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We give a description of the propagation of pulsed signals in a resonant medium based both on a
time-domain analytical solution of the problem and on experimental observations in superfluid He.
These signals propagate according to a wave equation involving the unperturbed velocity co and
coupled to an internal mode characterized by a resonance frequency co, an oscillator strength A, ,
and a lifetime v. This mode crossing situation may exhibit a region of anomalous dispersion for
which der/dk ~0; this leads to well-known difficulties in the application of the concept of group
velocity to wave packets with center frequency in the neighborhood of m . We tackle this problem
as foBows. Using the slowly varying envelope approximation, we transform the Fourier integral
representing the general wave propagation solution at location x and retarded local time
t =t —x/co into a time-convolution integral for the wave envelope. We then split this time integral
into a short-local-time part and a long-time part. Depending on circumstances, the short-time part
is either the signal itself (far from m or if it varies rapidly with respect to ~) or a precursory motion
which is akin to Sommerfeld's precursor and which has already been discussed from another point
of view by Crisp and others. The envelope of these precursors behaves as {t'/hx)"~J„{2VAxt'),
with A=Goo/2co, n being the order of the first nonzero derivative of the envelope at the origin
(x =0). As the flight path in the resonant medium increases it decays as a power of x —lt2 only an
its pseudofrequency Ax/2m increases. This part of the response, which we call a resonant precursor
of order n, arises from the free response of the Lorentz oscillators to their own field and decays in

time as exp( —t /~). Characteristic wiggling patterns of this kind have been observed in sound prop-
agation measurements in superfluid He, described belo~ in detail, and, more recently on an optical
system using ultrashort laser pulses by Rothenberg, Grischkowsky, and Balapt. The long-time part
of the convolution integral describes the gradual distortion of the envelope as it propagates. This
leads to the concept of complex group velocity„already introduced by Johnson, and shows its general
applicabihty: pulses smooth on time scale v propagate with the classical group velocity as long as
causality is preserved. This result, already stated for Gaussian pulses by Garrett and McCumber, is
compared critically to the early and conflicting predictions on signal propagation velocity made by
Brillouin and by Baerwald. Thus, 'for signals which are not very short, the received envelope is
made up of two parts, precursors, which travel with velocity co, and a delayed signal which is
damped exponentially, and travels with the classical group velocity and, close to resonance, suffers
distortion governed by the size of dA /dt with respect to A. Computer simulations illustrate these
different concepts.

I. INTRODUCTION

The problem of wave propagation of an acoustic or
electromagnetic field in a medium which interacts with
this field is as old as the theory of partial-differential
equations. This quite general and fundamental problem is
still arousing interest in linear as well as nonlinear situa-
tions because a number of questions are left without fully
satisfactory answers. In this paper we consider the propa-
gation of wave packets, or pulsed signals, in a resonant
medium where the wave of finite duration interacts with a
well-defined mode internal to the matter sustaining the

wave. Such a situation of mode crossing occurs in various
fields of physics, optics, plasma physics, acoustics, etc.,
where the same concepts of group or signal velocities and
precursory motion are met. These concepts are defined
and used in a number of textbooks, e.g., Refs. l —5. How-
ever, as will become apparent below, basic questions such
as the arrival time of the wave packet at a specified loca-
tion x, or the apphcability of the concept of group veloci-
ty, or even the very significance of the notions of signal
and transients, are not yet given clearcut and universally
acknowledged answers. Our aim here is to study the case
of weakly coupled modes with finite lifetime in a perfectly
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homogeneous medium. Our approach is in part experi-
mental and we have already reported conclusive observa-
tions of precursors and precise measurement of signal ve-

locities. We also tackle the problem from an analytical
point of view which, by a fairly straightforward time-
domain analysis, leads to simple expressions for the signal
velocity and the properties of precursors. Some of these
analytical results, the consequences of which have been
checked and extended by computer simulations, have been
presented in a short communication.

These topics of general interest have been extensively
covered in the literature by a large number of authors and
surveyed from a general point of view in 1948 by Eckarts
and in 1976 by Wainshtein. An extensive review of the
early studies of light propagation in matter has been made

by Brillouin in his well-known book on wave propagation
and group velocity. ' Basic questions on the causality of
the medium response, the splitting of that response be-

tween free and forced oscillations giving rise to a forerun-
ning part propagating with the velocity of light in vacu-

um, c, and a bulk part propagating with the group veloci-

ty received satisfactory answers at about the time at
which the theory of special relativity gained full recogni-
tion. 5' The mathematical tool of asymptotic evaluation
of Fourier integrals, introduced in the problem by Bril-
louin, " led him to a thorough discussion of the various
velocities involved in the propagation of a wave packet.
As is well known, these velocities are (1) the phase veloci-

ty of the wave c~ =co/k linked to the propagation of a
plane wave exp[ —t(cot —kx)], (2) the group velocity

cs ——des/dk of propagation of a disturbance of the plane
wave, (3) the energy velocity c, related to the flux of ener-

gy given by Poynting's vector, and (4) the signal velocity

c, governing the propagation of a wave front understood
as a signal transmitted from one observer to another and
carrying some information such as a synchronizing beat
between two clocks. The last three velocities do not differ
much from one another, except when the wave vector k is

varying rapidly with frequency. This happens, for in-

stance, close to the center frequency of a resonance ab-

sorption line where de/dk, that is, cs, may become larger
than c, infinite, or even negative. In such a case where
the dispersion is said to be anomalous, the concept of
group velocity was widely considered physically ir-
relevant. In place of that quantity, Brillouin introduced
the signal velocity, defined operationally by the arrival
time of the signal. Such a velocity is bound to possess a
meaning in all situations in which a wave propagates, in-
cluding the anomalous dispersion region where pulse
shapes are severely distorted. But it turned out that this
concept was also subject to difficulties because a refine-
ment of Briilouin's work by Baerwald' led to a quite dif-
ferent behavior for c, . Brillouin s prediction is that, close
to co, c, is nearly equal to cz, and hence c, without ever

excelling this maximum limit. Baerwald s findings,
which are supported by a number of more recent stud-
ies, ' ' yield a monotonous retardation of the signal in
the anomalous dispersion region: The signal velocity
reaches a minimum at the center of the resonance line.
According to Brillouin's own words, ' any value for c, be-
tween these widely different predictions can be found, de-

pending on the sensitivity of the detector used. We shall
show below how this statement can be qualified and refor-
mulated in a more satisfactory manner.

The first experimental study of signal velocity in a re-
gion of resonant absorption was performed in 1962 by
Shiren' ' using ultrasonic techniques. Absorption and
arrival-time measurements were made on pulsed ultrason-
ic waves propagating in single-crystal MgO and interact-
ing with paramagnetic-resonance absorption lines of Ni +

and Fe + impurity ions. Owing to the presence of large-
scale inhomogeneities in the sample, these experiments did
not provide clues stringent enough to differentiate be-
tween Brillouin's and Baerwald's predictions.

A few years later, Garrett and McCumber discovered,
using analytical expressions and computer experiments,
that light pulses of Gaussian shape, as will be discussed
below, propagate seemingly undistorted with velocities
close to the classical group velocity even in regions where

c& is faster than light in vacuum or even negative. This
prediction, confirmed by Crisp ' and others, and dis-
cussed more recently by Macke and in Ref. 7, is para-
doxical in appearance only and quickly led to experimen-
tal observations of superluminal velocities. More re-
cently, the existence of negative velocities following the
classical group-velocity formula throughout the
anomalous region has been established experimentally by
Chu and Kong using laser pulses coupled to an exciton-
ic line of GaP:N. Even more precise experiments with a
true shape detection of the Gaussian pulse have been re-
ported very recently by Segard and Macke in the mi-
crowave domain.

As we shall show, this behavior is not limited to Gauss-
ian pulses, but can be extended to a much wider class of
pulse shapes. The first example, to our knowledge, of sig-
nal propagation as discussed by Brillouin of non-bell-
shaped pulses can be seen in Ref. 27. These observations
have led to the more detailed study of Ref. 6, which is
described in full below and which clearly shows a reac-
celeration of the signal in the anomalous dispersion re-
gion. However, this work also reveals the importance of
the somewhat mysterious phenomenon of precursors.
This phenomenon is another major contribution of Som-
merfeld and Brillouin, ""who realized that some fre-
quency components of a wide spectrum pulse had to prop-
agate at or very close to light-in-vacuum velocities. These
components are attenuated less than the signal com-
ponents whose frequencies lie closer to the absorption
band and add up to a significant contribution after a siz-
able flight path in the medium. These ideas were taken
up by Baerwald' and a number of authors' ' ' ' after-
ward. This wide acceptance, together with the very name
of precursors (adopted from the field of seismology, '

where precursory waves are quite commonly observed)
suggests that the effect is well studied and its properties
well known. This is not the case, as the first direct experi-
mental search for precursors was only reported in 1969 by
Pleshko and Palocz on a waveguide with a controllable
stop band. In this well-defined artificial medium, the
high-frequency Sommerfeld precursor and low-frequency
Brillouin precursor were clearly identified.

