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Standard arguments for the relevance or otherwise of random disorder at bulk criticality are
reconsidered in relation to the crossover seen in the superfluid transition at low coverages of helium
adsorbed in Vycor, a porous glass. It is argued that Vycor should be modeled by constrained ran-
domness characterized by pair correlations vanishing with wave vector, q, as | q | %, with, physically,
0=2. Simple scaling and Harris arguments yield a randomness crossover exponent ¢z =a —68v (a
and v being the specific-heat and correlation-length exponents) but must be corrected, in the light of
previous renormalization-group arguments, by taking proper account of nonlinear scaling fields or
quadratic terms in the variation of transition temperature with disorder. In fact, constrained ran-
domness is still relevant for a positive (as at a Gaussian fixed point describing ideal Bose behavior in
dimensions d <4) but the quantitative effects are significantly reduced with, in particular, ¢ = %a.

The interpretation of the experiments as indicative of crossover to ideal Bose criticality is discussed

in the light of the results.

I. INTRODUCTION AND SUMMARY

The effect of quenched impurities or quenched random-
ness on the critical properties of a thermodynamic system
has been a subject of considerable experimental and
theoretical interest in the past decade. Various models
such as random-bond Ising models,"? random uniaxial
anisotropy in Heisenberg models,’ and various forms of
quadratic random couplings in continuous spin s*
models,*~® have been studied in detail. An important in-
sight was obtained by Harris! who developed a type of
Ginzburg criterion. Harris’s self-consistency argument in-
dicates that, at least for sufficiently weak disorder, the
critical behavior of the pure or uniform system will sur-
vive if the specific-heat exponent a is negative, i.e.,

a < 0=>randomness irrelevant . (1.1)

This conclusion is born out by scaling arguments and
renormalization-group calculations*® in which it is found
that short-ranged bond randomness is either relevant or
irrelevant according to whether the appropriate crossover
exponent ¢, which is found to equal a, is, as usual, either
positive or negative.

The present analysis is a continuation of previous work’
in which current critical-point theory was applied to
analyze the experimental results of Crooker, Hebral,
Smith, Takano, and Reppyg’9 on the critical behavior of
the superfluid density of “He adsorbed into Vycor in the
limit of very low coverages. Vycor is a porous, spongelike
glass with a characteristic microscopic “pore” size of 50
to 100 A in the experiments of Crooker et al., however, it
is irregular and amorphous in microscopic structure.
Thus helium in Vycor may reasonably be regarded, in the
regime in question, as a three-dimensional weakly in-
teracting Bose gas in a random external potential.”~° By
modeling the randomness of Vycor glass through the in-
troduction of effective parameters for a uniform system,
one indeed obtains remarkably good agreement between
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theory and experiment.” The interacting Bose gas in three
dimensions probably satisfies the Harris criterion for ir-
relevance of the randomness since experimental data for
bulk *He (which are consistent with the best theoretical
estimates) yield a~—0.02+0.02. On the other hand, in
the weakly interacting, low-density limit, the analysis’ ex-
hibits crossover to ideal-Bose-gas criticality. However, for
the ideal Bose gas itself, one actually has a=+e where
€=4—d; thus, the appropriate specific-heat exponent, as
regards the crossover behavior, is positive in the dimen-
sionality range of interest, namely, 2 <d <4. If random-
ness does indeed represent a relevant perturbation'® for
criticality in an ideal Bose fluid, which is described by a
Gaussian fixed point, what fixed point will govern the
low-coverage critical behavior of helium in Vycor? The
experiments®® are not inconsistent with the assumption
that it remains Gaussian in nature.” Indeed, we show in a
general context, in Sec. III, that even if the randomness is
technically relevant, the crossover in criticality could, in
principle, still be controlled by the ideal Gaussian fixed
point. This occurs despite the rather pathological nature
of the ideal Bose gas in a random potential, whose proper-
ties are reviewed briefly at the end of this section. The
possibility of such “dominated crossover” arises because
the effective magnitudes of the interactions, which deter-
mine the departures from ideality, and of the randomness
are both controlled by the transition temperature T,
which goes to zero as the density is reduced. We will ar-
gue, in Sec. IV, that the criterion for dominated crossover
is not manifestly valid so that it remains unclear if or why
a Gaussian fixed point validly describes the observed phe-
nomena. Nevertheless, even though a definitive theoreti-
cal answer to the problem has not been found, we believe
that some insight can be gained by looking more closely
into the physical nature of Vycor and exploring some of
its implications.

One of our purposes here, therefore, is to discuss a class
of models, specified generally in Sec. II, in which the ran-
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34 HELIUM IN VYCOR AND CONSTRAINED RANDOMNESS

domness is constrained in a certain, natural way that
serves to reduce the magnitude and effects of the fluctua-
tions characterizing the disorder. As we explain shortly
below, there is evidence that Vycor can be described valid-
ly by this category of models.

Now, as is demonstrated in Secs. IVA and IVB, it
turns out that the standard Harris and scaling arguments
applied to such constrained random systems produce a
new, weaker criterion for relevance expressed by

a—2v < 0=>randomness irrelevant , (1.2)

where v is the correlation-length exponent. At first sight,
this is very encouraging since 2v exceeds a in all known
cases! However, Weinrib and Halperin,® though mainly
concerned with the effects of long-range correlations in
the randomness, have derived general renormalization-
group recursion relations which turn out to cover the con-
strained case as well. Their results show that (1.2) is actu-
ally incorrect, and that, in fact, the original Harris cri-
terion (1.1) still holds; however, as we show in Sec. IVC,
the crossover exponent of the randomness changes to

br=70a, (1.3)
which is smaller than before, giving ¢g =+ in place of
dr =% for d =3, so that the effects of the randomness
are quantitatively reduced. The misleading answers pro-
duced by the initial Harris and scaling arguments are dis-
turbing theoretically; we show in Secs. IV D—IV F, how-
ever, that when properly extended and more carefully
analyzed, both arguments can be corrected, the faulty
steps being identified and the new result (1.3) being recap-
tured. Rather more detailed arguments, presented in Sec.
IV G, are needed to establish, within the framework of the
constrained models as set up, that the dominated cross-
over mechanism of Sec. III does not operate. The current
theoretical situation in the light of these results and of
other theoretical approaches to the effects of randomness
on superfluid (or XY-like) ordering is discussed in Sec. V:
the superfluid onset problem at T =0 (see below) is a pro-
found one and probably cannot be described simply in
ideal-Bose-gas terms; however, criticality at T, >0 might
still be correctly described by crossover from a Gaussian
fixed point as T, increases from zero.

A. Constrained randomness

In order to motivate in more detail the class of con-
strained models considered, and to explain why they are
of physical interest in their own right even though they
turn out to lie in the same universality class as the stan-
dard models of randomness, consider the following ideal-
ized picture of helium in Vycor. Following Kohn and
Luttinger,!! who considered impurity scattering in metals,
and Kac and Luttinger,'? who analyzed an ideal Bose gas
in a random system of hard spheres, let us picture Vycor
as a set of randomly placed scattering centers, each with
short-range interactions with the helium atoms. The con-
strained random nature of the overall configuration may
then be prescribed as follows: first, place the centers on a
regular lattice with spacing
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Co—‘—‘p(;l/d, p0=N0/V s (1.4)

where N is the number of scattering centers and V is the
volume of the system, then suppose that each center is in-
dependently displaced through a finite distance. One
might imagine the displacements caused by some isotropic
process of radiation damage. Alternatively, each center
might be subjected to diffusion away from its lattice site
to some random location (without interacting with other
centers). More precisely, we may describe the final con-
figuration by a probability density p(x) in which x is the
displacement from the initial lattice site. For example, if
each center undergoes independent Brownian motion for
the time 7, we would have

p(x)=(2mDty)~??exp(— | x|%/2Dt,) , (1.5)

where D is the diffusion constant. For D finite this p(x)
represents a kind of anticlustering constraint; essentially,
at most (Dty/c3)?/? scattering centers can overlap one
another. Similarly, empty regions of diameter larger than
co—+c(Dty)!/? are highly unlikely.

