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Relaxation behavior in a tiling model for glasses
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A Monte Carlo investigation of the equilibrium and kinetic properties of the square tiling model
proposed by Stillinger and Weber is presented. By employing a combination of series expansion and
simulation methods, accurate approximations for the equilibrium thermodynamic properties are ob-
tained. The model exhibits nonexponential relaxation of the potential-energy autocorrelation func-
tion that empirically can be described by the Kohlrausch-%'illiams-Watts expression. Furthermore,
it is shown to possess non-Arrhenius temperature dependence of the average relaxation time for the
potential energy. Continuous cooling and heating simulations, as well as finite-temperature-jump
experiments, were performed and the results were found to be in qualitative agreement with the
behavior of laboratory glass-forming liquids. The kinetic properties of the square-tiling model are
compared with those of the two-spin-facilitated model proposed by Fredrickson and Andersen.

I. INTRODUCTION

Supercooled liquids and the glasses they form display a
rich variety of thermodynamic and kinetic phenomena. '

These include cooling-rate dependence of low-temperature
properties, hysteresis effects, and strongly nonexponential
relaxation functions following mechanical or electrical
perturbations. Furthermore, these attributes appear in
their quantitative details to be material dependent; that is,
behavior in the neighborhood of experimental glass transi-
tions seems to depend in a nontrivial way on the specific
nature of the atomic-level interactions involved.

Theorists have responded to the need to organize and
explain these observations with a large array of
"models. "~ ' These have differed widely in the funda-
mental level of starting assumptions, credibility of ap-
proximations, and qualitative nature of the deductions.
Some of the models are purely phenomenological, '

while others attempt to identify relevant atomic or molec-
ular processes which control macroscopic observables in
the supercooling and glass-forming regimes. The long-
term goal surely is to produce a formalism whereby de-
tailed knowledge about atomic and molecular interactions
for any given substance can directly lead to predictions
for all of the above-mentioned properties.

This paper is concerned with a less ambitious goal,
namely the study of a specific model for supercooling and
vitrification. While this model does not presume to con-
nect explicitly to atomic-level details, it nevertheless has
the advantage of precision. Available configurational
states are clearly identified at the outset, the energies of
those states are specified, and an appropriate set of al-
lowed dynamical transitions (and their rates) between
those states is postulated. These attributes suffice to al-
low study of thermal equilibrium and glass-forming prop-
erties both by analytical and by simulational techniques.

The following So:. II motivates and defines our "tiling
model, *' and stresses that it can be used in principle to ex-
amine the kinetic competition between crystallization and
vitrification. Section III considers the canonical partition

function for the tiling model, and discusses the natural
series expansion for the limit in which P=(k&T) goes
to minus infinity; it also examines the condensation tran-
sition that in principle would occur (to a lowest-lying
amorphous state) if equilibration continued to obtain at
low temperature. Section IV provides details about the
Monte Carlo program that has been constructed and ap-
plied to study of the model. Section V presents equilibri-
um results determined by the Monte Carlo simulation in
the high-temperature regime, and uses them to locate the
putative (but unrealizable) condensation point. Rate pro-
cesses and relaxation behavior as revealed by the simula-
tion supply the subject in Sec. VI, The closing Sec. VII
summarizes conclusions and discusses their implications.

II. TILING MODELS

A brief description of the tiling models has appeared in
a prior publication. ' We now provide a more detailed ex-
position.

A central underlying concept is that any configuration
of particles in a condensed phase can uniquely be referred
to a discrete set of mechanically stable packings. This is
effected by means of a (mass-weighted) steepest descent
on the relevant potential energy hypersurface. ' For
liquids and glasses the resulting packings are amorphous.
We shall adopt the point of view here that vibrational de-
formations away from the stable packings (potential mini-
ma) are only incidental to the task of specifying system
configurations as they relate to supercooling and vitrifica-
tion. Instead it should suffice simply to classify packings.

Previous theoretical and simulational studies of simple
models for atomic substances show that their amorphous
packings display substantial variability in local coordina-
tion geometry, local stress, and local bond energy. ' Some
regions are occupied by well-coordinated atoms, others
less so. We shall assume that any amorphous packing can
be divided into domains of various sizes, the interiors of
which contain only well-coordinated, well-bonded parti-
cles. Boundaries between contiguous domains then
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(i) The system is two dimensional.
(ii) Domains are square, and fit without gaps or overlap

onto a square lattice with umt spacing (i.e., domain ver-
tices are coincident with points of the lattice).

(iii) All domain sizes n Xn (n =1,2, 3, . . . ) are permit-
ted.

(iv) Periodic boundary conditions apply.

Figure 1 shows a typical arrangement of square domains,
a "tiling" of the plane, that is consistent with these re-
strictions.

The potential energy 4 to be assigned to any tiling is
equal to the total length of interdomain boundary times A, ,
a positive energy per unit length of such boundary. We
can express 4 succinctly as follows:

4'=2k, g Jnj (2.1)

wherein nj stands for the number of jXj domains present
in the tiling. Since the total area of the system is fixed
(equal, say, to N elementary units of area defined by the

represent locations of strained and weakened bonds,
present perhaps because the steric requirements of strong
bonding within domains have created geometric frustra-
tions.