In the late 1960's interest in the propagation of strong
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short pulses was renewed because of the discovery by
McCall and Hahn of coherent effects between light
and matter, giving rise to a self-induced transparency of
the medium. The occurrence of transparency is governed
by the area theorem, which states that when the time in-
tegral of the pulse amplitude expressed in suitable reduced
units is equal to Znm, the pulse evolves towards a stable
shape which propagates unattenuated and undistorted as a
result of the coherent and nonlinear interaction with the
absorbing medium. The n =0 case of the theorem, i.e.,
the (hr pulse, is in a sense degenerate. It may refer either
to a strongly nonlinear case, as a combination of "+2m"
and "—2m" pulses (or "breather"), or else to the linear
limit of small short pulses. The latter situation was stud-
ied by Crisp ' and others. Under circumstances
which will be described in detail below, such short pulses
of small amplitude exhibit pulse breakup and develop
characteristic Bessel-function oscillations. Pulse reshap-
ing and the transparency arising from the (hr structure, in
accordance with the area theorem, have been observed in a
number of experiments. s A direct recognition of the
shape of the (hr structure was performed by acoustic tech-
niques on the near-ideally-homogeneous and coherent case
of superfluid 'He-8 in Ref. 6. Our work was followed not
long after by the picosecond shape detection of short laser
pulses propagatin through a dilute Lorentz gas by
Rothenberg et a/. The outcomes of the acoustic and op-
tical experiments are remarkably similar and a detailed
analysis maps them very precisely into Crisp's On pattern.
This pattern is generated by rapidly varying portions of
the wave packet and travels with the fastest velocity com-
patible with causal response. There is no question that it
constitutes a precursor in spite of the fact that this possi-
bility was ruled out by Crisp. %e shall show how to
reconcile this last author s point of view with our presen-
tation. We shall also put forward the idea that the On.

structure has the same physical origin and the same
analytical form (within variants to be specified) as
Sommerfeld's precursor and should be considered another
facet of the same phenomenon.

Our contribution to these problems, as already men-
tioned, has been spurred by experiments on sound-wave
propagation in superfiuid He-8. In order to analyze our
results, we have developed an analytical approach to the
resonant-propagation problem in an idealized Lorentzian
medium. The conditions under which the Lorentzian case
applies are dealt with below, in Sec. II. In Sec. III we fur-
ther restrict the problem to pulses whose frequency spec-
trum does not extend over a range very much larger than
the anomalous dispersion region, but does cover it, in con-
trast with the conventional frequency-domain ap-
proach. ' ' In this region the medium dispersion law is
approximated by the following expression:

The Lorentz oscillators in the medium are characterized
by their oscillator strength A and a relaxation time v.. The
wave packet received at x is expressed as a Fourier in-
tegral involving the spectruin p(to} of the initial pulse at
the emitter (x =0),

A(t,x)=e f [A(u)e '
]du

x Jo(2v'Axt")dt" . (4)

A(t) is the initial envelope at x =0 corresponding to
p(ei}, so i (c——oo co —)+ I /r is the complex frequency shift
of the carrier wave from resonance, and t' = t —x /c is the
retarded time at location x. Equation (4) is quite a natur-
al representation of A (t,x), as it expresses the response of
a linear and causal system to a given perturbation. It en-
ables us to solve explicitly in Sec. IV the classic problem
of Sommerfeld and Brillouin, namely the propagation of a
truncated plane wave. It also yields asymptotic evalua-
tions for short and long local times t' of signals with quite
arbitrary initial envelopes which clearly show the time
evolution of the received wave packet at location x. We
thus obtain more precise definitions for precursors and
the delayed signal than before. The delayed signal is
found to propagate with a complex signal velocity, the
real part of which is nothing but the classical group ve-
locity. The imaginary part contributes to the pulse-shape
distortion as it propagates. At the end of Sec. IV we con-
sider bell-shaped pulses with no sharp front and show
how this special case and how the analysis of Garrett and
McCumber are included in our general result. In Sec. V
we describe the experimental setup for our acoustic-
pulse —propagation measurements in He-8 and the
waveforms and the pulse velocities that we have observed.
Our purpose is, in particular, to make explicit how the
considerations of Secs. III and IV stem from actual labo-
ratory observations. We present a summary of our find-
ings on resonant pulse propagation in Sec. VI.

II. MODE CROSSING IN SUPERFLUID Hc-B
AND THE LORENTZ MODEL

The situation of mode crossing arising in superfluid
He-8 which has motivated the present work may be

described as follows.
The quantum liquid He undergoes a transition to a su-

perfluid state at a temperature below 2.7 mK. This
state is characterized by an order parameter which de-
scribes the onset of the long-range order in momentum
and spin space. This quantity is closely related to the
quantum-mechanical wave function of the ground state.
As the BCS pairing in He . takes place with orbital
momentum / =1, the antisymmetry of the wave function
under the exchange of two identical fermions imposes that

p(t, x)= f p(co)exp[ i—(cot k—x)]d'ye/2m . (2)

We can sort out, as done in Sec. III, the carrier frequency
too of the wave packet by letting

p( t,x) = Red (t,x)exp[ i c—oo(t —x/c)] .

The quantity A(t, x) is the complex amplitude of the
pulse envelope. %e shall show that the pulse envelope at
location x is then given by the following convolution in-
tegral in the time domain:



E. VAROQUAUX, G. A. WILLIAMS, AND O. AVENEL 34

the spin part of the wave function be a triplet state. The
full specification of the quantum state of the assembly of
Cooper pairs requires three quantum numbers for the or-
bital part and three for the spin part. The order parame-
ter is thus a 3X3 complex matrix. Vixen this matrix is
unity, it describes the Balian-%'erthamer state which gives
a good representation of superfiuid He in the 8 phase,
i.e., the phase stable at temperatures well below the transi-
tion temperature r, in the absence of applied magnetic
field. This state corresponds to the most isotropic situa-
tion. In particular, the value of the pair-condensation en-

ergy, or gap parameter b,(T), is constant over the Fermi
surface.

We are concerned here with the propagation of sound
in such a medium at temperatures sizably smaller than T,
where the gap parameter b(T) is well formed and the
background of normal quasiparticles plays a minor role.
In such a situation, 0 a low-frequency [Ace &~ h(T)] sound
wave propagates with very weak damping, its velocity be-

ing governed by molecular fields in much the same way as
zero sound in normal liquid ~He. At higher frequencies
interesting features due to the internal structure of the or-
der parameter occur. Among the 18 possible eigenmodes
of the 3X3 complex matrix, the so-called pair-vibration
modes, two groups, each with a fivefold degeneracy, cou-
ple to density fluctuations. ' This coupling gives rise to
remarkable effects on the propagation of sound. Since the
level degeneracy is not lifted in the situation that we shall
be dealing with, we shall refer to these two groups as if
they were single levels. Of these two modes, called the
"squashing" and the "real squashing" modes after the
shape of the distortion of the imaginary and the real com-
ponents of the order parameter, the first is strongly cou-
pled to density fluctuations while the second is only weak-

ly coupled. Since damping is small in He-3 for T ~ T,
as already mentioned, these modes are well defined. They
give rise to well-marked attenuation peaks accompanied
by large changes in the phase and group velocities, as
shown for a typical situation in Fig. 1. Their study has
been actively and fruitfully carried out in recent years ' as
a way to probe the structure of the order parameter and to
obtain quantitative information on the superfluid itself.
They also offer a unique circumstance to study in a de-
tailed and precise manner the general features of the prop-
agation of signals in a high-homogeneity, low-dissipation
resonant medium.

Our interest here lies primarily in these general features
and we shall disregard the complications arising from a
microscopic approach to the acoustic properties of He-
8. In particular, as sho~n by Combescot, the ex-
act coupling between density fluctuations and the order
parameter is of a quite particular and complicated nature.
But, as will be shown below, the detailed form of the cou-
pling disappears in the set of approximations that we shall
have to make and it is quite sufficient to consider a simple
phenomenological model along lines first sketched by
Wolfle. ' In this model the density fluctuations p obey
a wave equation and are coupled to a scalar quantity 5
describing the amplitude of vibration of the internal
modes. The equation of motion for 5 refiects the basic
properties of the pair-vibration mode under consideration,

E0

C
10-

0
3
f;
e

0
0. 5

B
3. 0 bare
45 8Hz

s 1

)l/ i

] ~t
I
I

I

I

I I
I

l. 0

Temper atur e

I
Ta

I

II

l. 5
(mK)

250

—200

0
0

150 ~

- 100 ~

50

FIG. 1. Attenuation coefficient and group velocity of sound
in superfluid 3He-8 at a pressure of 3.0 bars and a frequency of
45 MHz, vs temperature. The solid curves correspond to actual
measurements, the dotted parts to extrapolation (compare with

Fig. 13). At a temperature higher than T, ( —1.5 mK), i.e., in

the normal Fermi liquid, the velocity is only very weakly depen-

dent on temperature and a varies as T2. Immediately below T„
the pair-breaking mechanism sets in and contributes strongly to
the attenuation. The "squashing" mode occurs when the gap
parameter h(T) becomes of the order of V'5/12'. The attenua-
tion is very high and the peak is not resolved. At lower tem-

perature, when b,(T)-V5/8', a smaller but sharply defined

peak occurs which corresponds to the crossing of the sound
mode and the "real squashing" mode.

namely its frequency co and its propagation velocity c
It also includes dissipation through a relaxation time ~.
For propagation in one dimension along x with velocity
cc, these two coupled partial-differential equations are ex-
pressed by

(5)

Bz5 2 85 z 2 825 Bp
Qr r r2 + +m5 —cm 2

='Ym

These equations refer to the propagation of sound in the
collisionless regime, for a sound frequency such that
coro, cor » 1. They can be derived from a simple Lagrang-
ian density involving velocity-independent forces and they
possess a well-behaved mechanical analog. They are well
borne out by experiments on the transmission of sound '

and on the longitudinal-acoustic impedance. It. should,
however, be noted that the simple form of the coupling
terms in Eqs. (5) and (6) bears little relation to that sug-
gested by the microscopic approach of the problem.
Also, the pair-vibration amplitude 6 possesses different
time-reversal properties for the squashing and the real
squashing modes: In the case of the squashing mode, 5
should be instead interpreted as a time derivative of the
vibration amplitude. The above model, with the two pa-
rameters yo and y, must be considered purely
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When the interaction I =yoy /coo is turned on, the en-

ergy levels are repelled, in agreement with the require-
ments of perturbation theory provided that I &0. The
two branches of the dispersion curve in the coupled-mode
case are given by

k = Ikm+ko+[(km —ko)2+41kmko]i~2]/2(1 —I ) .

