF calculation
without the need for any additional atomic-like correc-
tions. ' For the bcc phase the agreement with experi-
ment' is excellent, meaning perhaps an extremely small
atomic-like contribution besides relaxation, in the spirit of
Ref. 13. This good agreement, allows more confidence of
the predictions for the other phases (9R), which in any
case are open to experimental test.

Two of the predictions about 9R phase deserve special
attention. First, the averaged phonon frequency of the
new phase although slightly larger (in the correct direc-
tion for explaining the lack of superconductivity) is essen-
tially the same as in the bcc phase. This seems to be in
accordance with the results obtained by Qverhauser and
his co-workers's and indicates that, the lack of supercon-
ductivity in Li should be mainly due to the electronic con-
tribution. Second, the 1s-core binding energies estimated
here with very good accuracy should be among the best
candidates for an excellent experimental test of the validi-

ty of the present predictions.
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