In principle the amorphous packing might consist of
just a single macroscopic domain. In this event the con-
stituent particles would have discovered one of the
lowest-energy noncrystalline packings possible, which is
substantially devoid of poor coordination and bonding.
For some materials (such as Al-Mn alloys) this might en-
tail quasicrystalline order. 9

Our model is intended to represent qualitatively the sta-
tistical mechanics of the fitting together of collections of
domains, and of the kinetics of interconversions between
distinct domain patterns. Several drastic simplifications
are demanded at the outset for conceptual and computa-
tional manageability. We assume the following.

underlying square lattice), we must have the linear con-
straint

(2 2)

The maximum value for 4 is achieved when the tiling
consists entirely of 1X1 domains. The minimum value
for 4 requires eliminating as much domain boundary as
possible; in a square system with periodic boundary condi-
tions this is attained with a single system-spanning
domain. The corresponding limits on 4 are

2A,N' '&C (2A,N . (2.3)

It is easy to show that the difference in 4 values for any
two tilings is always a multiple of 4A, .

The set of allowed transitions must be consistent with
ergodic behavior. That is, any tiling should be kinetically
accessible from any other by a finite sequence of positive-
rate transitions. At the same time, the allowed transitions
should be sufficiently sparse to guarantee that the system
manifest glasslike behavior at low temperature. We want
the system under cooling conditions to become inevitably
trapped in configurations with 4 substantially above the
lower limit specified by Eq. (2.3).

The transitions allowed in the present model either
cause the fragmentation of a larger square into smaller
ones, or cause the reverse process that aggregates a cluster
of smaller squares into a larger one. Specifically we per-
mit a square domain of size (pq) X (pq) to fragment into a
square cluster of p q Xq domains if and only if p is the
smallest prime factor of pq. Inversely, a square arrange-
ment of p domains, all of size qXq, can aggregate to
form a single (pq)X(pq) domain, provided that p is the
smallest prime factor of pq. These are the only allowed
processes.

It is clear that this selection yields ergodicity. Any two
tilings individually are connected to the fully fragmented
state (all 1X1 domains) by a sequence of single-domain
fragmentations. Therefore, they are kinetically connected
to each other.

The specific form to be used for the allowed aggrega-
tion rate is

2pq(p —1 j (2.4)

The factor vo is a fixed attempt frequency that establishes
the natural time unit. The parameter a lies in the range

0&(x &1; (2.5)

it is raised to a power equal to the total length of domain
wall that would be annihilated by the aggregation process
and so acts to reduce the rate strongly when that length is
large. The requirement of detailed balance demands that
the fragmentation rate be

rf(pq)=r, (pq)ex ( —pPb@), P=(k~T) (2.6)

where AN is the potential energy change produced by the
insertion of new domain boundary:

b@=2Apq(p —1) . (2.7)
FIG. 1. Typical tiling of the plane ~ith square domains of in-

teger size n Qn. The configurational trapping necessary to produce
glasslike behavior in the model is assured by this selection
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4'=2k, g jnJ paN„, — (2.8)

where N„represents the number of a Xa tiles which are
in full contact along a common side. If p & A, y 0, the un-

favorable domain-wall energy present in the first part of
4 will be overcome by the new term in the designated
"crystal" configuration, but if p exceeds A, only very
slightly the driving force for crystallization will be small.

In any case we see for the tiling models that crystalliza-
tion and vitrification tendencies logically are not directly
connected, but represent distinct aspects of the model
which can be separately varied. For the remainder of this
paper we consider only the unadorned interaction, 4 in
Eq. (2.1).

III. PARTITION FUNCTION

When conditions permit attainment of thermal equili-
brium, the configurational free energy F becomes
relevant. It can be obtained from the canonical partition
function Z:

Z (P) =exp( —PF)

of transitions and rates. As temperature declines, a sys-
tern at equilibrium would have to exhibit larger and larger
squares to lower its energy. However, this becomes in-

creasingly difficult. Not only do the basic aggregation
rates in Eq. (2.4) become small for large domains, but also
it becomes increasingly unlikely that a preexisting proper
arrangement of square domains, all of the same size and
in proper registered contact, be found to permit aggrega-
tion.

Before proceeding to discuss properties of the model de-
fined in Eqs. (2.1) and (2.4)—(2.7), we remark that a
straightforward extension can be implemented which in-
cludes the possibility of nucleation and freezing into the
crystal, as a process in competition with supercooling and
vitrification. We have already identified the interiors of
large domains as well-bonded but normally amorphous.
A periodic crystal however could formally be identified
with a periodic array of domains of some special size, say
a Xa, each one of which contains some integer number of
crystal unit cells instead of amorphous arrangements of
atoms. A new term then needs to be incorporated in 4 in

Eq. (2.1) to make the array of registered a Xa tiles the
system's lowest-energy configuration. $pecifically we can
take"

to triviality at infinite temperature (P=O). In that limit
the Boltzmann factor in Eq. (3.2) can be disregarded, and
Z reduces to the total number of distinct tilings. Evident-
ly a precise evaluation of this number remains a major
mathematical challenge.