B. Vycor glass

To see why this model should describe Vycor, at least in
a qualitative way, one should understand how Vycor is
made, namely, via a process of spinodal decomposition.l3
A melt consisting primarily of boron oxide and silica
above the consolute or phase-separation temperature 7, is
quenched to within the liquid spinodal regime below T,.
Phase separation is allowed to proceed, but before it goes
to completion, the melt is further quenched to below the
glass transition temperature. Subsequently, the boron-rich
component is leached out chemically, leaving an intricate,
spongelike SiO, structure which photomicrographs sug-
gest consists of a series of interconnecting “pores.” The
resulting glass sponge may be characterized by its struc-
ture factor S(q), which can, in essence, be regarded as a
frozen version of S,(q), the time-dependent structure fac-
tor which reflects the instantaneous configuration of the
spinodally decomposing liquid glass mixture at time ¢
after the initial quench below T,. Because the order pa-
rameter for the spinodal decomposition (in this case, say,
the density of one of the component glasses) is a conserved
quantity, the decomposition process is diffusion limited.
General considerations'# then lead to the conclusion that
S,(q=0) is a constant of the motion. Thus if S,_y(0)=0,
as for a uniform, unseparated binary glass melt, it follows
that S,(0) must vanish for all ¢- although for long times,
S:(q) becomes more and more strongly peaked, close to
q=0, signaling the incipience of long-range order,
S,(q)=8(q), as t— . This behavior is seen explicitly in
experiments on other binary glass mixtures.'>'® Prelimi-
nary measurements of S(q) for Vycor itself by x-ray
scattering do indeed indicate that it vanishes as q—0.!”

Now the structure factor S(q) is directly related to the
pair correlation function for the randomness. We shall
see in Sec. II that the vanishing of this correlation func-
tion when q—0 indeed characterizes constrained random-
ness. We therefore conclude that Vycor is, in a real sense,
less random than one might, a priori, have expected. Un-



7654

fortunately, it is still sufficiently random as to destabilize
the standard ideal-Bose-gas, or Gaussian, critical fixed
point!

C. Random ideal Bose gas

The behavior of an ideal Bose gas in a random system
of scattering centers has been considered by Kac and Lut-
tinger.'!> They studied the unconstrained model with,
essentially, o= oo, so that, in fact, the centers are placed
with a uniform distribution over the entire system and the
reference lattice becomes quite irrelevant. In their first
paper,'*® Kac and Luttinger showed that, for purely
repulsive scattering centers, Bose-Einstein condensation
still occurs. More specifically, for low temperatures,
T < T,, replacing the sum over discrete energy states in a
finite system by an integral for the infinite system no
longer accounts properly for the total density of bosons;
i.e., if g(e) is the density of states per unit volume in the
thermodynamic limit, then with B8=1/kT,

[ gle)eP—1)"'de<p for B. <B< oo . (1.6)

In their second paper,'*® they considered specifically the
case of hard-sphere centers and conjectured that the
single-particle partition function, which is essentially the
Laplace transform of g (¢c), behaves as
B, —4,p8/d+2)
QB=Se Fi_e a#
i

as B— oo . (1.7)

This result was subsequently proven rigorously by Donsk-
er and Varadhan:'® it corresponds to

g(e)~exp(—Bye~%?) as e—0, (1.8)

so that there is an exponentially small low-energy “tail” to
the density of states.

These low-energy states in the tail are, in fact, localized
to regions of linear size [ ~(2me/#*)~'/% in which, by a
random fluctuation, there are no spheres. The very low
density of states represents the small chance of finding
such a region. On the other hand, in our constrained
model there is a still smaller probability of finding such
an open region: If p(x) remains nonzero over an un-
bounded region, the tail will still extend to zero energy,
but the density of states will be even more strongly
suppressed; however, if p(x) has compact support, only
finite open regions are permitted and the tail will not ex-
tend to zero energy. One expects, instead, a similar tail
terminating at some energy €,>0, corresponding to the
lowest-energy extended state consistent with some more-
or-less regular pattern of spheres. Thus the concept of an
“open region” translates into a large region closely ap-
proximating a regular pattern: such regions will play a
similar role when we reanalyze and extend the Harris ar-
gument in Secs. IVA, IVD, and IVE.

Now one may compare (1.8) to the result
g(g) o e'“=272 for a uniform ideal Bose system. For large
d this also vanishes faster than linearly when e—0. One
might, thus, expect the random ideal gas described by
(1.8) to behave like an ideal Bose gas of high dimensional-
ity. Moreover, since the upper critical dimensionality for
the ideal Bose transition is d =4, one should expect a

PETER B. WEICHMAN AND MICHAEL E. FISHER 34

mean-field-like transition. However, in order to discuss
the nature of the random ideal Bose critical behavior more
fully, one should specify the order parameter and its con-
jugate field. In the uniform case these are, respectively,
the “condensate wave function”

\Po=<V“ fd“n/;(r)) ,

where ¥(r) is the Bose field operator, and the conjugate
off-diagonal field v,.!° More generally, if ideal Bose con-
densation takes place into a ground state with a normal-
ized wave function ¢(r), the order parameter will be

\l/q,=<V“’2fd"rz//(r)<p*(r)> ,

with a corresponding conjugate field v,. This prescription
is not actually very effective for the infinite Kac-
Luttinger model since one cannot properly specify ¢(r):
the lowest energy €=0 is never actually achieved in the
model, and the limit €—0 is not really continuous since
the corresponding states will not be close to one another in
any useful sense. However, for any finite realization of
the model there will be a ground state (with positive ener-
gy) and, to a good approximation, ideal Bose condensation
will take place into this state. Then the solution technique
is identical to that for the uniform case!® and one indeed
finds a mean-field-like transition. However, at low transi-
tion temperatures T.(p) [defined by equality in (1.6)], one
finds, instead of the usual power-law relation T, (p) ~p*/¢,
the logarithmic dependence

Tc(p)~[ln(p_‘)]_‘d+2)/d

(1.9)

(1.10

(1.11)

and a corresponding exponential decrease in the uncon-
densed fraction at low temperatures, namely,

1—n (T)=1— | W, (T)|*~exp(— Ay T~414+2)

(T<T,) . (1.12)

There is clearly no long-range order associated with this
transition since the order parameter profile
(W(r)=VVW¥,p*(r) is localized if @(r) is localized.
Indeed, there will be an infinite density of particles in the
corresponding localized region when V— o for T <T,.
Moreover, the model cannot exhibit superfluidity since a
localized state is insensitive to the boundary conditions
while p; is really an elastic “helicity” modulus found by
varying the phase of y(r) via boundary conditions.?