When I becomes larger than 1, the behavior of the
dispersion curve changes drastically. The excitation ener-

gy of the lower branch becomes negative. As it then costs
no energy to create such an excitation, the system grows
unstable against fiuctuations. The stability of the system
thus requires that

0&I (1. (10)

If we let z =k /ko, k2 is an analytic function of z
with a pole at infinity and two branch points at

phenomenological. For simplicity, we shall neglect 1/ro,
which gives rise to the small residual attenuation in the
absence of modes.

This set of equations describes the crossing of two
mell-behaved modes with co ~ c . Their unperturbed
dispersion curves corresponding to plane waves propaga-
ting as exp[ i—(cot —kx)] are shown in Fig. 2 and are ex-

pressed by

ko =co /co,2 2 2

k =(oi —oi +2icolr)/c

These branch points are located on the unit circle in the
complex z plane. The function k2 is double valued. The
two determinations correspond to the two branches of the
dispersion curves (Fig. 2). The root extraction from k to
k leads to waves traveling in opposite directions along x
and does not elucidate any new physical information. We
therefore study k and choose the branch cut joining zo
and zo along the arc of unit circle going through + 1, as
shown in Fig. 3. WVhen z varies along a path which
crosses this cut, the determination of k changes from one
Riemann sheet to the other. According to this definition,
the two Riemann sheets correspond to the zero-sound
mode and pair-vibration mode, respectively. More specif-
icaHy, if z varies along the real axis as in the case of van-
ishing damping (1/v ~0), the branch determination
changes, as pictured in Fig. 2, from zero sound to pair vi-
bration. If the path is chosen in such a way as to avoid
the cut, the original (I =0) branch determination is
preserved. As oi varies from 0 to oo, z describes a parabo-
la from —ao to co/c ( »1) crossing the imaginary axis
at 2i (co/c )/co r for coo=co . The condition to remain
on a given physical mode (or on a given Riemann sheet) is
geometrically obvious. It is expressed analytically in an
approximate way (c /co «1) by Imz & Imzo at
Rez = Rczo, or

4

1(1—I")
4 (oi r) &1. (12)

Co

Depending on the values of the parameters, we have
two cases of markedly different physical behavior. Either

complex z p 1 one

0c
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FKJ. 2. Dispersion curve in a mode-crossing situation. The
solid curves correspond to a strong mode coupling with no
damping. The modes are repelled from one another and the
upper and lower branches are weH differentiated. %'hen the col-
lision time is decreased below a level specified by Eq. (12), the
real part of the wave vector follows the dotted and dashed
curves. The physical modes, i.e., the zero-sound and squashing
modes in the case of He-8, remain identifiable. The Lorentzi-
an approximation yields a good description of the zero-sound
mode.

FIG. 3. Complex z plane. The dotted circle, of unit radius, is

the locus of the branch points given by Eq. (11). For a given

value of I" {here 0.06}, these branch points are located at zo and

zo. The branch cut joining these points may be taken as the

area of unit circle going through z=1 ~ The dashed curves

represent the parabolas defined by z =k~/ko, where ko and k
axe given by Eqs. {7}and (8), when co varies from —oo to + oo.

2 2
These parabolas cut the real axis for ~=0 at z =co/c . For
large damping, the parabola (given by the dashed-dotted curve)

does not cross the branch cut and the physical modes retain

their identification. The dashed parabola crosses the cut be-

tween zo and zo and remains on a given Riemann sheet. In this

last case, the modes are strongly repelled and correspond to the

solid curves in Fig. 2. The domain of convergence of the series

given by Eq. (13}lies outside of the solid lme quartic curve going
through zo and zo.
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damping is small enough so that the modes are repelled

and do not overlap, or it is large and causes level broaden-

ing and an actual crossing of the modes. An example in a
physical system of the former case, total branch repulsion,
is provided by the squashing mode. For instance, at 13.5
bars and 105 MHz with the parameters given in Ref. 57,
we have I =0.59 and I (1—I )(c~/co)(co r) =425.
Condition (12) is strongly violated. Plots of the phase and

group velocities and of the attenuation coefficient in such
a case are given in Fig. 4. Pulse propagation occurs at the

group velocity with negligible distortion, as is indeed ob-

served experimentally and as will be reported in Sec. V.
The other situation where each mode retains its original

identity is the more commonly met. This will be the case
of the real squashing mode. It is amenable to a simple
description due to Lorentz which is obtained by expand-
ing the square root in Eq. (9) in power series of
/=41'z/(1 —z), with @=+1:

verges. It is represented to fair accuracy by its terms up
to first order, namely

2
2 2

I" k
k+ =k 1+

k
I 2 k2 (15)

only when
~

4I z/(1 —z)
~

is much smaller than 1. This
condition is fulfilled whenever

4v 3I /iz i
((1 . (16)

When this last inequality holds and if 1 is not too close to
1, i.e., I ~ 1 —~3/12, the zero-sound branch (e= —1) can
be further expanded. Letting

2 2

a=l— (17)
co c

1+@ k2 1 —e+2eP
2(1—I') 2(1 —I )

(13)

b =2/cow,

c2
m

=2(1—r) c, '

(18)

(19)

600 I

. upper

The domain of convergence of this series, defined by

~ g ~
~1, is delimited by a closed quartic curve in the z

plane, going through the branch points zo and zo. %hen
I is small, this curve is close to the circle of radius 2I'
centered on z = 1. Outside of this domain, the series con-

we find

k= 1—
C0

(20)

co/c~=1 hz/(a +—b ),
a=(leo/cp)b/(a +b ) .

(21)

(22)

The phase velocity c~ and the attenuation coefficient a,
which are such that k =co/c~+ia, are then given by the
following well-known formulas:

c
0

0
3 200-
t:
8

lover
branc

Equations (21) and (22) describe the Lorentzian dispersion
and absorption line shapes. The Lorentzian approxima-
tion is valid, strictly speaking, only under condition (16),
which we may rewrite as '

Acomia

(( 1 (23)

Ql

E 400-

U
O 200
8

0-0. 2

cu
P

1C

I

-0. l 0. 0 O. l 0. 2

Reduced ~r equency ehi ft

The Lorentzian approximation is also expected to yield
qualitatively correct results under the less restrictive con-
dition (12), that is, as long as modes retain their original
identity. %e speculate that this same remark will also ap-
ply to our analysis of pulse propagation in a resonant
medium which makes use of the simplified expression (20)
for the wave vector. Arguments to justify this point will
be presented below. The case of strong mode repulsion
which corresponds to the squashing mode at T ((T, will
be briefly considered in Sec. VI.

III. THE SLO%'LY VARYING ENVELOPE
APPROXIMATION

FIG. 4. Attenuation coefficient (top), and phase and group
velocities vs reduced frequency shift Ace/~ in the case of
strong mode repulsion. c~ (g& refer to the phase (group) velocities
of the upper (lower) branches. This figure corresponds to the
actual case of superfluid He-8 at 13.5 bars and 105 MHZ with
the parameters of Ref. 57 (I =0.59, ~=2.5 ps, c /co ——0. 16).
Group velocities are computed as Re(B~/Bk).

In this section, in order to put the problem of the prop-
agation of pulses in a resonant medium in a fully tractable
form, we further simplify our description beyond the
Lorentzian approximation. %e follow a method original-
ly due to McCall and Hahn to deal with the nonlinear
propagation of waves of strong amphtude in a resonant
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medium and used by a number of authors ' ' in the
linear case as well. This method, the slowly varying en-

velope approximation, has common roots with the center-
ing method used in the theory of nonlinear oscillations.
It takes advantage of the two following facts.

(1) The light or sound pulse traveling in the resonant
medium is, in practical situations, a wave packet of finite
and rather small spectral width, that is, a carrier wave at
frequency coo/2n on which is impressed a slowly varying
amplitude and frequency modulation.

(2}The medium is homogeneous and extends to infinity
in the direction of propagation so that there are no back-
scattered waves. The wave packet travels with a phase
velocity which is close to + co. Under these conditions, if
we let, as in Eq. (3),

p(t, x)= ReA (t,x)exp[ icoo(—t —x/co) j, (24)

where A is a complex amplitude describing the pulse en-

velope, this amplitude will vary slowly in space and time.
The following inequalities,

BA «~of ~
f

a~
«GtPO [

A
i
/co, (25)

+ 00 —i(a&t —4+x) dt's
p( t,x)= p(ro)e +

Ct} 2n-
' (26)

In the Lorentzian approximation the wave vector of the
zero-sound branch wiH be given by Eq. (20). The quantity

hold so that the second order partial-differential equations
(5) and (6) can be reduced to first-order equations. This
simplified but approximate set can then be solved as is
done in the Appendix to obtain the time and space evolu-
tion of the pulse envelope.

%e take below a simpler and more economical ap-
proach starting from the Fourier representation of the ex-
act solution given by Eq. (2} and pertaining to a wave

propagating with wave vector k+ in the medium initially
at rest:

p*(~)=p( —~),
k'(co) =—k( —co) .