Fortunately the model does have a useful simplifying
limit as P, or inore precisely PA, , approaches —oo along
the negative real axis. In this limit the partition function
will be dominated by the single configuration with max-
imum 4, the fully fragmented 1X1 structure. It was
remarked earlier that 4 changes in multiples of 4A, . With
periodic boundary conditions there are X equivalent til-
ings, with a single 2 X 2 in a background of I X 1 s, that lie
4A, below the 4 maximum. Tilings with a pair of 2 X 2's
lie 8A, below the maximum, and number N(N —9)/2.

By extension of this ordered enumeration scheme it is
possible to generate an expansion for the free energy F
that is appropriate for the PA, ~—ao limit. We find

PF(P)/N=2PA, x+ —,x——', x +0(x ), (3.3)

x =exp(4f3A, ) (3.4)

is the natural expansion variable. From this series we ob-
tain

(4) /NA, =d(PF/N)/d (PX),

(4)/NA, =2 —4x+36x' —400x'+0(x") .

(3.5)

(3.6)

The series (3.3) shows that PF/N is strongly negative in
the limit PA, ~—00, but is increasing as PX increases to-
ward zero. From the partition function itself, Eq. (3.2),
and Eq. (3.5), we see that PF/N is still negative and in-
creasing at PA, =O. Approximate evaluations of the parti-
tion function' imply that PF/N continues to increase for
positive PA, until it vanishes (still with positive slope) at
some critical value (f3', ), . If indeed the exact free energy
has that behavior, then at this point the domain structure
of the system would become unstable with respect to ex-
pulsion of domain walls from the system's interior. The
system then would condense into a single macroscopic
amorphous domain if transition rates were to so permit.
This single domain configuration has, on a per-unit-area
basis, both vanishing energy and vanishing entropy.
Simulation results presented belo~ show indeed that this
condensation point exists, just as suggested by the approx-
imate theory.

g exp( —P4) .
tilings

(3.1)
IU. MONTE CARLO SIMULATION

In view of the fact that 4 in Eq. (2.1) depends so simply
on the numbers nj of domains of various sizes, it is useful
to rewrite Z as a sum over sets of those numbers subject
to the constraint (2.2):

Z(P)= g Q([n I)exp[ —P4(In I )] .
I&J. I

(3.2)

Here 0 stands for the number of distinct tilings that are
possible with the given population of tiles.

In contrast to many statistical-mechanical models of
cooperative phenomena, the tiling model does not reduce

The Monte Carlo simulation of glasses presents an int-
rinsically formidable problem because as the temperature
is lowered, longer and longer runs are needed to reach
equilibrium. In the standard Metropolis Monte Carlo for-
mulation, the probability of rejection of moves also in-
creases dramatically at lower temperatures and com-
pounds the inherent equilibration problem. To overcome
this latter difficulty an algorithm of the genre proposed
by Bortz, Kalos, and Lebowitz ' was developed for the
simulations.

The algorithm is constructed by determining all of the
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possible transitions out of the system's momentary config-
uration, either by aggregation or by fragmentation, for
each of the qualifying squares. Each such square will
have a characteristic transition rate, and for aggregation
this depends upon its local environment. The sum of all
of the individual transition rates for these parallel process-
es yields the total transition from the given configuration

8 =I/bt= g r,q (4.1)

Here ht is the expected lifetime of the configuration. A
random number between 0 and 8 is then generated to
determine which of the possible transitions is to be effect-
ed. In this algorithm every Monte Carlo move changes
the system's configuration. The elapsed time is calculated
by summing all of the br's for the sequence of preceding
configurations.

As remarked earlier, the inverse of the attempt frequen-
cy vo appearing in aggregation and fragmentation rate ex-
pressions (2.4) and (2.6) supplies a natural time unit for
the simulation. Furthermore, the parameter a also ap-
pearing in those expressions was given the value

a =0.98 (4.2)

in all of the calculations reported in this paper.
Accounting for all possible fragmentation processes

that could alter a given configuration is simple; each
square tile can divide into smaller tiles only in the one
way specified by the smallest prime factor of its side
length. Thus a 2 X 2 can only fragment into four 1 &(1's, a
3 ~ 3 can fragment only into nine 1 X 1's, a 4 X 4 only into
four 2&(2's, etc.

By contrast, it is far less straightforward to identify all
possible aggregations that might befall a given configura-
tion. Square clusters of equal-sized and registered tiles
must be located, of course. But the aggregation rule
specified in Sec. II above only permits some of these to
create a larger tile. For example, clusters of 5 X 5 tiles are
only allowed to form tiles of size 10X10, 15&(15, or
25 g 25.

After a transition has been made, the old and new con-
figurations will normally differ only by a localized
geometric change. Consequently many of the possible
transitions and their rates calculated for the old configu-
ration will continue to apply to the new configuration.
Ho~ever, scrupulous attention must be devoted to altering
the transitions and rates in the neighborhood of the local-
ized change.