D. Helium in Vycor

From these considerations it is apparent that the ideal
Bose-Einstein transition in a random medium is quite
pathological: it does not correspond at all to what is ob-
served in Vycor! Of course, this is hardly surprising:
helium atoms have strongly repulsive cores that set limits
on the maximum realizable density. This immediately
precludes a transition of the Kac-Luttinger type. The ac-
tual behavior at low overall helium densities may be seen
by appealing to experiment.>® Adsorbing small quantities
of *He into Vycor glass does not produce superfluidity at
low temperatures. Rather, there is an overall onset density
po, below which all the helium is essentially immobile or
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“frozen” on the Vycor surface but above which true su-
perfluidity appears at low enough temperature. The sim-
plest interpretation of this onset phenomenon®? is that the
excess helium, beyond the onset coverage, forms an in-
dependent, mobile fluid, “insulated” from the glass sub-
strate by the frozen or localized layers. The localized
layers are thus presumed to play no further role. If this
were really the case there would be essentially no differ-
ence between the true system and an ideal model with no
localized layers. Contrary to this presumption, we will
summarize, in the final section, some of what has been
said in the literature which is relevant to localization in an
interacting Bose system. The few theoretical results avail-
able give strong hints that the localized layers do indeed
play a role but might, perhaps, still lead back to ideal
Bose critical behavior of the normal type, as consistent
with the observations in Vycor. Nevertheless, it seems
quite likely that the full onset transition at T =0 is more
complex and not merely determined by some effective
ideal Bose or Gaussian fixed point. At present, however,
this is an open issue so that a complete theory of helium
in Vycor remains to be established.

II. MODELS FOR CONSTRAINED RANDOMNESS

It was shown in Ref. 7 that the investigation of the crit-
ical region of superfluid helium in the limit of low densi-
ties can be reduced explicitly, by an appropriate mapping,
to the study of continuous-spin s* models. All of what
follows can be carried through without making this reduc-
tion but it then entails complications which serve mainly
to obscure the relevant physics. We therefore discuss the
reduced spin Hamiltonian

H/kgT=H=H0+¥ +% , 2.1
in which we take, for d spatial dimensions,
Fo=% [dR(|VG®) |2 +r |G (x) ), (2.2)
=1 [dxwx)|5x)|?2, (2.3)

Z=[d% [di%'|G(x)|ux—x)|F(x)|>, (24)

where o (x) denotes a classical, n-component continuous-
spin variable with n components, o*(x), satisfying
—w <ot <o (u=1,2,...,n). The parameter r corre-
sponds as usual, to the primary temperaturelike variable,
while u(x) corresponds to a pairwise “particle-particle”
interaction potential. Finally, w(x) is a random, “single-
particle” external potential: The standard s* model'® is
recovered by setting w =0 [and u(x)=u8(x)]. It
should be emphasized that, in spin language, w(x)
represents “bond disorder,” not a “random field” which
would couple directly to o (x) rather than to | & (x) | % (or
other even terms). The strict absence of random
ordering-field terms in spin models describing superfluid

J

i=1

27 (p), L ﬁ f 2y 1A |2 ﬁ A~ 1A A A A A
rd ~3 q(r +q ) |U,',q| + xJr q(uqﬁ,-j— 8Gq)Ui,k+q'ai,-kaj,k'—q'0j,—k' .
i,j=1

helium follows from the gauge invariance [under
¥(r)—e'P(r)] of real quantal systems, i.e., our inability
to realize off-diagonal fields physically. Further aspects
of the mapping from helium will be mentioned below.

Mean thermodynamic and correlation properties follow,
as usual, by computing statistical expectations, etc., for a
given realization %~ of the random fields and then
averaging over the, as yet unspecified, ensemble of ran-
dom potentials; this latter operation we denote by ().
The well-known replica device allows one to interchange
the order of random ensemble and thermodynamic statist-
ical averaging (see, e.g., Ref. 4). Integrating over the ran-
domness in this way yields a nonrandom replicated Ham-
iltonian #*P, depending only on p sets of spin variables.
At the end of the calculation the formal limit p—0 is tak-
en. There are no strong reasons to doubt the validity of
this procedure in regimes where no long-range order or
broken symmetries arise. Following Aharony,* one ob-
tains

Z_’(”=i(9?o,i+32_,~)+ S 7ij+000%, (5

where the indices i and j label the p equivalent replicas.
The terms % ; and %; have forms identical to (2.2) and
(2.3) except for the replacement of the original spin vari-
ables by the replicated variables G ;(x). The last term is
given by

¥ij=—+ [d% [dix’'|5.:(x)|%G,(x,x)| 5;(x) |2,
(2.6)

where the kernel G, derives from the randomness via the
second-order cumulant

Gr(x,x")=(wxw(x)) —(wx)NCw(x)) . 2.7

The coupling between the replicas engendered by # ; ;
may lead to new critical behavior. The terms of order
o® indicated in (2.5) involve higher cumulants of w and
should represent only irrelevant perturbations relative to

ije
Consider, for simplicity, the fully translationally invari-
ant situation

G,(x,x')=G(x—Xx')= fqe"q"‘aq s (2.8)

where, for brevity we write, here and below,

dd
S

the wave vector running over an appropriate Brillouin
zone, or more generally, carrying an upper cutoff
ga=~0 (1) (where it is convenient to regard q as dimen-
sionless’). Then, in terms of the Fourier-transformed re-
plica spin variables 5; 4 and of the Fourier transform #,
of the pair potential u (x), we find, in the usual way,*'°

(2.10)
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This provides a convenient basis for subsequent considera-
tions.

Randomness correlator

The function Gq describes the statistical properties of
the random potential w(x): what form should it take? A
standard choice is to suppose {{w(x))) =0 and to take

Cw(x)w(x)) = 28(x—x'), (2.11)

which represents “white noise.” Rather more generally
one may specify the correlations in the randomness
through a translationally invariant probability weight
functional

.@[W}:/V‘lexp{ [ d®x [ d%w(xK (x—x)w(x)
(2.12)

of Gaussian character in which .#" is a normalization fac-
tor. In terms of the kernel K (x) one then finds

l/aq——-l?qsfd“x
G(x):fqe""q"‘/ffq

eI K (x)
(2.13)

The choice (2.12), in fact, eliminates the higher-order
terms in (2.5) since the third- and higher-order cumulants
of a Gaussian distribution vanish identically. Non-
Gaussian distributions will, however, lead to higher-order
terms in (2.12) and, hence, higher-order terms will appear
in (2.5) and (2.10).

To obtain a more concrete representation of constrained
randomness we examine more closely the scattering center
model sketched in the Introduction. If ¢(r) represents the
potential due to one center, which we will assume is of
short range (in a sense to be made more precise when
necessary), the total random potential is taken as

No
w(x)=2 @(x—R;),

i=1

(2.14)

where R;, with i =1,2,...,N,, denotes the position of
the ith center. If the centers are distributed with proba-
bility density P({R;}), averages of a function A({R;})
are defined by

No
€AN=TI [ dRPURDA(R;}) (2.15)

i=1

Kohn and Luttinger'! took P =¥ ""°, where V is the sys-
tem volume, so that the centers were placed in a uniform,
uncorrelated manner. On the other hand, for the lattice-
based model envisaged in Sec. I, we can write

No

PR =TI p(R;—R})),
j=1

(2.16)

where R is the fixed reference posmon of the jth center
and we wxll suppose that ¥ = {Rj} is a regular space lat-
tice. The single-center distribution p (x) may be supposed
to have mean 0 and will be characterized by some finite-
range parameter b: see, e.g., the diffusion form (1.5) for
p(x) for which b =(Dt,)'/2.
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If we define the characteristic function
Po= f d% e'v%p(x)= {exp[iq(R;—RN]) ,

all the required cumulants of w(x) can be expressed in
terms of pg and @,, the Fourier transform of ¢(x). Thus
we find

(g0 = [ d% (w(x) Peias

=po 2, 8(q—Q)PgPq
Q€2

(2.17)

(2.18)

where 2 is the reciprocal lattice of . = {Ro} and, as be-
fore, po=Ny/V. Similarly, we obtain

)= [ a% [ ac

=po >, 8(q+q —Q)PPq_qPq—DPePo-q)
Q€2

x'e! a3+ X)G, (x,x')

(2.19)

The last result differs from the fully translationally in-
variant situation, for which @2(q,q')=8(q+q’)§q, by the
appearance of nonzero reciprocal-lattice vectors Q. How-
ever, in the same spirit that such umklapp terms were ta-
citly neglected in writing the form (2.10) for the replicated
Hamiltonian, we anticipate that only the Q=0 terms in
(2.19) will be directly relevant.