(28)

(29)

From the definitions of the envelope A(t,x) and its
Fourier transform A (co), we readily obtain the following
relation:

p(co)=A (co —ci)0)+A ( —co —coo) . (30)

Let us now make use of the assumption that A (t) is a
slowly varying function of time, or, more precisely, that
its Fourier transform has a bounded spectrum, that is,
A(Q)=0 if ~Q~ &Q~ with Qp&coo. With this band-
width restriction, it is then clear that the following rela-
tions hold:

A(co —coo) for co~0,
p=

A ( — —coo) for co&0. (31)

These relations mean physically that the spectrum of p(co)
ls peaked about cdo and —coo and that these frequencies
can be heterodyned to low frequencies with insignificant
loss of information. This statement is a mere translation
of an assumption which is implicit in the very definition
of a wave packet. We can also take a more down-to-earth
point of view. In an actual experiment the observation
bandwidth is limited by instruments; only a part of the
spectrum is sampled and recorded. Condition (31) then
yields a better representation of real-world signals than
the mathematically exact solution (2). Let us carry out
this operation in Eq. (26) by making use of Eqs. (30), (31),
and (29):

p(co) is the Fourier transform of the density fiuctuations
at x =0 which are given as an initial condition:

+ oo

p(co)= f p(t, x =0)e'"'dt . (27)

As p(t, x) is a real quantity, we have the following symme-
try properties:

0 —i(cot —k+x) gQ) + ~ —i (ag —k+x) j~
p( t,x)= A '( —co —coo)e + + A (co —coo)e

CO 2m' 2%

= Ree
'"" " " f 3 (Q)exp i Qt +i k+(co—o+Q)—

C00

C0
(32)

The last equality describes the propagation of the complex
envelope, i.e., of the amplitude and phase modulation, ac-
cording to

BK+ 8k+
QQ O 0 BCO0

(35)

(33)

with a wave vector given by the following relation:

For a cw signal of unity amplitude, A (Q) is a Dirac 5
function. We find, by setting Q=O in Eq. (33) that the
full continuous wave propagates with a complex phase
velocity cz ——coo/k+ (coo), as expected For a m.odulation
at finite but sufficiently small frequency Q, we recover
the usual expression for the complex group velocity:

As we have mentioned above, Eq. (33) is hardly an ap-
proximation and can actually be considered as a more ap-
propriate description of actual experimental situations
than Eq. (2). It yields perfectly well-behaved results for
the phase and group velocities. It is also much easier to
evaluate numerically, as A (r) is a slowly varying function
of time. It provides the starting point for our computer
simulations.

To procaxi with the analytical approach, we replace
k+(co) by its Lorentzian form (20) in expression (34). We
then use the fact that A (r) has a bounded spectrum to ex-
pand the denominator in 0/m0. .
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0
K+ ——

Co

40o 1+Q/top

cp (0 +ib)( 1 —2Q/Np) +2Q( 1 —c /cp +ib /2)lapp
(36)

Two situations may arise.
Either a+ib is not small and the expansion in Q/cop

can be carried further with little loss of accuracy. This
leads to the following expression for the group velocity,
which is valid in any region of the dispersion curve
smooth on a scale set by Qp.

0j'+-
co

The pole at

Mp

cp a + ib +2Q/cop

Qp ——top(a +ib)I2= h—tp+i lr

(38)

Cg

1 —c /cp —3a/2 ib—
1+2K,

co (a +ib)
(37)

Equation (37) is completely equivalent to Eq. (35).
Or else, we are close to a resonance with a Lorentzian

line shape in which case a +ib is not large with respect to
Q/top. The leading term in the expression for E+ is then

with hco=m —coo clearly gives a much better representa-
tion of the anomalous dispersion region than the series ex-
pansion leading to Eq. (37). We therefore expect that the
propagation of a pulse with a spectrum of finite width
will be more accurately described by the following expres-
sion for its envelope,

dQ
2m

+ 00 Ax
A (t,x) = A (Q)exp i Q(t ——x Icp)

00 bc' i lr Q— — (39)

than by the group velocity as conventionally derived. The
coupling constant A is defined as

A =@up/2cp ——a /r, (40)

where o; is the peak amplitude attenuation in the cw re-
gime.

As we shall now show, Eq. (39) is tractable analytically.
This tradeoff justifies the approximations leading to Eq.
(38) and the loss of accuracy that they entail. We shall
refer to this set of approximations as the slowly varying
envelope approximation because in its more commonplace
version ' ' ' derived in the Appendix it leads to the
same approximate dispersion relation, i.e.,

Co

A

Cp —Ql~ + i /1
(41)

kN~ Tp gQ l (42)

Condition (42) replaces Eq. (23) when the latter breaks
down: not so slowly varying pulses still propagate accord-
ing to (41) when the Lorentzian approximation does not
apply to plane ~aves anymore.

The general form of this relation, which appears as a
single-pole propagator, is physically appealing and has
been used without further justification by a number of au-
thors. ' ' ' %e have gone to great lengths to show that
this form is implied by Eqs. (23) and (31), that is, a well-
defined wave packet on a well-defined sound mode. Argu-
ments are presented in the Appendix to extend its validity
beyond the Lorentzian approximation. They amount to
saying that the gross features of the propagation of a wide
spectrum pulse, characterized by a time rt - I/2QP, will
not be much affected by the relatively narrow stop band
which develops in the dispersion curve in the strong-
repulsion regime as long as

G(t) =e ' [Jp(2&Axt )U+(t)—],
where U+(t) is the unit impulse ( U+ is zero at t =0 and
unity for t &0). The time evolution of the complex en-
velope at x is therefore expressed by

t
A{t,x)= J A(t' t")e—

0 dt"

X [Jp(2v'Axt") U+ (t")]dt" . (44)

Equation (44) can also be written, after integrating by
parts, in the form

A serious shortcoming of Eq. (41) is that the limits
co—+0 and co~ 00 are poorly represented because the fre-
quency dependence of the coupling constant has been
treated in a rather cavalier way. A proper behavior can be
restored at least in part, as will be done below, by reintro-
ducing a weak frequency dependence in A and r

We now turn to the integration of Eq. (39) which ap-
pears under the form of the inverse complex Fourier
transform with respect to the local time t'=t —x/c of the
product of two functions, A (Q) and

G(Q) = exp[iAx/(hip i lr Q—)] . —

Let us set s =iQ, sp ib,pi+1——lr, and switch to La-
place transforms, which are better suited to initial value
problems. The envelope A(t, x) will be given by the
time-convolution product of the two Laplace-inverse
functions of A (s) and G (s). The inverse of A (s) is noth-
ing but A (t), the initial signal envelope at x =0. Know-
ing that the transform of the Bessel function of order
zero, Jp(2~pl ), is exp( —@is)ls, the inverse transform of
G (s) can easily be shown to be
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t
A(t, x)=I,A(t' —t")+s,A(t' t—")

dt'

' J (2v'Axt")dt" (45)

transient at velocity co and the formation of a wiggling
response, constitutes general features that we shall meet
again for other initial pulse shapes. The oscillatory tail
formation described by Eq. (46) has been observed qualita-
tively in a number of experiments.

As before, t'=t —x/co, so ——i b.co+1/r, b,a)=to~ —too,

and A=huo/2co. These time-convolution integrals ex-

press the linear response at x of the resonant medium to
an input perturbation A(t) at the origin. As expected,
these integrals represent a causal signal, the fastest propa-
gation velocity being at most equal to co. They provide a
time-domain representation of A(t, x) and open the way

to rather straightforward derivations of signal wave forms
in a variety of cases.

IV. DELAYED SIGNAL AND PRECURSORS

This section contains the analytical results that we have
obtained from the time-convolution representation (44) or
(45) of the signal envelope A (t,x) We sh. all consider first
a few special input signals A (t} before giving an asymp-
totic evaluation of the response for arbitrary signals.

8. Propagation of a step input

The problem of the propagation of a signal which be-
gins by a sharp front and settles to a steady-state regime
for a sizable lapse of time has been considered, as men-
tioned in the Introduction, first by Sommerfeld, '0 Bril-
louin, "and Baerwald' in connection with the question of
the signal velocity. The step input divas later also studied
in the context of the self-induced transparency effect by
Crisp ' and Hopf et al. This problem is amenable to
an exact analytical treatment as follows. If the initial en-

velope is a unit step function with a sharp front, the sig-
nal at x, given by Eq. (45), takes the following form:

I

A (t,x)=e ' Jo(2&Axt')

+so J e ' Jo(2v Axt")dt" . (47)

Using once again the equality, '

A. Propagation of short pulses e "'Jo(2V pt )dt= —e
0

(48)

If A (t), within the restrictions expressed by Eqs. (25) or
(31), can nevertheless be approximated as a Dirac pulse,
i.e., if it is sharply peaked in time compared to the Bessel
and the exponential functions but still contains many
periods of the carrier wave, then Eq. (44) yields immedi-
ately

1/2

A (t,x) =e ' 5+(t')+, J i(2&Axt') U+(t')t'

(46)

The sharp peak propagates undistorted at velocity co and
an oscillating tail develops. This tail is small and slovenly

varying at small x. It grows relative to the main signal
and oscillates more rapidly with distance until the slowly
varying envelope approximation fails. These features of
propagation of short pulses, namely the propagation of a

(49)

toe' ~ Jo(zt)e " ' ~ 'tdt= Vi(ic,z)+iVO(ic, z) .
1

The response at x to a step excitation takes the following
closed form:

we can write Eq. (47) in the following form:
I

A (t,x)=e '+e ' Jo(2v'Axt')
ll—so, e Jo 2 Axt" t" .t'

The first term of this last equation is the steady-state
response and the second term the dominant short-time
part of the wiggling response. The last integral may be

evaluated in closed form, using a relationship involving
Lommel's functions,

I

A (t,x)=e +e [Jo(2V'Axt')+ Vo( 2isot', 2VAx—t') i V'i( 2is—ot', 2v'A—xt')], (51)

or, using the expansions of Vo and Vi in terms of Bessel
functions,

00 I

A(t x)=e g so
n=0

—Ax/so —sot'=e —e
n=1

1/2 n

J„(2&Axt'}

' 1/2 n

(52)

XJ„(2&Axt') .