Extensive Monte Carlo calculations have been carried
out on two system sizes, 50X50 and 100X100 (i.e.,
X =2500 and 10000}. Both positive and negative values
of the inverse temperature parameter PA. have been inves-
tigated. When PA, &0.25, equilibration can be reproduci-
bly achieved, and the average energies per unit area for
the two system sizes (where comparisons have been made)
typically agree to within 0.5%. Simulations in both cases
were started with uniform arrangements of 2X2 tiles,
then equilibrated at high temperature. Lower temperature
runs were initiated with final configurations of preceding
runs, then equilibrated. Both static and dynamic proper-

ties were then evaluated after initial relaxation periods
had elapsed at the temperature of interest.

V. ENERGY, ENTROPY, AND THE
CONDENSATION POINT

The series expansion results of Sec. III can be combined
with Monte Carlo simulation data, obtained in the manner
described in Sec. IV, to provide an accurate approxima-
tion for the average potential energy function of the
square model, This potential energy expression can then
be used to obtain accurate approximations for the entropy
and free energy. Estimates of the condensation tempera-
ture and the number of possible tilings follow.

We have developed a very accurate [3/3] Pade approxi-
mant for (4)/M, by combining the first three non-
trivial coefficients in the expansion of Eq. (3.6) with three
equilibrium data points obtained by Monte Carlo simula-
tion at temperatures given by PA, = —0.10, 0.10, and 0.25.
The values of the potential energy at these temperatures
are reproducible and are believed to reflect true thermo-
dynamic equilibrium. The simulation data are listed in
Table I. By solving a system of three linear equations for
the three unknown coefficients, the following approxi-
mant is obtained:

(4) 2+28.26x +69.73x —1.840x

1+16.13x+49.12~'+6.995&'
' (5.1)

TABLE I. Mean values of the potential energy for the tiling
model at various temperature. Values above the solid line refer
to well equilibrated Monte Carlo runs. Those below the solid
line are metastable states resulting from very slow cooling below
the ideal glass transition temperature at PA, =0.268.

—0.30
—0.20
—0.10
—0.05

0.00
0.05
0.10
0. l. 5
0.20
0.25

0.30
0.35
0.40
0.45
0.50
1.00

10.00

1.598
1.522
1.437
1.392
1.342
1.280
1.225
1.170
1.092
1.015

0.890
0.716
0.593
0.486
0.440
0.409
0.405

where x is defined above in Eq. (3A). This approximation
for the potential energy function is in excellent agreement
with all the Monte Carlo data for PA, &0.25. Figure 2
provides a comparison with the simulation results. The
poles of Eq. (5.1) are found all to lie on the negative real x
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+Pa[(e) /NX] . (5.3)
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%e have numerically integrated the first of these equa-
tions to obtain pF/N and 5/k&N as functions of pA, .
Figure 3 shows the behavior of the free energy for the
temperature range —0.1(pl, &0.3. The free energy is
seen to be a monotonically increasing function of pi, with
positive slope and slightly negative curvature. At a criti-
cal value of (PA, ), =0.268 the approximation predicts that
the free energy vanishes and hence locates the temperature
of the condensation transition described in Sec. III.

The entropy of the square model is also found to be a
smooth function of pA. and is shown in Fig. 4. Its max-
imum value occurs at infinite temperature (PA, =O) and
can be used to obtain an estimate of the total number of
possible tilings. We find the result

Q„,—exp(0. 3155N) . (5.4)
FIG. 2. Comparison of the Monte Carlo data (squares) for

the average potential energy of the square model with the Pade
approximant (solid curve) given in Eq. (5.1). The agreement is
seen to be exce11ent above the condensation temperature (pA, )„
but the analytic continuation of the Fade to below the transition
(dashed curve) differs significantly from our (nonequilibrium)
simulation data.

axis, at —6.681, —0.2595, and —0,08247. The magnitude
of the last of these provides an estimate of the radius of
convergence of the original series, Eq. (3.6).

Equation (5.1) can be used to obtain the free energy and
entropy of the square model by making use of the rela-
tions

(5.2)

The predictions of Eqs. (5.1)—(5.4) for the location of
the condensation temperature and the number of tilings
are believed to be quite accurate. It is of interest, howev-
er, to compare these results with the predictions of the
simple Flory approximation and the "improved" Flory
approximation presented earlier. ' These earlier results
for the location of the condensation transition were based
on the criterion that the quadratic exponents in the con-
centrations of microscopic square sizes vanish in the ap-
proximations, not on the present criterion that the free en-
ergy vanish. Of course, in an exact theory both criteria
must lead to the same answer, but in the mean field
theories the predictions differ. If we insist on the cri-
terion that the free energy must vanish at the condensa-
tion point, the mean-field approximations provide the fol-
lowing estimates for the location of the transition:
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FIG. 3. The free energy for the square model as a function of
pA, . The vanishing of the free energy at pA, =0.268 signals the
condensation transition.

FIG. 4. The entropy of the square model obtained from Eq.
(5.3). The maximum at PA, =O provides an estimate of the total
number of tilings in the model [Eq. (5.4)].
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(PA, ), =0.3260 (Flory),

(PA, ), =0.2315 (improved Flory) .