Finally, therefore, if we neglect the Qs£0 terms in
(2.19) and note the normalization relation py=1, we ob-
tain the randomness correlator

Gq=po|Pq| 1= [Pg|D . (2.20)
Note that if p(x) approaches a § function, 8(x), one has
Pq—1 (all q) and then G, vanishes identically as it
should for a periodic array of fixed ‘“scatterers” or “im-
purities.” More generally, provided ¢(x) is integrable, as
we will assume, and that p(x) has a second moment, as in
the example (1.5), we see directly that G vanishes when
q—0 as po | Po [2b2 2. This, clearly, represents the con-
strained character of the randomness in the model.

More generally, then, we will suppose

G‘q=w2b"y(bq) (2.21)
where @ 2= G,(x,x)=G (0), while as y—0,
y(y)=c|y|® with 6>0. (2.22)

A constrained system in which all the correlations and po-
tentials are of short range will, evidently, be characterized
by 6=2. We believe such a model is appropriate for
describing Vycor.

III. APPLICATION TO SUPERFLUID HELIUM

In Ref. 7 the crossover in critical behavior from an in-
teracting Bose fluid, representing helium, to an ideal Bose
fluid was studied. If g is a coupling parameter measuring
the strength of the interparticle interactions, ideal
behavior is approached when g—O0 and, on general
grounds, the crossover shouid obey a scaling form; for ex-
ample, the dominant ordering susceptibility, namely, the
off-diagonal susceptibility,” should be described by
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X(T,g)~t "X (g/t%), 3.1) z2=yr/y*" " =gr/g**" (3.9)

where which is independent of ¢ and hence serves to measure the

t=(T-To/T?, (3.2)

in which T is the ideal critical temperature, while ¥, is
the ideal susceptibility exponent and ¢ is the crossover ex-
ponent for the interactions at the ideal critical point. For
observations at constant chemical potential (which is the
simplest situation conceptually), one has’

yo=1, ¢=+(4—d) ford <4, (3.3)

where we have supposed that g acts like u in (2.4).

Now the full form for the coupling constant g can be
found by general considerations. If the (effective)
particle-particle interaction potential (for helium within
Vycor’) is v(r), only the integral vy= f d% v(r) should
matter near the ideal limit; alternatively, if a* is the (ef-
fective) scattering length, one has vy« (#/2m*)(a*)? 2
where m* is the effective mass. At nonzero temperature
the interactions can enter only as vy/kg7T. Finally, the
only length that can be defined in the ideal Bose limit is
the thermal de Broglie wavelength

Ar=h/Qum*kgT)'?. (3.4)
The dimensionless coupling constant must thus be
g x<vo/kgTA% < (a*/Ar)¥~2, (3.5)

as is confirmed by detailed calculations.” If, as seems
reasonable, the temperature dependence of a* and m* is
not anomalous,’ one evidently has

g~BvoTY with =+(d —2), (3.6)

for d <4, where B can be regarded as a constant. Thus
when T, is driven to zero by reducing the filling fraction
of helium in Vycor,’~® the coupling constant g also van-
ishes (for d > 2) and ideal behavior is approached.

Now if gr characterizes the strength, supposed not too
large, of the randomness, we may extend (3.1) to the scal-
ing form

X(T,g,8x)~t "X (g /t4:gr /1%) 3.7

in which ¢z is the crossover exponent for randomness
about the ideal critical point. If ¢y is negative the ran-
domness is irrelevant since the scaling combination
YR =8R /t¢R =ggpt 9r | vanishes as t—O0 and (3.1) is
asymptotically recaptured. Positive ¢, however, implies
that the randomness is relevant and it can then be neglect-
ed only if g, /t¢R remains sufficiently small in the accessi-
ble critical region: small gz and small ¢z may, in fact,
lead to such a situation as we now demonstrate.

One must clearly enquire as to the explicit form of gg.
Following (3.6) we may anticipate a dependence

¥
gr~Brw T, ", (3.8

where ¥ could, a priori, be positive, negative, or zero.
Next, notice that in place of the pair of scaled variables
y =g/t and YR =8R /t¢R in (3.7) one could use y and the
new variable

importance of the randomness at criticality. On combin-
ing (3.6) and (3.8) we get

z=B,ib §T® with o=1g —tdg /¢ . (3.10)

From this we see that it is possible for the randomness to
remain effectively irrelevant in the situation that 7,—0
even if ¢g is positive so that the randomness is actually
relevant (when regarded as an independent parameter).
The required condition for effective irrelevance is » >0 or

Yr/Y>dR /P, (3.11)

where we have supposed ¥ >0 as, in fact, applies in (3.6)
for d > 2; evidently ¥z > 0 is a necessary but not sufficient
condition. [To complete the argument one should recall
that ¢, the randomness exponent for interacting (g£0)
criticality, is negative, although small, so that crossover
from ideality still takes place to normal superfluidity as
described by a pure XY-like, n =2 fixed point.’]

To see if such a scenario is pertinent, suppose that the
effective random potential acting on helium in Vycor is
wo(r). As before, this can enter at criticality only as
wo(r)/kgT. However, as seen, the effects of the random-
ness will be controlled by the corresponding correlator G 9
which, in analogy to (2.21) and (2.22), varies as
(W /kpT)?bd | bok | ® when k—0, where b, is the range
of correlation of the randomness and one has 6>0 for
constrained randomness. Again, near the ideal Bose limit
lengths must be scaled by Ar. Hence, we conclude that
the dimensionless coupling constant describing the ran-
domness can be taken as

d+6
bg

Ar

=2 2 d+6—4

Wo
(kgT)?

bim*
ﬁZ

by
Ar

—2
8rR= x<Wo

(3.12)

This is also confirmed by detailed calculations (extending
Ref. 7). From this follows $g =3 (d +6—4) so that, in
the simplest constrained case, one has ¥z =+(d —2)
which is positive (for d >2). Thus the scenario of effec-
tive irrelevance is not, a priori, excluded. Note, inciden-
tally, that ordinary randomness, described by 6 =0, entails
g = — 3(4—d) which is negative (for d <4) so that the
effects of randomness are actually enhanced as T,—0.

To complete the picture we must, evidently, obtain ¢z:
in doing so, however, we will learn that the scaling formu-
lation presented here is oversimplified in a manner that is
normally harmless; specifically, we have neglected the
nonlinear aspects of the full scaling fields which, among
other features, can entail the mixing of different linear
scaling fields. However, the detailed analysis will show
that nonlinearity plays a crucial role when the randomness
is constrained.

IV. RELEVANCE OF CONSTRAINED
RANDOMNESS

In discussing the relevance of constrained randomness,
with helium in Vycor in mind, it is instructive to consider
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first a natural extension of the original self-consistency ar-
gument given by Harris.! Then we will indicate how the
simplest scaling arguments yield the same criterion.
Finally, however, we will see that these arguments are
too naive: renormalization-group e-expansion calcula-
tions and properly extended Harris and scaling arguments
yield the correct answers.