At long times the signal settles to its cw steady-state

value, exp( —Ax /so }. At short times it behaves as
Jo(2&Axt'), that is, its front is heavily distorted but
suffers little attenuation. In other words, Beer's law, ac-
cording to which the propagating a&ave is attenuated ex-
ponentially with distance, is obeyed only by the long-term
part of the response. The separation between free and
forced oscillations, i.e., short- and long-time responses, is
made in a quite explicit manner. This behavior is illus-
trated in Fig. 5, obtained by direct evaluation of the
Fourier integral (33) for a rectangular input pulse. On
resonance and for vanishing darn. ping, a situation in
which the Lorentzian approximation is not valid, Eq. (52)
is identical to a result already given by Crisp and, prior
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to him, by Shiren' and later by Yablonovitch and Gold-
har. The typical pattern developed by the response has
been called a "zero m" pulse in reference to the area
theorem, as recalled in the Introduction. However, the
application of this theorem to pulses of small area does
not carry the same weight and usefulness as in the case of
2m and higher topological charge solitons. Furthermore,
(hr pulses will be shown below to belong to the more gen-
eral class of precursors, introduced by Brillouin and Som-
merfeld. We shall refer to them in the following as
"resonant precursors. "

In Eq. (53) we see that the wiggling precursory motion
has decayed to the level of the steady-state response when
the modulus of exp(Ax/so sot') ha—s decreased to unity,
that is, at a time tz such that

N

t:
3

J3
L
0

"0
3

U)
0

Ax

(b,co) +1/2 (54)

If this last condition (which expresses the time at which
the delayed long-term signal can be observed above the
precursor motion) was taken as a definition of the signal
arrival time, the signal velocity would be given by

&e

l A+
&0 (bee) +1/r (55)

This expression is identical to Baerwald's result, ' which
has now been obtained in a very direct manner. However,
this result will not correspond to the signal velocity de-
rived below. The reason for this discrepancy will become
apparent later, but stems from a different definition of the
signal and of its time of arrival. It may well be, and will
be shown to be indeed so, that signals and precursors
overlap in such a way as to render the condition leading to
the definition of t„'. given by Eq. (54) inappropriate. This
can already be guessed from Fig. 5, where the delayed sig-
nal can clearly be identified in the three top snapshots of
the pulse arrival at x, but not anymore in the fourth, in

which the carrier frequency is much closer to resonance.
In this case it is clear that the visible part of the response
is solely due to transients. Equation (55) yields, in fact,
the velocity of energy propagation in steady state, as
shown convincingly by Loudon and others. ' To clari-
fy the concept of signal velocity, we need a way to
separate in a more satisfactory manner the precursory
response, the "fiuchtig" part in Baerwald's words, from
the "signal" itself. This will be done in the next section.

C. Slowly varying signals: The delayed signal
and its velocity

We now wish to obtain an asymptotic evaluation, valid
at large Ax, of the time-convolution integral in Eq. (45)
for slowly varying initial envelopes A(t). Guided by the
previous discussion, we look for the formation of a de-
layed signal at local times t' which are not small. We can
then take an asymptotic representation of Jo(z) for large
positive values of the argument:

10 20 30 40

Tice (micr oseconde)

Jp(z) =
1/2

2 l . m
cos z — + sin z — + '''

4 8z 4

FIG. 5. Envelope of the received signal corresponding to a
step input vs time. The duration of the initial rectangular signal
amplitude is v.g=25 ps. The medium parameters are A, = 10
~=5 ps, eo ——310 m/s. The frequency at resonance is 45 MHz,
the sound Aight path 0.025 cm. The top curve corresponds to a
frequency far off resonance, the bottom curve to the resonance
frequency. Prom top to bottom, the frequency shifts from reso-
nance hem are, in 10 rad/s, 50, 12, 6, 4, and 0, and the plotted
amplitudes are multiplied by 1, 1.33, 3.22, 5.75, and S.77,
respectively. Both the delayed signal and the transient response
are clearly visible on the middle curve. Far from resonance, the
signal is virtually undistorted; on resonance, the transients dom-
inate the response.

The estimated error in this asymptotic representation is of
the order of the first neglected term. Thus, as soon as the
argument becomes of the order of 3 or larger, Jo can be
replaced in Eq. (45) by the cosine term. If we define 8 as
the time at which this representation of Jo becomes ade-
quate for our purpose, 0-9/4Am, the integral from 0 to
i' in Eq. (45) can be split into a short-time part I„from 0
to 8, and a long-time part Ii, from 8 to r'

We shall consider the long-time integral II first. Be-
cause Ax has been assumed large, it is amenable to a sim-
ple asymptotic expansion. If we let t"=Axu, it becomes
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1/2
Ax (f'/Ax)'/'

+$03
[8/A )'~' dt

exp —t'e ——~(2ieu —souz) +(idem with e= —1) u' du, (57)

which is the sum of two integrals (@=+1)of the form

u2

g (u)e""'"'du
ul

These integrals can be evaluated, in the limit a =Ax ~ ao, by the saddle-point method. . ' With h (u)
= —spu +2ieu, the saddle points, defined by it'(uo) =0, are located at up ie——/so As. ii "(up) = —2sp is different from
zero, and assuming that

A
$0~

dt

' 1/2

g(up)e
dA(t)

+spA (t)
dt

—Ax/so
8

—ie(m/2)8
'+ Ax/s02 4$0~2ah "(uo)

does not become singular in the vicinity of the saddle points, the contribution to the integral (57) of the integration path
in the vicinity of the saddle point is given by

r ' 1/2

1

2$p

dA (t)
+soA t

dt

—Ax/so
8

t = t'+Ax/so
(58)

Assuming that the endpoints of the integration interval yield no pathological contributions, Eq. (58} represents the
asymptotic evaluation of the integral (57}with e = 1. Adding the integral with e= —1, we arrive at the following expres-
sion for the long-time part of the signal:

A (t,x) = A (u)+ . A (u)
1

ibm+1 r du
u =t'+ Ax/(i hue+1/r)2

exp[ Ax/(i b,c—o+ I/r)] . (59)

a=Ar/[1+(b, cow) ],
1 1 A r hap

ci, co pio I+(&d'or)
+ 2

1 1 A+
(i htp+ 1/r)Cs

(61)

(62)

The quantities a and c~ are the attenuation coefficient
and the phase velocity of the carrier wave. They corre-
spond, as expected, to the expressions given by Eqs. (21)
and (22) for the Lorentzian line shape.

The quantity c„given by Eq. (62), is the complex signal
velocity. It describes the propagation velocity and the at-
tenuation of the slowly varying modulation in a manner
exactly similar to that with which the complex phase
velocity describes the alteration of the carrier wave. Its
real part, the velocity of the signal envelope, is expressed
by

1 1
A

(hco) —I /r
c,

'
cp [(dpi) + 1/P]

Equation (59) is the first main result of this subsection
and describes the "delayed" signal for a large class of in-

pllt slgilals.
For quasistationary inputs ( dA /dt -0), Eq. (59)

reduces to the following form,

1 1
A (t,x)=A (t x/c, )exp ——ax +ix

cp cp

with

as 2Ab, tpr t——oo/[1+(boor) ] (64)

As can readily be seen for a harmonic modulation at fre-
quency Q, A (t) =Ap+A i exp(iQt), the group attenuation
coefficient is nothing but the difference of attenuation be-
tween the carrier wave and the side band arising from the
modulation.

The full asymptotic result (59) is liable to unambiguous
interpretation since the functional form of the signal is
well defined if not conserved. It includes two contribu-
tions which are going to distort its shape.

(1} The derivative (dA/dt)/(iLLto+I/r) evaluated at
the signal velocity.

(2) The imaginary part of the signal velocity. As long
as this imaginary part is small, we may expand A in
series,

A (z'+iz") =A (z')+iz". „dA (z')
dz

with z"= —agx /cop.
Both corrections involve dA/dt and are of the same

form. It is clear that, within the range of validity of the
Lorentzian and of the slowly varying envelope approxima-
tions, these corrections are not very large. Thus the con-
cept of complex signal velocity, already put forward by
Johnson, leads to no difficulties of interpretation. Its
usefulness lies in the fact that it produces an analytical
formula which, albeit approximate, describes the propaga-

Its imaginary part yields the group attenuation coeffi-
cient:
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FIG. 6. Inverse velocities normalized to eo vs hm for the'en-

ergy velocity ce [Eq. (55}],the signal velocity c, [Eq. (64)], the

group velocity cs [Eq. (37)], and Brillouin's signal velocity cs
[Eq. (65)]. These velocities are computed in the realistic case of
the "real squashing" mode in 3He-8 at 1.2 bars and 45 MHz,
for which, according to Ref. 6, A=0. 146, v =10.7 ps, co=202
m/s.

the fact that neither Jo nor the exponential of —sot vary

rapidly with respect to A (t) for small values of t T. he ex-

pansion of integral (45) at small local times is obtained by
carrying out successive integration by parts. If the in-

tegral
Q2J= g uh udu

M]

is such that g is N times continuously differentiable and h

is integrable, then it can be expressed by
N —1J= g s„+A„,
n=0

s„=(—1)"[g„(u2)h „&(u, }—g„(u, )h „,(u, )],
8'„=(—1)"I g„(u)h „(u)du,

where g„ is the nth derivative of g, and h „ the nth re-

peated integral of h. Applying this formula with

tion of signals in a region of anomalous dispersion in a
reasonably well-founded way. This description is notably
different from that provided by Baerwald's approach and
represented by Eq. (55). It is much closer to the classical
group-velocity picture. A comparison between group and
signal velocities, given by Eqs. (37) and (63},respectively,
is shown in Fig. 6. The difference between these two
quantities, which cannot be distinguished on the graph, is
indeed very small. It may, in fact, not be larger than the
inaccuracies introduced by the envelope approximation it-
self.