(5.5)

(5.6)

These predictions are seen to bound our more accurate es-
timate of (PA, ), =0.268. The corresponding estimates for
the total number of tilings are:

Q„,=exp(0. 2437%) (Flory),

0„,=exp(0. 2989K) ( improved Flory ) .

(5.7)

(5.8)

For both the location of the transition and the number of
tilings the improved Flory approximation is in reasonably

good agreement with our more accurate results based on

Eqs. (5.1)—(5.3).
Because of the excellent fit of the Pade approximant to

the simulation data for the potential energy function and

the seemingly smooth behavior of the free energy in the
vicinity of PA, =0.268, it is difficult to imagine that an ex-

act analysis of the partition function in Eq. (3.2) would
fail to yield a thermodynamic phase transition.

b

p 4
b

4
4
I

10

VI. RATE PROCESSES AND RELAXATION

At temperatures above the predicted condensation tran-
sition (PA, &0.268) we were able to equilibrate the model
reproducibly in our computer simulations, either by start-
ing from the state with all 2X2 squares, or from some
previously equilibrated state of the system at a different
temperature. At temperatures below the condensation
temperature, the thermodynamically stable state is the
state containing a single N' )&X' square and we were
never able to attain this configuration during our simula-
tions. The time required even to equilibrate the smaller
system with area 2500 below the transition is astronomi-
cally large, and indeed the equilibration time becomes in-
finite as the size of the system approaches infinity. As a
result, the square model possesses an ideal glass transition
at the condensation temperature (PA, ), that is a conse-
quence of an underlying first order phase transition. Be-
cause structural relaxation times diverge at (PA, )„on cool-
ing at a finite rate we expect to observe failure to attain
equilibrium at temperatures even above the ideal transi-
tion.

In an attempt to observe such "laboratory glass transi-
tions" in the square model we have performed a series of
continuous cooling experiments on the computer. The
simulations were carried out on the smaller system with
area 2500 that was fully equilibrated at PA, =0.05. For
convenience we define a dimensionless temperature as
T =1/PA. and express all cooling rates in terms of the di-
mensionless ratio y =dT/dt, where the time i as usual is
in units of vo . Starting from an equilibrium configura-
tion at T =20.0, the system was continuously cooled at
rates corresponding to y=1.0, 0.2, 0.02, and 0.002. The
cooling program was continued down to a temperature of
0.3 and for each cooling rate the potential energy was
monitored as a function of temperature. A series of in-
dependent cooling runs was performed for each rate and
these were averaged to obtain smoothed data for the po-
tential energy.

Figure 5 shows the results of the continuous cooling ex-

FIG. 5. Dependence of the potential energy on the rate of
cooling. The solid curves correspond to cooling rates of y =1.0,
0.2, 0.02, and 0.002. The squares were obtained by the pro-
cedure described in Sec. VI.

periments. As expected, the system could follow the
prescribed temperature program, remaining in equilibri-

um, to lower temperatures for the slower cooling rates.
At the fastest cooling rate, y =1.0, the system fell out of
equihbrium (i.e., passed through a laboratory glass transi-
tion) at a very high temperature, Tg =10. For the slowest
cooling rate, y=0.002, the system was able to remain in
equilibrium until finally undergoing a glass transition at
Tg=4. The qualitative features of the behavior seen in

Fig. 5 for the square model are in agreement with experi-
ments (such as differential scanning calorimetry) on real

&40 c
g X

O

a

FIG. 6. Hysteresis in the square tiling model. The upper
curve corresponds to cooling at a rate y=0.002. After anneal-

ing at T=0.3 for a time of 1.8X 10, the system was reheated at
the same rate.
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FIG. 7. The T =0.3 configuration of the area=2500 system
following the cooling program depicted in Fig. 6.

glass-forming materials. '

The open squares in Fig. 5 are the result of an extreme-
ly slow, stepwise, nonuniform cooling schedule. For each
point, the larger 100X100 system was "aged" for one
hour on a Cray XMP computer, and then a subsequent
hour was utilized to obtain the reported average. At
pk. =0.10, 1.6X10 moves occurred per simulation hour,
while at pA, =0.50, 1.1 X 10 moves occurred per hour.

The square model also exhibits hysteresis on reheating
from temperatures below the ideal transition. Figure 6 il-

lustrates the result of cooling the model from T =20 to
0.3 at a rate of y =0.002, annealing at T =0.3 for a time
of 1.8X 10, and reheating to T =10 at a rate of
y =0.002. The increase in potential energy during the an-
nealing stage is a result of the scarcity of allowed transi-
tions that could take the nonequilibrium system to states
of lower potential. Figure 7 shows the configuration of
the area=2500 system following the cooling stage at
T=0.3. Because of the significant population of large
squares and their random placements, very few transitions
can occur in the system that will lower the amount of
boundary and hence the energy. (For contrast, Fig. 8
shows a typical configuration from equilibrium at
PA, = —0.20.) Instead, during the relatively short anneal-
ing time that was imposed the system underwent a fluc-
tuation to higher energy states via the more available frag-
mentation transitions. On reheating the system, Fig. 6
shows the hysteresis often observed for laboratory
glasses —the heating curve falls below the cooling curve.
At a temperature of about T =8, significantly above the
condensation point, the heating and cooling curves merge
with the equilibrium potential energy curve.