A. Harris argument reformulated

Harris argues' that inhomogeneous randomness %~
leads to a local shift 87, (r; %) in the critical temperature
which depends on temperature through an averaging of
the random potential over distances proportional to the
correlation length &(7) which diverges as ¢~¥ in the
“pure” or nonrandom system (v=vy). If, as t—0, the
root-mean-square deviation in reduced critical tempera-
ture, say At,, defined via

P={([8T,.(r)/T,*) —(8T.(r)

is of magnitude smaller than ¢, then, it is concluded, the
randomness is irrelevant; conversely, if Af./t— o as
t—0, the randomness will be relevant.

To formalize this argument, we postulate that the local
shift in critical temperature can be expressed in terms of
the random potential wo(r) via

/T.N? 4.1)

wo(r’)
kB]} ’

r—r

= gdm ET)

in which ©(x) is a short-range smoothly varying kernel
with a Fourier transform ©(q). [Note that a sharp cutoff
or nondifferentiability in ©(x) would be unphysical.]
Then, following the notation of (2.21), we find

(At,) f |O(kE) |2G L/ (kp T, ),

AT (; 7)/T, = (4.2)

4.3)
=(Wo/kpT, ) (bo/E)Tolbo/8)

where, as before, b, is the range of the randomness and
the form of G 2, the correlator for the randomness, enters
through

o= [, 18@)] *vo(xq) .

For constrained randomness we have, following (2.22),
yoly)=co |y | % Since O(x) is smooth, the moments

(4.4)

= 2 4.5
o= lal'|&@] 4.5)
exist so that we finally obtain

(At ) =coOplio/kp T, [bo/E(T)E+E (4.6)

aS§—+m

When 6=0 this result yields Az, ~1/(V) )72 where Ve
is the volume of a sphere of radius equal to the correlation
length. If one regards the randomness as arising from an
uncorrelated distribution of scattering centers of density
po, as discussed in Sec. II, then this simply represents the
expected statistical fluctuation in the number N of
centers within V.. A constraint enforces a more uniform
distribution of centers and hence reduces the mean fluc-
tuations in N by a factor proportional to 1/£%/2,
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The Harris criterion for the irrelevance of randomness,
namely, Az, /t—0, now yields

(d4+6v>2 ora—6v<0. (4.7)

The second inequality here follows from the hyperscaling
relation dv=2—a in which a=aq, is the specific-heat ex-
ponent in the pure system; hyperscaling should be valid
for d less than the upper borderline dimensionality d
(=4, for simple criticality). For simple constrained ran-
domness, i.e., 8=2, the modified criterion (1.2) is repro-
duced: Since one always has a <1 and since v> 5 holds
when d <d , one is led to believe that simple constrained
randomness would always be irrelevant! To see how far
such a conclusion might be trusted we consider a scaling
argument using the replica Hamiltonian approach of Sec.
IL.

B. Scaling analysis

We may follow a discussion presented by Aharony.* If
/fs(T,gr) denotes the singular part of the free energy of a
system in which gp measures the strength of the random-
ness we anticipate, as in Sec. III, the scaling behavior

fo~t2W(gg /t*®) 4.8)

If we examine the first derivative Q(T,gg) of the free en-
ergy with respect to the randomness and evaluate it in the
limit of the pure system gz =0, we must thus expect a
singularity of the form

2—a—¢p

Qs (T)=(3f;/08r o= Wt , (4.9)
where the subscript zero denotes gz=0, while
=(dW /dy), _o.

On the other hand, if we use the replicated Hamiltonian
(2.5) and (2.6) and note, as explained, that gz measures
the amplitude of the randomness correlator @q, we ob-
tain, on computing the free energy,

grO(T) —hm—l—— i fdde(x)
p—0 8p11—1

X (| 3:i(x)]?]7;(0)|?),

=lim 5 [ d¥% G(x)[(|&(x)|?] 5(0)]2)
p—0

+(p—1)| F(0)]2)3],

(4.10)

in which we have first used translational invariance and
then the equivalence and independence of the different re-
plicas when gg —0 (which is certainly valid for ¢ >0). In
the limit p—O0 the correlations in square brackets reduce
simply to the energy-energy correlation function in the
pure gg =0 system, say, Cg(x). The spatial integral of
Cg(x) yields the specific heat and hence the Fourier
transform obeys the scaling relation?!

@(z,q)zt—ai(qg) ,
as t—0. On using this, (4.10) yields

(4.11)
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grQ(T =+t~ fqéj(g@: Lo 2bﬂ‘fqy(bq)i(qg) ,
4.12)

in which we have invoked (2.21). For constrained ran-
domness with y(y)=c |y |%as y—0, this finally leads to

0(T)=t=%~7 [ |2]%AZ(2), (4.13)

in which AZ(z) is equal to Z(z) except for the subtrac-
tion?? of the long-range parts, which decay slowly as

z—a/V(zo+Zl_a/z(1——a)/v_+_ Ce. +Zk/zk/v+ Sy,

with k =1,2, ... k., and kg, <(d +0)v—a.
Now comparison of (4.13) with (4.9) yields the cross-
over exponent

br=2—(d +Ov=a—6v, (4.14)

the second part following, as before, from hyperscaling.
The criterion for irrelevance is ¢z <0 which thus repro-
duces (4.7).

C. Renormalization-group recursion relations

Weinrib and Halperin® have recently analyzed the

Hamiltonian (2.10) using renormalization-group theory.
They were concerned primarily with the effects of ran-
domness characterized by long-range power-law correla-
tions. This translates into a correlator @q which diverges
as q—0 and hence corresponds to 6 <0 in (2.22). For this
situation they find, within an [e=(4—d)]-expansion ap-
proach, that (4.14) is valid. For 6> 0, however, one must
reexamine the differential recursion relations which they
calculated explicitly to first order in € (see the Appendix
of Ref. 6) but which are valid for general 8. If [ is the
renormalization-group flow parameter, the recursion rela-
tioré for the full randomness correlator, 6q(1 ), can be writ-
ten

A~

dG ~  8(n+2). A 16 A A
q A A
—8(g)6, — é é
al Oy B0t e O
_ 16 gay, (4.15)

(1+4r)?

where spherical symmetry has been assumed, while G*
denotes G, evaluated at the cutoff g =q,=0(1) and

8(g)=€—9InG,/d1Ing . (4.16)

Now suppose the initial, / =0 Hamiltonian has con-
strained randomness so that 6,1 —oll =0) vanishes identi-
cally. The crucial deduction from (4.15) is for the initial
flow rate which is given by

daq =0 16 A~
= (G™)? (1=0).
dl (1+4r)?
Thus, 6,, —o is renormalized away from zero by fluctua-
tions in the randomness with wave numbers at the cutoff.

In other words, Gq=0(1) is not a constant of the
renormalization-group flows; on the contrary, under re-

normalization, constrained randomness becomes wuncon-

(4.17)
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strained and the critical behavior will hence be determined
by the same fixed point as for normal short-range ran-
domness. Note, however, that the departure from the
pure situation is only quadratic in the overall strength of
the randomness: this observation justifies the conclusion
(1.3), namely, ¢gr =~a (for 8>0). Evidently the Harris
and scaling arguments are inadequate as given: the true
criterion for irrelevance for general 6 ( 2 0) should read

max{a—6v,a} <0. (4.18)