Brillouin s signal velocity is also shown in Fig. 6. It is
defined' by geometrical considerations in the to complex
plane from the time at which the path of steepest descent
coming down from the saddle point reaches the point of
the real axis corresponding to the excitation frequency
coo. The envelope approximation simplifies, notably,
Brillouin's geometrical arguments and leads to the follow-
ing analytical expression for this author's signal velocity:

(b,co)

cp [(bto) +I/r ]I I/r+[(bto) + I/2]'
(65)

Again, the behavior of c~ is rather different from that of
Cg ~

Thus, the second main result obtained in this subsection
is an extension in the anomalous dispersion region of the
validity of the classical concept of group velocity to sig-
nals with rise and fall times which are neither extremely
long nor short. For the former case, this validity is well
established. For the latter, meaningful events occur at
time smaller than 8. We therefore need to consider the
short-time part, I„ofthe signal.

D. The precursors

To proceed with the evaluation of the short-time part of
the signal, that is, the very front of the wave packet, we
need to tackle integral (45) without taking the asymptotic
approximation of the Bessel function Jo. We use instead

Plg(t")=,A(t' t")+s,—A(t' t") e-
dt'

dn+1
g„(t")=( —1)", A (u)e

h (t")=J,(2&Axt"),
' n/2

J„(2v'Axt"),
Ax

u=t —t '

we arrive, using the fact that A (t =0)=0 and assuming
A (u) to be %+1 times continuously differentiable in the
interval (O, t'), at the following asymptotic expansion of
the contribution to the response of the t'=0 endpoint of
Eq. (45):

N n

A(t, x)=e ' g [A(u)e ' ]
du

n/2t'

XJ„(2&Axt')

Whenever the magnitude of this short-time response be-
comes comparable to (or, a fortiori, larger than) the con-
tribution of the saddle points expressed by Eq. (59), it has
to be taken into account. For instance, let us consider the
response as given by Eq. (66) at short distance x and short
local time (t'&& I/Ax). We can replace the Bessel func-
tions by their small argument expansions,
J„(z)-z"/(2)"n!. Then, Eq. (66) reduces to the Taylor
expansion of A (t) at small t' This expan. sion has a very
restrictmi range of validity, except at very small x (i.e.,
close to the origin), but it shows how the general result ex-
pressed by Eq. (45) merges into the initial condition at
x =0.

At larger distance the Bessel functions take on their os-
cillatory behavior more rapidly, the signal delay builds up,
and the short-time response expressed by Eq. (66) de-
scribes a transient pattern whose strength depends on the
magnitude of the initial signal derivatives at small time.
These transients travel at velocity co and constitute the
precursory front of the wave. They oscillate more and
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more rapidly with distance, until the envelope approxima-
tion begins to break domn as the condition Ax ~geo is no
longer fulfilled. Their maximum amplitude decays ex-

ponentially in time with time constant ~, but only as a
power of x ' with distance, in contrast to the delayed
part of the response, which is exponentially damped with
distance. The precursors basically arise from the free de-

cay of the Lorentz oscillator response. To illustrate these

properties, we consider a few special cases.
The response to a step perturbation, already dealt with

in the preceding paragraph by a direct method, is, in prin-
ciple, not given by Eq. (66) since a step input is not even

differentiable once at the origin. However, the integral in
Eq. (47) can also be evaluated asymptotically by the
method leading to Eq. (66). The result of this evaluation,
which gives

I

A (t,x) =e ' Jo(2v'Axt')+soe ' I du
Jo(2VAxr")dt"

u =t' —t"

—spf d spu=e e
o du"

' n/2

J„(2V'Axt '),
Ax

(67)

has the same form as the general expression (66) and is
nothing but the expansion (52). The leading term for
small t' and large Ax is Jo(2v'Axt'). It represents a pre-
cursor with a characteristic oscillating pattern which has
been called a "(br" pulse by Crisp. ' This precursor,
which corresponds to a step impulse with a discontinuity
at the origin, does not decay with x. We shall call such a
behavior a resonant precursor of zeroth order.

We note that the response to a Dirac impulse obtained
in Sec. IVA and expressed by Eq. (46) also displays the
same general form of Eq. (66). The oscillating part of the
response in Eq. (46) (which in this case can hardly be
called a precursor since it folloias the signal) grows as
x '~ . It may be said to arise from a discontinuity of order
—1 and to lead to an nth order precursor with n = —1.

Thus, quite generally, the nth-order precursor corre-
sponds to a discontinuity of the nth derivative of the ini-
tial signal and behaves as (t'/Ax)"+J„(2v/hxt'). The
property of nth-order precursors to decay with the pecu-
liar x "~ dependence has been checked by direct com-
puter simulation on Eq. (39) and is shown in Fig. 7. It
must be noted that the decay with distance of the nth-
order precursor plotted in Fig. 7 goes as x " ' . The
extra x '~ power comes from the asymptotic form for
large arguments of the Bessel functions expressed by Eq.
(56), as the small local-time part was not accurately
resolved at large x by the computer calculation.

The physical origin of precursors can be viewed from
two different standpoints. From the first point of view,
they may be seen as a beat pattern which develops during
the propagation of frequency components of the pulse ly-

ing below and above the absorption frequency. This inter-
pretation stems directly from the derivation that we have
just given. The observation that the precursors are com-
posed of high- and low-frequency components makes
quite understandable the fact that they travel through the
resonant medium with low attenuation and with velocity
Co.

The second point of view gives more insight into their
physical nature. It is based on the well-known correspon-
dence between the Lorentz oscillators, considered as two-
level systems, and an assembly of spina S = 1/2. 34 i This
correspondence enables 'us to dram on the various concepts

introduced in ESR or NMR spectroscopy and on the
panoply of solutions of the Bloch equations. We consid-
er a given spin at x, at rest before the arrival of the travel-

ing wave, i.e., aligned on the quantization axis carrying
the equivalent magnetic field. The wave acts as a trans-
verse excitation field and causes a nutation of the spin.
The nutation angle is small since we only consider the
linear response of the system. The nutation is accom-
panied by a Larmor precession at frequency co . The
Bessel-function response expressed by Eq. (66) results in
the interplay between the incoming field and the induction
resulting from the spin motion. The spina respond
without delay to the suddenly varying incoming field:
they act as quantum-mechanical tops endowed with zero
transverse moment of inertia. If the dominant frequencies
in the sudden excitation are high compared to co, the
Larmor precession will not be a significant part of the
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FIG. 7. Precursor magnitude as a function of distance on a

log-log plot. The magnitudes are normalized at x =1 cm,
Dao=0. The solid lines have slopes of 0.25, 0.75, 1.25, and 2.25,
as required by the asymptotic dependence of J„(Vx } at large x.
The symbols come from computer simulations: squares corre-

spond to a step input (v.~=4 ps) ~ith X=3.5X 10,~=10 ps;
triangles to one exponential convolution with ia ——8.5 p,s [see

Eq. (86)] with A, =3.5X10,v=10 ps; diamonds aud hexagons

to two and four exponential convolutions, respectively, with

A, = 10 and v= 5 ps.
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precursory response. In all cases, the early spin response,
and hence the precursors in the propagating wave, die off
in a time of the order of the lifetime ~. In NMR termi-
nology, ~ is the transverse spin relaxation time, usually
noted T2. If ~ is long with respect to the propagating
pulse duration ~p, the energy lost to the medium is small
because it is, for the most part, reemitted coherently in the
traveling wave.

To make this point even clearer and to extend this
description to high frequencies, let us retrace
Sommerfeld's original derivation of the existence of pre-
cursors. ' '" The starting point is provided by Eq. (2),
which we rewrite in the retarded frame at x as

p(t, x)= f p(co)e ' '+' "

In the optical case considered by Sommerfeld, the wave
vector is given by the Lorenz-Lorentz dispersion formula:

' 1/2
~LL

k =K+—=—l—
2c c N —Nm +2lNT

(69)

The frequency dependence of the coupling constant XLt.
differs from that of the quantity t(, used in this work be-
cause the form of the coupling terms in Eqs. (5) and (6) is
not that relevant to the interaction of electric dipoles with
the electromagnetic field. Accordingly, the high-
frequency behavior of the two models will be different.

We borrow from Sommerfeld the argumentation ac-
cording to which the small time response is linked to high
frequencies and expand Eq. (69) to first order in co~/ttt:

We have redefined A,i L and r in such a way as to include a
slow N dependence by letting

N

N+N~

N+N~
'T .