A second type of experiment that clearly illustrates the
nonlinear response of viscous liquids and glasses to finite

a.
MW

M w

j
MM M j

M M

M

M

I a a
a

M il MM

W W M M

w w

M

FIG. 8. Typical configuration of the area=2500 system
equilibrated at PA, = —0.20. Note the finer texture compared to
that in Fig. 7.

perturbations is the measurement of the time-dependent
response of a material to a pair of finite temperature
jumps equal in magnitude, but opposite in sign. We
have performed such experiments for the square model,
staring the system from an equilibrium configuration at
T =10 and from the lowest energy configuration we
could attain at T =3 (i.e., following the procedure
described above for the dashed curve in Fig. 5). For each
of the two starting configurations, the area=2500 system
was instantaneously quenched or heated to a final tem-
perature of T =6.5. By monitoring the potential energy
as a function of time after this event, we obtained the
nonlinear response of the square model to temperature
jumps equal in magnitude, but opposite in sign.

Figure 9 illustrates the result of the above experiment.
The upper curve represents the average of ten independent
quenches from T = 10 to 6.S and the lower curve is the re-
sult of averaging ten independent quenches from T =3 to
6.S. The marked asymmetry of the response is typical of
real materials and reflects the fact that strongly coopera-
tive systems require longer to equilibrate when prepared
from a low temperature, than from a high temperature.
For the experiment depicted in Fig. 9, the time for half
the change of the potential energy to occur for the lower
starting temperature is twenty times that for half of the
change from T = 10 to occur.

In addition to the nonlinear aspects of relaxation in the
square tiling model, we have investigated its linear
dynamical response through evaluation of the potential
energy autocorrelation function at equilibrium, defined by

(Wr)~(0) &
—&~&'

&~'& —(~&'
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Io& tt) t

FIG. 9. Asymmetry in the relaxation behavior of the square
tiling model. The upper curve describes the response of the
model to an instantaneous temperature jump from T =10 to
6.5. The lower curve describes the response of the model to a
temperature jump equal in magnitude, but opposite in sign,
from T=3 to 6.5.

8 10 12 14 1S

FIG. 11. Potential-energy autocorrelation function at
PA=0. 10. The solid line through the Monte Carlo data is a fit
to the K%'% function with parameters p =0.48 and ~ =2.5.

The calculation of this autocorrelation function turns out
to be computationally intensive, but we have been able to
obtain its short to intermediate time decay with reason-
able accuracy for temperatures in the range
—0. 1&PA, &0.1. At each temperature the system was
first prepared by performing a run of sufficient length to
ensure thermodynamic equilibrium. The final configura-
tion at the end of the run was used to start a new simula-

tion run in which 4&(10 configurations of the system
were saved and whose total length was approximately 100
times the average relaxation time at the appropriate tem-
perature. The potential energy autocorrelation function
was computed from the chain of saved configurations.
The correlation functions obtained in this manner were
fitted to the Kohlrausch-Williams-Watts (KWW) func-
tion

P(t)=exp[ —(tlat )i'], (6.2)

I 10 12 14 16

FIG. 10. Potential-energy autocorrelation function (normal-
ized) at PA. =0.05. The solid line through the Monte Carlo data
is a fit to the K%'%' function eath parameters @=0.71 and
g~ =1.2.

where v„and p are adjustable parameters. In obtaining
these fits, only data points were used for which P(t) had
decayed to below 0.5 and no data points were used beyond
the first point at which the numerical autocorrelation
displayed a negative value.

Figures 10 and 11 show the simulation data and the
KWW fits for the energy autocorrelation function at the
two positive temperatures investigated. In both cases the
fits are seen to be reasonably good and the values of the
exponent p obtained, 0.71 and 0.48, respectively, indicate
that the data could not have been fitted by a single ex-
ponential. Observation of nonexponential linear response
functions that can be described by Eq. (6.2) is a charac-
teristic feature of glass-forming liquids at low tempera-
tU res 23' 24

The values of the K%'% parameters for the tempera-
tures investigated in the present study are listed in Table
II. The exponent p is very sensitive to noise in the data,
so at best we can only expect to extract qualitative trends
shown by the data in Table II. It is apparent, however,
that p is certainly less than unity over this temperature
range and that it appears to be decreasing slightly as the
temperature is lowered. This lack of thermorheological
simplicity is often found in experimental systems and has
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TABLE II. Kohlrausch-%'illiams-%atts parameters for the

potential-energy autocorrelation function.

—0.10
—0.05

0.0
0.05
0.10

0.14
0.24
0.60
1.2
2.5

0.81
0.74
0.85
0.71
0.48

0.16
0.29
0.65
1.5
5.6

also been observed in computer simulations of the facili-
tated kinetic Ising models. " Table II indicates that the
K%% parameter v is much more strongly temperature
dependent than p and consistently increases as the tern-
perature is lowered. The characteristic relaxation time ~
shown in the table is defined as the area under the fitted
KWW function and is related to r„and p by
7 =r~p I (p ).