D. Intuitive picture

As discovered here, the effective destruction of the con-
straint in the randomness by short wavelength fluctua-
tions of the potential wy(r) is a purely formal
renormalization-group result. However, it can be given an
intuitive interpretation. The issue is why the root-mean-
square fluctuations in §7,(r) are still proportional to the
averaging volume, even though, in the point-impurity or
scattering-center model, say, the random displacements
are small so that deviations from local uniformity in the
random potential are restricted [e.g., by small D¢, in
(1.5)]. To answer this question, consider Fig. 1 in which
the solid dots represent the regular lattice array, at density
po, of the mean positions of scattering centers constrained
to have only small displacements, say, less than %co, with
cozp(')/ 4 the lattice spacing. Figs. 1(a) and 1(b) illustrate
two coherent patterns of local displacements of the
scattering centers (open circles) which, if extended uni-
formly to the whole lattice, would result in critical tem-
peratures T.% and T, almost certainly differing some-
what from the critical point T.”'= T.(po) of an array with
all scatterers on the reference lattice site. As indicated by
the marginal sine waves, both patterns correspond to fluc-
tuations of the random potential w(r), with wave vectors
on the edge of the Brillouin zone (which, at some stage of
renormalization, will become the cutoff). Evidently, the
independent, random-but-constrained placement of the
centers will generate patterns which approximate quite
closely those in Fig. 1 over finite regions of space. Furth-

TOO*‘ oo ot oo
ool 29 ay
ool |

(a) (b)

FIG. 1. Two regular configurations of the array of “scatter-
ing centers” (open circles) which satisfy the requirements of con-
strained randomness with respect to the underlying reference
lattice (solid dots). The marginal sine waves indicate that such
configurations represent short wavelength fluctuations in the
randomness. If extended to an infinite system the correspond-
ing critical temperatures T.* and T.* will differ, if only slight-
ly, from that of the regular lattice array.
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ermore, the typical sizes of such T.*' or Tc“” domains will
clearly scale as the square root of the volume examined.
Thus the fluctuations in 8T, (r) will once again follow un-
constrained or Poisson statistics. Nevertheless, the scale
of 8T,, which should be of order (T*—T) or
(T”’) T(O)), must be much smaller than that generated
by the unconstrained placement of the centers, which
might be estimated as [T.(3po)— —T] or even
[T.(0)—T .

E. Harris argument revisited

It is interesting, even after the fact, to see how our ex-
tension of the Harris argument, if pushed a step further,
can yield the correct results. The first point is that the ex-
pression (4.2) for the local temperature shift 87,.(r; %) is
too naive in that it supposes that the shift can be ade-
quately represented by a linear functional of the random
potential wqo(r). Let us, instead, regard (4.2) as merely the
first-order functional expression for 8T, (r; #°) and add to
the right-hand side a second-order correction of the form

(At)hy= [ @R [d°R’ [ d% [ d% GYR-R’rr)e,

in which, on using translational invariance, one has

GYR—R',1,r') = {wo(R+ T 1)wo(R — T 0)wo(R’ + T )wo(R' — +1') ) — G 1)

This four-point randomness correlator will, like G%r), be
supposed to decay rapidly on the scale b, so that contri-
butions to (4.20) with |R—R’| >>b, will be unimpor-
tant. Furthermore, the ©, factors will cut off the integra-
tion when |r|, |r | >>a. Consequently, the leading con-
tributions to (At, )(2) when £— oo can be estimated by re-

placing R’ by R in the second O, factor in (4.20). If we
then put
~|r r d?R

T = | —5G4R—-R';r,1'), (4.22)
6o’ bo bd ¢
~ |r r dR R r R 1
6, |5t = Ste, |5 ey =5 |, @23
2la’a & 6215 a 2[§ a )
we finally obtain

d
de rd% |bo| < |r x| 1

2 —— —_— —_— — — —

(Atc)(2)~f ad a" g 2 a:a G4 bo,bo
X (kgT,)~* (4.24)

We conclude?® that the second-order contribution to
(At.)? is of order (bo/g’ whatever the value of 6 ( >0);
by contrast, the first-order contribution varies as
(bo/E )9+6 as seen in (4.6). Consequently, when the ran-
domness is constrained the second-order term dominates
and the original Harris criterion for irrelevance, namely,

r—R r'—r"

ST (e %)/T, = :
£ a

f f ddrdd !
[a&n 2
wolr’) welr')
X ’
kBTc kBTc

(4.19)

where R= %(r+ r'). The kernel ©,(X;x) entails, as in
(4.2), the correlation length &, and thus embodies Harris’s
conception that the local critical point is determined by a
spatial average on the scale of £ xa /t¥— . The second
argument, however, in which a denotes a lattice spacing or
reciprocal cutoff for the spin degrees of freedom, embodies
the idea that the effective randomness can be modulated
via short-range correlations mediated by the coupling of
“neighboring” spins separated only on the scale a. This
picture really entails some temperature dependence in the
kernel ©,(x;x’') [and, perhaps, also in ©(x)] but we will
suppose this is not crucial in the critical neighborhood.

Now assuming, for simplicity, that the odd cumulants
of wy(r) vanish, the first-order expression (4.3) for the
variance (At,)* must be supplemented by a second-order
term

R r

(4.20)
g’

o, ‘% r ]/(éa)Zd(kBTc)4,

Gor') . 4.21)

a <0, is recaptured. However, the strength of the ran-
domness is now measured by (i, /kp T, )*(by/a)?, whereas
previously, for 6=0, it was measured by
(Do /kgT,.)*(by/a)? (where we have used £ xa/t"). The
appearance of the factor (by/a)? for constrained random-
ness, rather than its square, will be significant when we
return to consider helium in Vycor.

F. Scaling revisited

Let us lastly return to the scaling argument: where was
it defective? Two features were oversimplified to a degree
that was damaging. First, randomness was represented by
a single scaling argument, whereas there should be many
arguments, one for each potentially relevant or irrelevant
variable. Thus, if we write, in the simplest short-range
situation,

G,=Go++G"g*+0(g",

=T %b?— Ty %922+ 0 (g , (4.25)

one should expect distinct dimensionless randomness vari-
ables or scaling fields

gro=To® %(b/a), gr =T, %b/a)*?, (4.26)

etc., with distinct

¢Ryz=a—21/, e
Second, the scaled arguments should not simply involve

the variables gg o, 8r 2, €tc., but rather allowance must be

crossover  exponents

dro=0a,
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made for nonlinear scaling fields** which will be of the
form

8ro=8rol1+€0gro+€028r2+ ")

+ey(gro)’+c,  (427)

8r2=8r 2 1+e8ro0+e€08r2+ " )+ -, (428)

etc., where ey, €q,, - . . are nonuniversal coefficients. The
last term shown in (4.27) will prove to be crucial in the
present context; further nonlinear terms involving ¢, g,
etc., have not been displayed. In total, the scaling form
(3.7) should thus be extended to

X( T; 8, 8R,05 gR,Z)

~—1—X 2 8roteilgr)’+c  Eko
=~ t~ ‘f’q& Fa ’ Fa-2v
(4.29)

where the further irrelevant variables have been neglected.
Now if I'y and hence gg o does not vamsh i.e., if the
randomness is unconstrained, and if @? is regarded as
measuring the strength of the randomness, one may, in
fact, drop the variable gg, and the last, irrelevant argu-
ment in (4.29). This leads back to the original formula-
tion (3.7) with gg =g o and a crossover exponent ¢g =a
On the other hand, if T';=0 so that the randomness is
constrained, matters change drastically: the last argument
may again be dropped as it is still irrelevant; however, the
second argument becomes, in leading order, ez(gR,z)z/ Te.
This can be written in the original form (3.7) but with
ér=~a, as in (1.3), and
gr=1(e;)""’grr=T1le;)?w b /a)'+*. (4.30)
The nonlinear mixing coefficient e, must come from
more detailed calculations: it is a pure number but since
it depends intimately on the randomness it could be a
function of the ratio b/a. Indeed, reference back to (4.24)
and the subsequent discussion (with the correspondences

bo=b, Wy/kgT, ~w) suggests that e,(gg, ,)? should cor-
respond to W (b /a)® which implies e, «(a/b)®. This
leads to the conclusion

gr=0,0 %(b/a)@/?+? (4.31)

in which T, is a numerical coefficient.