2N

(71)

» the high-frequency limit, we shall have XL„=A,LLand
v'=r/2, while close to co~ the coupling constant and the
inverse lifetime are reduced by a factor 2. With
A'=A, Li /2e and using Eqs. (70)—(72), expression (68) for
the signal at location x and local time t' becomes

p( t,x) = f p(hatt)exp icut'—+i AX dN

Qt —ttt ttt + l /1 2 tr

(73)

p(ttr) = I /(ttt —etio) . (74)

As in Sec. III, we shift frequencies by letting
co'=co —co +i/~', and transform p(co) according to the
prescriptions of the envelope approximation. In other
words, we transform to the spin-rotating frame. The in-
itial signal in the frequency domain corresponding to a
truncated sine wave p(t) = U+ (t)sin(tttot) is

A,LLNK=
2c

XJ L

2c

(itt Nttt +—2l CO/T)

(co —co + ilr') . (70)

We note that this initial signal is continuous at
x =0, t =0 and that its first derivative shows a discon-
tinuity. In our classification, it will give rise to a precur-
sor of first order. The outcome of the envelope approxi-
mation is expressed by

r r

it0't'+iA—tt/ro'
p(t, x)= Re —,'exp — iso + —, t' fT '~

gati —tttp+ttt~ —t /7 27T

We can expand the denominator in the integrand in powers of (otto —co i lr')/to—' (forgetting about the co dependence of
A' and v') and integrate term by term to obtain, using Eq. (48),

—tt0 t +lA X/Cal d +0, .
GO N 2'

1 /2 n/2

= Re —,exp —i cu + —, t ~ g so J (2&A'xt')
0 X

We recover our direct result with an important proviso
about the N dependence of A' and ~'. The dominant term
of this expansion does reproduce, as expected,
Sommerfeld's result in the limit N ~0. The dependence
on ~' which goes as exp( 2t'/r') has been —derived by
Brillouin. Thus apart from factors of 2 in the coupling
constant and the relaxation rate arising from Eqs. (71) and
(72) and from the dependence on the Larmor precession
frequency, the expressions for the precursor of first order

and Sommerfeld's are identical. The physical origin is the
same in both cases and stems from the transient response
of the spins in interaction with the propagating wave. At
very high frequency, the motion of the rotating frame at
the Larmor frequency is imperceptible. At frequencies
close to ttt~, the perturbing field is stationary in the rotat-
ing frame and leads to the same response of the spins. We
therefore reach the conclusion that Sommerfeld's pre-
cursors constitute the high-frequency match to the phe-
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nomena described by Eq. (66).
We have not identified Brillouin's low-frequency pre-

cursor on the time-domain expression (66), although a
low-frequency transient response is visible in Fig. 5. This
precursor, as well as that of Briman and Frankel, ' " is a
weaker feature which is masked by the stronger parts of
the response. Besides, as noted by Crisp, the envelope
approximation fails by its very construction to describe
accurately the low-frequency components of the signal,
i.e., those whose contributions to the envelope lay in the
vicinity of +toe and strongly overlap the carrier wave. We
have shown how the high-frequency components could be
recovered exactly at the price of the introduction of a
weak frequency dependence in parameters A and r Su.ch
a trick loses its usefulness as t0 goes to zero because this

frequency correction, given by Eqs. (71) and (72), becomes

large.
As the optical thickness Ax of the medium increases,

the dominant frequency of the precursors Ax/2ir also in-

creases. Their ultimate fate depends on the attenuation
mechanisms at high frequency. In superfluid 3He-8, they
eventually run into the pair-breaking regime at frequen-
cies such that Ace) 2b„ in which they are quickly annihi-

lated. A (t) =U+(t)exp[ —(t t, )'/rp] —. (77)

generated by discontinuities in the initial condition, and a
"delayed" signal corresponding to smooth portions of the
initial condition A (t}. This delayed signal was shown to
propagate with the classical group velocity at large Ax.
In the anomalous dispersion region, the group velocity be-
comes larger than co and the "delayed" signal experiences
no retardation in the local frame x, t', and part of it may
even be said to be "advanced" in the case of negative de-
lays. Gf course, such "advanced" signals are subject to
the strict causality property of the time-convolution repre-
sentation (44) or (45). A well-known case, mentioned in
the Introducti. on, where such spectacular negative delays
arise, is provided by the propagation of pulses with
Gaussian envelopes: Garrett and McCurnber have
shown that, under certain circumstances, such pulses
propagate virtually undistorted with a velocity equal to
the group velocity, even when it becomes superluminal or
negative.

These results stem immediately from our analysis by
letting the initial envelope take the form

E. Signals with no marked front: Gaussian pulses

At this point we have fulfilled our goal to split the solu-
tion of coupled equations (5) and (6) into a transient part,

Applying the general result of the asymptotic evaluation
of slowly varying envelopes expressed by Eq. (59), we find

2[t' tp+Ax/—(i nto+1/r) ]
A(t x)= 1—

Hp(id'+ 1/r)
1 Ax

exp —
2 t —to+

Vp (i h co+ 1/r )

Ax
i b,co+ 1 lr (78)

This expression will describe the propagation of a Gauss-
ian pulse without distortion when a number of conditions
are fulfilled. Let us study these conditions close to reso-
nance for simplicity. Firstly, the asymptotic evaluation
requires that Ax be large with respect to 1/r. Secondly,
the amplitude of the initial transient is very small if to,
the time at which the initial envelope reaches its max-
imum value, is much longer than rp, the width of the
pulse. The fostered precursors are also very small with
respect to the signal as long as exp( —ax) is larger than
exp( —to/H~). Replacing the attenuation coefficient a by
its on-resonance value, we obtain a third condition:

Lastly, Eq. (59) yields a pulse whose shape does not
change during propagation only if the term in dA (t)/dt is
small with respect to the undistorted contribution. This
condition impHes the following inequahty:

2
TpAx( (80)2'

Thus, a Gaussian pulse propagates unaltered in shape over
distances set by Eq. (79) or by Eq. (80) with a faster-than-
light or negative group velocity if the following incquali-

ties are satisfied:

to )) rp ))T')) 1 /Ax

The modulus of the pulse envelope is then given by

a2x2
.

A(t, x)= exp —ax+ 2 z
~o&a

(81)

x)( exp — t — —to
Cg

2fP e (82)

This expression, which is the product of a Gaussian pulse
of width rp traveling at velocity cs and an exponential at-
tenuation factor, is identical to that obtained by Macke
using a different time-domain analysis. The set of condi-
tions that we have derived above for the validity of Eq.
(82) also ensures that causality is preserved in all cases,
that is, the maximuID negative delay on resonance,

Axe, is alw—ays much less in magnitude than to The.
attenuation factor in Eq. (82} also calls for some com-
ments. The damping of the propagating pulse does not
fo11ow Beer's law, as the exponent is not linear in x. The
quadratic term is due to the imaginary part of the com-
plex group velocity given by Eq. (64) and describes pulse
reshaping. We note that, depending on the sign of the
shift from resonance bra, we may have either an attenua-
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tion or an arnplification of the wave, and that this effect
increases with distance as x. At first glance, this may ap-
pear as an unphysical result. However, the term in
(aux/coowz) is always a small correction owing to Eq.
(80), which expresses the condition that the pulse propa-
gates undistorted. We meet here a specific example of the
role of the imaginary part of the signal velocity in pulse
reshaping.

If we relax condition (80), the pulse will suffer distor-
tions described asymptotically by our general result (59).
In spite of these distortions„ it may still be said that the
distorted pulse is traveling at the complex group velocity
because the general form of Eq. (59) allows an unambigu-
ous definition of the "delayed" signal. Over a short
length span, say between x and x +dx, the "delayed" sig-
nal suffers little more distortion and does travel with velo-

city e, .
In addition, the exact shape of the pulse is not neces-

sarily recorded in actual experiments. For instance, if the
propagation velocity is defined, as is often the case
as the velocity of the crest of the pulse envelope, the influ-
ence of the term in dA/dt in Eq. (59) is reduced and the
velocity measured according to such a criterion remains
closer to the classical group velocity over a wider range of
situations than suggested by Eqs. (79)—(81). Such a result
can, of course, be expected to hold on general grounds
since the envelope is very slowly varying about the crest.

To provide both a check of our analysis and an illustra-
tion of the propagation of pulses of arbitrary shape but
without a well marked front, we have inade a computer
simulation in a physical situation corresponding to He-8
with the following parameters: A, =10, ~=1 p„
coo/2m=45 MHz, and co ——310 m/s. The initial pulse
without a sharp front is constructed according to a
prescription which will be justified in the next sex;tion. It
involves an eightfold convolution of a rectangular rf pulse
of 4 ps duration with a first-order response function with

characteristic time rx ——8.5 ps. The derivatives of the re-

sulting signal are thus continuous at the origin of time up
to the seventh order. The corresponding precursor decays
with distance as x . Over a path length of x =0.025
cm, the main part of the signal largely overwhelms the
pre:ursor, which can therefore be discard&. The signal

at location x is computed from the full expression (33) for
the envelope and is shown in retarded and advanced situa-

tions in Fig. 8. It is said to have arrived, according to
Brillouin's definition, "when its amplitude has reached a
certain fraction, e.g., —,', of its peak amplitude. The re-

sults of this simulation are shown in Fig. 9, where they
can be compared to the classical group velocity. The sig-
nal is seen to speed up again in the anomalous dispersion
region; its velocity tracks the classical group velocity to a
reasonable accuracy, certainly much better than it follows
Brillouin's result, which never exceeds co, not to mention
Baerwald's velocity expressed by Eq. (54), which, as we
have already mentioned, stems from a different definitio
of the signal arrival time.