As PA, increases toward the ideal glass transition point,
it becomes increasingly difficult to fit the energy auto-
correlation function to the KWW form. The appendix in-
dicates one reason for such behavior, namely that the
asymptotic behavior for long times apparently involves an
algebraic decay. Consequently the KWW function, how-
ever convenient as a fitting device, probably has no funda-
mental significance for the present class of tiling models.

Figure 12 is an Arrhenius plot of the average relaxation
time r for the square model. The activation energy is
clearly a decreasing function of temperature, in agreement
with the behavior of viscous liquids near their glass transi-
tion. ' It is of interest to attempt a fit of the Adam-
Gibbs equation to the entropy and relaxation time data
shown in Figs. 4 and 12. The Adam-Gibbs hypothesis

-0. 4

P& k~iX /5
0. 2 0. 4

FIG. 13. Adam-Gibbs correlation for the square-tiling
model. The average relaxation time for the potential energy is
seen to violate the Adam-Gibbs equation, logg=A+B/TS,
with A and 8 temperature independent.

states that the activation energy for relaxation in a dense
fluid is inversely proportional to the temperature-
dependent entropy. To test this hypothesis for the present
model we have plotted the logarithm of r versus
PA,k&N/S (inversely proportional to TS) in Fig. 13. The
curvature in the figure indicates that the Adam-Gibbs hy-
pothesis is not obeyed for the square tiling model. The
average relaxation time data in Fig. 12, however, can be
accurately fitted with the Vogel-Fulcher equation.

VII. DISCUSSION

O

-O. GS 0. 05 Q. 10

FIG. 12. Arrhenius plot of the average relaxation time for
the potential energy. The slope, or activation energy for relaxa-
tion, increases as the temperature is lowered.

The tiling model advocated and investigated in this pa-
per is especially helpful for understanding the behavior of
real glasses when it is compared with other precisely de-
fined models. The most obvious case of the latter is pro-
vided by the Fredrickson-Andersen facilitated kinetic Is-
ing models. " As we have observed to be the case
with the tiling model, the two-spin facilitated model on a
square lattice is known from simulation studies"
empirically to exhibit KW%' relaxation with variable ex-
ponent p and non-Arrhenius mean relaxation time ~. The
model has also been shown to exhibit thermal hysteresis
and nonlinear relaxation behavior, and to possess a kineti-
cally unachievable ground-state configuration. However
there are some distinctive differences between the tiling
model and the two-spin facilitated kinetic Ising model:

(1) Only the tiling model is ergodic (corresponds to an
irreducible Markov process), though the large-system-
lirnit properties of the facilitated kinetic Ising model are
apparently unaffe:ted by the type of nonergodicity (Mar-
kov reducibility) present. ' "

(2) The tiling model displays an ideal glass transition,
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while the facilitated kinetic Ising model does not.
(3) The two-dimensional two-spin facilitated Ising

model accurately obeys the Adam-Gibbs relation, whereas
the tiling model shows weak departure therefrom.

(4) The mean tile size offers an obvious equilibrium
coherence length in the present model, which in fact
would diverge below the ideal glass transition if strict
equilibrium obtained. In contrast, no obvious equilibrium
coherence length announces its presence in the facilitated
Ising model, although it may possess a nonequilibrium
"length" associated with the spatial extent of cooperativi-
ty.

In view of the fact that both types of models successful-
ly reproduce (at least qualitatively) the principal experi-
mental phenomena, one must eventually ask how many
other types could do the same. In other words, how sensi-
tive are these relaxation phenomena to details of available
system configurations and of the transition rates between
those configurations?

It is probably worth stressing that the tiling models
cannot be mapped simply onto spin- —,

' Ising models. First
of all, it is easy to demonstrate that at least four colors are
necessary to color a general configuration of the system,
regarded as a "map" with "square countries. " Figure 14
shows a specific cluster of six tiles, numbered 1—6 for
clarity. Suppose three colors, red (r}, yellow (y), and blue
(b) would suffice. Then let tiles 1, 2, and 3 in Fig. 14 be
arbitrarily assigned the colors r, y, and b as shown. That
assignment in turn forces 4 to be r, and 5 to be b No op-.
tion among these three colors is then left for tile 6 since it
is already bordered by each of the three; @ED.

Then since four colors must be employed, each elemen-
tary unit of area would have four possible states (colors),
indicating a representation of the configurations in terms

of a set of spins, equal in magnitude to —', , one attached to
each unit of area and thus arranged in a square lattice.
Strong and arbitrarily long-ranged many-spin interactions
could then be devised to assure that spin components be

FIG. 14. Tile grouping used to demonstrate the genexai
necessity of using four colors to decorate the "map of square
countries. "

equal across square domains. However the degree of de-

generacy of any such domain pattern with respect to spin
changes (map recoloring) would remain a vexing and
perhaps unsolvable problem. Alternative strategies that
attempt to assign spins to bonds of the original lattice also
meet with severe difficulties, in attempting to maintain
square domains as the only possible structures.