The power of b/a appearing here differs from both the
anticipated forms in (4.26). This proves to be significant
when considering a Bose fluid in a random potential. Ac-
cordingly, it is of interest to check the result by an alter-
native, more definitive route. We can accomplish this by
carrying through a scaling-cum-perturbation calculation,
analogous to that sketched in Sec. II B, on the basis of the
replicated Hamiltonian (2.10) for the case I'y=0 with
I',540 [in (4.25)]. Note, however, that a second derivative
with respect to the randomness strength @ 2 is now re-
quired. If, following Ref. 7(b), we work with the suscepti-
bility X, we must seek a term in 32X /(3iD 2)* diverging as

Yo—26g (yg+a)

=2/ (a,b)t ,

(a,b)t™ (4.32)

where we have used égr=+a which leads to
Yot+a=143(4—d)=3(6—d): in terms of the ampli-
tude we then have g3 =(i 2)%.e/(a,b)/X, in which X, is
an unimportant numerical coefficient [deriving in part
from the scaling function X in (4.29)]. The variable ¢ here
is to be identified as ra? in (2.10) with g, =7/a.

The appropriate term in the perturbation theory corre-
sponds to the graph shown in Fig. 2 which yields a contri-
bution to X of

g2d—10
I(r;a,b)=

J.J, T4 5 (4.33)

r-+-q Xr+q'

where the factor @24~ !0 ensures the dimensionless charac-

ter of I. Repeated use of the identity
+k?) (4.34)

1/(r+k?)=1/k>—r/kXr

isolates the required powers of r in the various terms;

when one substltutes G oAb /a) (b ) as in (2.21),
and uses y(y)=~T',p? as y—>0 one obtams

T 4p2dg —d—4

Al=—Jy (rq2)6—d/2 fq

2
rbq) 4 1 arp2 )
g

o *b/a)d+*

= — Jd IY0+2¢R
b/a /
s [7ELAT) g x4ty @39)
- X
in which J; and J; are numerical constants. Note that

the integral converges at the origin for all d >0 since
I'y=0; in addition, it converges at the upper limit when
b/a— « since @q a« y(bgq) is integrable. Thus, (4.35) con-
firms the surmise (4.31) for the dependence of gz on b/a
for b>a.?®

FIG. 2. The irreducible second-order perturbation diagram in
the randomness which yields the dominant crossover correction
to the susceptibility.
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In summary, a careful scaling argument for constrained
randomness yields the reduced crossover exponent value

R= 2oc for a dimensionless randomness variable given
by (4.31).

G. Near the ideal Bose limit

Finally, let us bring the analysis to bear on the scaling
of randomness near the ideal Bose fluid limit as discussed
generally in Sec. III. To complete the picture we need, in
addition to the result ¢g =y a, an expression for the ex-
ponent ¥, defined in (3.8), for the case of constrained
randomness: this must correct the naive result (3.12).

If we accept (4.31) and make the substitutions
W=wy/kgT and @ =Ar, which is the result suggested
for the cutoff by the Bose-fluid to spin-system matching
developed in Ref. 7, we obtain

_2 (d/2)+2
w b
8Rr < 0 2 _i
(kgT)
(d/4)+1
bim*
h = Tt (4.36)
]
7 P =

ij=1

in the analog of the replicated spin Hamiltonian displayed
in (2.10). In this expression v(r) and G°r) denote, as be-
fore, the particle pair potential and the correlator of the
random potential; the variable 7 is the time-ordering pa-
rameter and IIJ,T( r,7) and ¥;(r,7) are the corresponding re-
plicated second-quantized wave-function operators. Note
that there is no lattice structure or corresponding momen-
tum space cutoff; however, the inverse propagator in
momentum space takes the form’ (ik, —e,+p) where p is
the chemical potential, g, =#k%/2m*, and the
k,=2mn/B with n =0,+1,%2, ... are the Matsubara fre-
quencies, conjugate to the variable 7, over which a sum
must be taken. The effective interaction in (4.38) arising
from the interparticle interactions evidently carries a fac-

q+k,ig,+ik, q-k,iq -k,  q+k,iq, q’-k, iqy

i i
_:<.___ _.‘_())(_.__
vksij (Ehe %0

q,iq, q,iq;  q,iq, q’iqy,
(a) (b)
FIG. 3. Vertices for Bose fluid perturbation theory: (a) for

the particle-particle interaction with pair potential v(r), (b) for
the randomness correlator G 9. Factors of B=1/kyT are not
shown; i and j denote the replica indices. Note that in (a) the
vertex carries a conserved Matsubara frequency ik,, whereas in
(b) only the frequency ik, =0 is carried.

188 [av [ab [Par [Pardlendinnd e,
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for T~T,. This corresponds to ¥x =+d —1 and hence,

by (3.10), to the result

o=4d —1—+(d —2)¢r/d)=—7+ (4.37)

Because this is negative the effective irrelevance criterion
found in Sec. III for T,—O0 is violated, i.e., the random-
ness remains relevant at ideal-Bose-gas crmcallty Indeed,
the scaling combination z=gg/g' >y ‘/2T§"
diverges when T,—0 (although more weakly than for un-
constrained randomness). Thus even though constrained
randomness leads to a smaller crossover exponent (and a
smaller amplitude) it is still a relevant perturbation in
crossover from ideal Bose behavior.

It remains, however, to check the validity of the substi-
tution of Ay for a in (4.31) since this would actually yield
a different result if made directly in the perturbation in-
tegral in (4.35) because b /a vanishes when T.—0.2® To
this end one may perform the scaling-cum-perturbation
analysis directly for a weakly interacting Bose fluid in a
random field. The replica approach goes through quan-
tum mechanically and yields,”® in leading order, an in-
teraction term

—r)8;8(r—7)—G%r—r)], (438

[

tor 8(r—7') and so is “local” in 7: Fig. 3(a) shows the
corresponding Fourier-space vertex. When the perturba-
tion theory is implemented and compared with the corre-
sponding lattice spin theory one finds, as a result, that the
coupled Matsubara sums (or restricted 7 integrals) yield
an effective momentum cutoff g, =m/a with a < Ar. On
the other hand, the random potential is “static”” and hence
“nonlocal” in 7, i.e., the 7 and 7’ integrals over the corre-
lator G%r—r’) in (4.38) are unrestricted: in momentum
space, therefore, the randomness vertex carries only the
Matsubara frequency k,=0: see Fig. 3(b). The only cut-
off that then operates in the perturbation expansion is that
supplied directly by the finite range b, of G%r—r’) or, in
other words, by the integrability of G %Kk). The required
divergent contribution to the (off-diagonal’) susceptibility
X then arises only from the k, =0 terms in the Matsubara
sums and the relevant integral is precisely analogous to
(4.33) with no cutoff imposed on the q and q’ integrals. It
follows that the integral in (4.35) carries an infinite upper
limit; however, the prefactors of a are correctly repro-
duced by a < A7.? This confirms the validity of (4.26)
and (4.37) and hence the relevance of constrained random-
ness even as 7, —0.

V. DISCUSSION

The experiments of Reppy and co-workers®® on the su-
perfluidity of helium adsorbed in Vycor exhibit an unam-
biguous crossover in critical behavior as the transition
temperature T, is depressed towards zero by reducing the
overall adsorbed density: for moderately large T,, the
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critical behavior of the superfluid density closely matches
that of ordinary bulk helium, the Vycor apparently doing
little more than changing T,; as T,—0, however, a new
critical behavior is observed which is seen to be close to
that of an ideal Bose fluid. The experimental data are
well described by a crossover scaling formulation, as
would be expected on general grounds whatever the actual
physical nature of the crossover. An unbiased fit for the
crossover scaling exponent, ¢ (for 7, regarded as the
control variable), suggests’ ¢r~2 or perhaps somewhat
smaller, but a fit with ¢ =2 provides an excellent ‘“col-
lapse of data.””~°

If one assumes that an interacting-to-ideal crossover in
criticality is being observed, one may apply the detailed
theory developed in Ref. 7. This predicts ¢7=2. Furth-
ermore, the scaling function calculated to first order in
€=4—d fits the scaled data rather well.”® The reason-
ableness of such an interpretation is confirmed by the fit-
ted values, m*/m~1.5 and a*/a~1.3, of the effective-
mass and effective-scattering-length ratios, for the
“mobile” helium in Vycor.” Nevertheless, this interpreta-
tion accounts explicitly neither for the “immobile” heli-
um, “frozen” in a monomolecular layer on the Vycor, nor
for the irregular, random character of Vycor glass.

Two separate physical questions are entailed; to see this,
suppose first that Vycor glass was actually a completely
regular crystalline system resembling, say, a zeolite. Ran-
domness would then play no role but there would still be a
competition between a ‘“diagonal” (i.e., positional) order of
the helium condensed in some more-or-less regular
fashion on the crystalline surface, and an “off-diagonal”
order, leading to superfluidity. Thus, consider helium
condensed on high-quality graphite: as a function of cov-
erage various positionally ordered surface phases are seen.
Superfluidity, such as seen in the experiments of Crooker
et al.,® is to be expected only at coverages somewhat in
excess of a monolayer. The onset of superfluidity at
T, =0 in such a system should, presumably, be viewed as
a special multicritical phenomenon controlled by an ap-
propriate renormalization-group fixed point.?” It is possi-
ble, perhaps even likely, that the 7, >0 critical behavior
springing from this multicritical onset point is controlled
in the limit 7.—0 by an ideal Bose fixed point; in that
case, the theory of Ref. 7 should be truly applicable. It
would be interesting to try to test this conjecture by find-
ing a zeolite type of system to replace Vycor.

Real Vycor, however, is irregular, which introduces the
second question. In principle, this randomness can cause
crossover from the “uniform-onset” multicritical point to
a new, ‘“random-onset” multicritical point and, likewise,
for the superfluid critical behavior as T,—0. In this full
random onset phenomenon, however, the competition
with diagonal (or real-space) ordering would still seem to
play a significant role. However, it is natural to split the
problem by focusing attention first only on off-diagonal
(or superfluid) ordering and the effects of randomness on
that.

This approach has motivated the present work. We
have seen that the nonrandom or pure ideal-Bose-gas criti-
cality considered in Ref. 7 is strongly unstable to a generic
random potential. However, as explained, the randomness

in Vycor is probably better described by a model with con-
strained randomness. The simple Harris and scaling cri-
teria suggest that such constrained randomness is actually
irrelevant as T, —0, so that the theory of Ref. 7 should be
applicable. But, as explained in detail, the simple argu-
ments are too naive, although they can be corrected. In-
stead, ideal Bose criticality is found to be unstable also to
constrained random perturbations even though the cross-
over exponent is reduced (from ¢R=% to ¢g=+ for
d =3) and the effective strength ot the randomness is sig-
nificantly diminished.

What does this finding imply for the fits of the data to
the theory of crossover to ideal behavior without random-
ness? One logical possibility is that the success is essen-
tially accidental in that the data truly pertain to some dis-
tinct, randomness-dominated crossover for which the
crossover exponent merely happens to be close to ¢=2,
while equally, the limiting behavior of p (T) resembles
somewhat but does not coincide with ideal Bose behavior.
We cannot rule this out, but more plausible, we believe, is
an alternative possibility, namely, that the existing data
explore a regime in T, and ¢ in which the scaled random-
ness (as measured by the variables yg D 0/t¢R or
z D §/(vy)"/% see Secs. I1I and IV) remains sufficiently
small and slowly varying as to be ineffective, while the
crossover in the scaled interaction strength, measured by
T./ *7 or vy /t?, is broadly scanned. This view would ex-
plain the good fits to the theoretically predicted scaling
function and exponents and the reasonable values found
for m*/m and a*/a. It would follow, however, that one
should see a buildup of deviations from the previous fits if
the experiments could be pushed to still smaller values of
T,.. Indeed, if one takes seriously the slight “rounding” or
smearing” of the transition already seen in the data®°®
(rather than interpreting these features as artifacts result-
ing from macroscopic inhomogeneities in the Vycor), one
might believe that some evidence for such deviations was
already available.?

We have not here explored the onset multicritical phe-
nomena per se but we have, through the discussion in Sec.
I, seen that criticality in an ideal Bose fluid in a random
potential must be unusually sensitive to interactions owing
to Bose condensation into localized regions in which the
particle density is unbounded. Crossover directly to such
a limit thus seems unlikely to be observable. Rather, one
presumes that the introduction of interactions will lead
first to an interacting but frozen, or “localized,” nonsu-
perfluid phase and then, as some “mobility threshold” is
passed, to the onset of superfluidity and a nonzero super-
fluid transition temperature T,.

Hertz, Fleishman, and Anderson” have applied
localization-theory ideas to a system of interacting bosons
in a strong random external potential. They use a spin-
glass formulation and take, as an initial basis, the random
noninteracting system: it is supposed that the correspond-
ing spectrum exhibits a mobility edge. The interactions
are then treated within a Hartree approximation. The ef-
fective density of states is found to be discontinuous at the
renormalized mobility edge. This corresponds to a stan-
dard two-dimensional density of states and thus leads to
the prediction that Bose condensation cannot occur.

29
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Hertz et al. admit to being unsure of the domain of valid-
ity of their analysis and recognize that standard
renormalization-group arguments lead to contrary con-
clusions, namely, that n>2 criticality is stable since
a <0. Certainly, their analysis does not seem appropriate
to helium in Vycor.

Furthermore, Bray and Moore®® have reconsidered the
same problem, but focusing on the fully interacting sus-
ceptibility matrix Xﬁ}}‘ « (s,“sj") rather than on the random
exchange matrix. They show, in contradistinction to
Hertz et al., that the effective density of states must van-
ish (continuously) at the instability point, which is identi-
fied as the transition, if this occurs at nonzero tempera-
ture. This casts further doubts on the conclusions of
Hertz et al.

More recently, Ma, Halperin, and Lee®! have specifical-
ly addressed the problem of the destruction of superfluidi-
ty at zero temperature by strong randomness, i.e., they
consider the random-onset transition. With the aid of
various heuristic mappings, they convert the description
of the transition to that in a (d + 1)-dimensional system
with long-range correlated disorder. By appealing to
finite-size scaling they then obtain an estimate of the ex-
ponent of variation of T, as the overall density p ap-
proaches py, the onset density. The numerical value found
for this exponent is close to but not the same as that for
ideal Bose behavior. However, Ma et al. do not discuss
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the nature of any crossover in critical behavior, i.e., for
small but fixed t =(T —T,)/T, as T.—0, which is what
is observed in the helium in Vycor experiments. It is con-
ceivable that this could still be ideal or else rather close to
ideal. Another concern, as regards applicability to the on-
set phenomenon in helium, relates to the competition with
diagonal ordering in addition to randomness: as alluded
to above, this should play a role in the nonrandom case
and could still be important when randomness acts.
Nevertheless, this new attack is promising and one may
hope that further work along such lines will lead to fuller
elucidation of the behavior of helium in Vycor and to a
clarification of the apparent agreement with the descrip-
tion in terms of a crossover to ideal behavior.
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