Finally we mention that an attractive kinetic variant ex-
ists for the present tiling model. Instead of the aggrega-
tion and fragmentation processes defined in Se:. II that
utilize least prime factors, an incremental growth or
shrinkage alternative could be invoked, whereby a tile
changes its linear dimension by +1. This would be ac-
complished by accreting or shedding an L-shaped group
of 1X1's along two contiguous sides. We anticipate that
the resulting kinetic behavior would be nontrivially affect-
ed, and we are currently initiating the required simulation
to evaluate this expectation.

APPENDIX

Equations (2.4) and (2.6) clearly show that fragmenta-
tion and aggregation rates for large squares will be very
small. Consequently we would expect the long-time
asymptotic behavior of equilibrium autocorrelation func-
tions to be dominated by processes involving large
squares.

At temperatures above the ideal transition point, the
equilibrium concentrations of squares of size j Xj should
decrease monotonically according to the expression'6

nj/N=exp[ Kj Lj+—O(1)—], K,L &0. (Al)

The first two terms explicitly shown in the exponent refer
to interior (area} and to perimeter (length) free energies for
the medium in which the square is inserted. As tempera-
ture is lowered to the transition point, the positive con-
stant E will continuously decrease, becoming zero just at
the transition. This criterion is an obvious refiection of
the instability that underlies the transition itself: The free
energy cost of expelling boundary from a macroscopic re-
gion in the system has gone to zero. At any temperature
the equilibrium concentration n~/N for large j represents
a dynamic balance between net rate of creation (primarily
by aggregation of smaller squares) and rate of destruction
(primarily by fragmentation).

Large squares of prime-number size pXp should be
especially long lived. The conceptually simple fragmenta-
tion process is especially slow because of the large amount
of boundary that must be inserted to create p 1X1's,
with a correspondingly small Boltzmann factor. The net
rate of production must likewise be slow to maintain the
equilibrium concentration given by Eq. (A 1).

It seems plausible therefore to assume that long-time re-
laxation will be dominated principally by large squares of
prime-number size. The correct qualitative behavior then
should emerge from a sum over all prime numbers of a
characteristic decay contribution for each prime number
p. Representing that sum as an integral (appropriate for
large p), we therefore consider the following idealized de-
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cay function:

f(t) = f dp(lnp) 'exp( K—p L—p)
&o

&& exp[ vo—t exp[ —2p (p —1)(PA,—lna)] I .

dominant terms):

I=Kp'+vot exp[ —2p'(f3', —lna)] .

Carrying out the differentiation, we find

(A4)

I=lnlry+Kp + Lp+vot

X exp[ —2p (p —1)(P&—»a)], (A3)

which will be achieved, say, at p~(t) This ex.pression
makes it clear that when K &0 (i.e., above the transition
temperature), p (t) will increase to infinity as r increases
to infinity. For that limit it suffices to consider a simpli-
fied form of expression (A3) (which merely drops sub-

(A2)

In this expression the successive integrand factors are (i)
the asymptotic density of primes among the positive in-
tegers, (ii) the p variation of the concentration expres-
sion, Eq. (Al); and (iii) a decaying exponential associated
with the fragmentation rate for p)&p's. The fixed lower
limit po on the integral is irrelevant for present purposes,
since asymptotic long time persistence will be associated
with asymptotically the largest available prime-number
squares. By invoking only the simple fragmentation pro-
cess in Eq. (A2) we are implicitly supposing that by de-
tailed balance the more complex aggregation processes
producing p gp's will at most only contribute equivalent
relaxation times to the overall relaxation spectrum. Thus
Eq. (A2) should suffice for our present qualitative pur-
poses.

In the long-time limit, the decay of f(t) can be identi-
fied by a saddle-point method. This requires locating the
inaximum of the integrand as a function of r. Hence we
need to minimize the following expression with respect to

I=Lp+vot exp[ —2p (P, A, —lna)] . (A7)

The analog of Eq. (AS) is an asymptotic series with the
following leading term:

p~(t)=[2(P, A. —lna)] 'in[(4votp /L)(P, A, —lna)]

=[2(P,A, —lna)] '[in[(4vot/L)(P, A, —lna)]

+ —,lnlnt+ j .1

As a result one obtains at the transition point:

f(t) =exp[ —L[2(p,A. —lna)] 'r (Int)'~ I,

(A8)

(A9)

a function which declines to zero with increasing t more
slowly than any inverse power.

p~(t)=[2(PA, —lna)] 'ln[2vot(PA, —lna)/K] . (AS)

To evaluate f to leading order at large r, it suffices sim-

ply to evaluate the integrand at p (t). To be consistent it
is necessary to utilize the replacement of (A3) by (A4) in
Eq. (A2), with the result:

f(r)= [(2voe/K)(PA, —ina)t]

Hence we predict an algebraic decay asymptotically. The
negative power of r involved is clearly temperature depen-
dent, and goes continuously to zero at the transition point
on account of the similar behavior of K in the exponent in
Eq. (A6).

Just at the transition point Eq. (A4) must be modified
to
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