We shall present in the next section our experimental
results on acoustic wave pulses with a well-defined begin-
ning, which, when the "delayed" signal is identifiable,
lead to the same behavior as that illustrated in Fig. 8.
Other experiments in the optical and microwave domains,
mentioned in the Introduction, exhibit the same pattern.
It seems difficult to escape the conclusion contained in

our general result (59) that pulses with no marked front
do propagate with a signa1 velocity which is identical in a
first approximation to the classical group velocity both in-

side and outside of the anomalous dispersion region.
When a well-defined wave front is present, precursors
come in, but a part of the response can still be separated
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FIG. 8. Normalized pulse shapes at x =0.025 cm for an ini-

tial envelope with no marked front. The initial envelope is gen-
erated by filtering a rectangular input with ~~=4 ps through an
eightfold exponential convolution with ~~ ——8.5 ps. The medi-
um parameters are X=10 ', v=1 ps, co ——310 m/s, correspond-
ing to the squashing mode in He-8 at 13.5 bars in tQe vicinity
of T, . The solid line is obtained far from resonance (b,~=10'
rad/s), and the corresponding attenuation is less than 0.1 cm
The short-dashed line is for 5m=2&10 rad/s, a=255 cm
the long-dashed line for hco= 1 X 10 rad/s, a=630 cm '. The
long-dashed signal has propagated with faster than co velocity
and has experienced little distortion.

FIG. 9. Shift in signal (solid line) and group (dashed line) ve-

locities vs departure from resonance for input envelopes with no
marked front. The signal velocity is obtained numerically from
the pulse envelopes shown in Fig. 8 from the time at which the

signal reaches 3 of its peak value. Both velocities are seen to

track reasonably well even in the anomalous dispersion region
where they become larger than co, infinite, or even negative.
The results sho~n above hold for Ax large enough for Eq. (59)
to be asymptotically valid, but small enough for the precursors,
suppressed up to order 7, to remain smaller than the "delayed"
signal. At large distance, precursors take over and c, falls back
to co.
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that travels vrith the classical group velocity as long as
causality is preserved.

V. TRANSMISSION OF SOUND IN He-8

In this section we describe first the experimental setup
which led to the results shown in Fig. 1 as well as to more
detailed studies of the real squashing and squashing
modes which are directly relevant to the topic of this pa-
per. We then give a characteristic example of each situa-
tion.

The experiments are carried out in a copper nuclear
demagnetization cryostat ' capable of maintaining tem-
peratures below 1 mK for times of the order of a week.
The primary thermometry is provided by a Pt NMR spec-
trometer. It is beheved that the absolute temperature is
known to be about 5%. Temperatures relative to the su-
perfluid transition temperature T„namley T/T, ratios,
are known to an accuracy of the order of 1%, except pos-
sibly at the lowest temperatures (T &0.5 mK). The
knowledge of the temperature is important in these
mode-crossing experiments because the sound transducers
operate at constant frequency and the mode resonance is
temperature dependent: the sound and pair-vibration
modes are made to cross by sweeping the temperature.
An example of such a temperature sweep is shown in Fig.
1. The mode frequency is related to the temperature by

fur=ah, (T), (83)

where b, ( T) is the gap parameter. " The weak-coupling
theoretical values of a are ( —', )' or (

—", )'~ for the real
squashing and squashing mode, respectively. The strong-
coupling Fermi-liquid, and higher-orbital-wave correc-
tions are still rather uncertain, but are found experimen-
tally to be, at most, of the order of 10—20%.52 s ~9

These corrections are not significant in the present context
and shall not be taken into account. The gap function
b,(T) is given by the BCS theory.

Differential frequency shifts are obtained from tem-
perature drifts by the following relation:

5r0=1.764@(k&T, /A) 5T . (84)
T

The quantity k~/iii is equal to 20.8 MHz/mK and
1.764k+T, gives the zero-temperature BCS gap b(0).
The quantity h(T)/6(0) is, in the BCS theory, a universal
function of T/T, .so

The sonic cell is made up of two X-cut quarts transduc-
ers separated by a 4.00-mm quartz spacer. The spacer is
polished to optical flatness and parallelism. The trans-
ducers are mounted using a technique of semiadherence,
which is common practice in optical lens assembly. The
lack of parallelism between the transducers (of diameter
4.5 mm} is believed to be less than 0.2 pm. The quartz
crystals have a fundamental frequency of 14.7 MHz
(matched to 150 Hz). They can be usefully operated at
odd harmonics up to the thirteenth.

The sonic transducers, located in the very-low-
temperature experimental chamber, which is filled with
superfluid He, are connected to the room-temperature rf
transmitter and preamplifier by low-loss 50-0 transmis-

H(s)=A, „,/A;„=I/(s+ I/~x) . (86)

We note here that a second-order electromechanical sys-
tem yields a response function for the envelopes which is
first order only. The value of the ringing time constant
r~ is essentially governed by the loading of the quartz
crystal by the surrounding liquid. The acoustic im-
pedance offered by superfluid He-8 has bmn studied in
Ref. 57. From Eqs. (85) and (86) we find that the shape
of the envelope emitted into the liquid is given by

A(s)=H(s)A~(s) . (87)

At the receiving end, this envelope has traveled through
the liquid according to Eq. (33). It experiences one more
convolution with the response function (86} in the receiv-
ing crystal in such a way that, if the liquid were a perfect-
ly nondispersive, transparent medium, the received en-
velope would be represented by

A(s)=H (s)A~(s) . (88)

The rf signal is then processed in a way which can be
traced on the block diagram of the electronics given in
Fig. 10. It is first amplified in a broad band preamplifier
and heterodyned to an intermediate frequency of 35 MHz.
The following amplifying stage has a bandwidth of 5
MHz about the intermediate frequency. The amplified
signal is demodulated by two mixers driven with reference
signals at 35 MHz in exact quadrature. We thus obtain
the two components of the complex envelope which are
fed into two transient signal recorders with a time resolu-
tion of 50 ns. These recorders are interfaced to a desk
computer which controls the whole experiment and com-
putes the amplitude and the phase of the signal. The
computer subtracts vectorially a baseline which contains a
record of the spurious signals of electrical and acoustic
origin, in order to lower the detection threshold of useful
signals. It performs checks on the overall amplitude of
the received signal and actuates an attenuator which keeps
this amplitude within the linear dynamical range of the
receiver. The data processing also includes a least-squares
parabolic smoothing on 13 adjacent points. ' This
digital-filtering step fixes the detection bandwidth of the
receiver and limits the maximum signal rise time to about
0.5 ps. The bandwidth limitation due to the crystal
response function (86) can be, within limits, removed by a
deeonvolution process. As mentioned in Sec. III, the
above sequence of signal-processing operations tailors the
received signal to flt very neatly into the framework of the
slowly varying envelope approximation.

sion lines. These transmission lines preserve the shape of
the rf signals. The initial signal from the electronic
transmitter is a rf toneburst of rectangular envelope and
of duration v~. The Laplace transform of such a signal is

A~(s) = [I —exp( r—~)]/s .

When this electrical signal, which possesses a true begin-
ning and end, is transformed within the piezoelectric crys-
tal into a mechanical signal, it experiences a convolution
with the response function H(s} of the transducer. H(s)
involves the exponential ringing time constant ~z.
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%e present in Fig. 11 the observed signal amplitudes
and phases obtained by sweeping the temperature through
the real squashing mode in He-8 at a pressure of 1.2 bars
and a frequency of 45 MHz. The temperature at which
the real squashing mode crosses the zero-sound mode in
these conditions is 0.625 T„with T, =1.26 mK. The top
curve in Fig. 11 relates to the signal far from resonance,
plotted in arbitrary units as a function of time in the local
reference frame. Its amplitude and phase are described by
Eq. (88). The ringing time rR is adjusted starting from
the theoretical value to fit the received signal. This
theoretical value is governed by the real part of the
acoustic impedance which, far from the mode-crossing re-

gion, is Z'=pco (p being the density):

1 x ='ITZQ /2' fZ (89)

The quantities rv//2rr and Z& are the fundamental fre-
quency and acoustic impedance of the quartz crystal. '2

At 1.2 bars, Eq. (89) gives a time of 15.1 p, s. Adding the
intrinsic damping of the crystal measured in vacuo brings
this value down to 10 tus. The fitted value is 8.5 tus. The
difference between the two last values is mainly due to the
fact that, for short excitation times, r~&rR, the ringing
decay is not quite exponential. In spite of this slight im-

perfection, the received signal far from resonance is well

described by the double-exponential convolution of a rec-
tangular pulse, as shown in Fig. 11.

The bottom curve in Fig. 11 is obtained close to reso-
nance. Its amplitude has been magnified by a factor 12.9
with respect to the top curve. This signal displays the
characteristic wiggles of precursors. Its phase changes by
rr at each extinction point of the envelope, indicating a
sign reversal. The extinction points become more and
more distant from one another as time t' evolves, in
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FIG. 10. Block diagram of the electronics of the sound-
propagation experiment.

FIG. 11. The experimental {dots) and calculated {solid line)
received signal amplitude and phase as functions of time at vari-
ous temperatures in the vicinity of the real squashing mode in
'He-8 at 1.2 bars, 45 MHz. The on-resonance temperature is
0.625 T, ( T, —1.26 mK). The top and bottom curves represent
the phase variation and relate to the top and bottom amplitude
curves, respectively. The former corresponds to a situation far
from resonance {hen =9.4)& 10 rad/s). The latter corresponds
to a situation close to resonance {6~=6.4)& 10 rad/s), and has
been magnified by a factor 13 with respect to the top curve.
The two other amplitude curves correspond, respectively, to
5~=2.4&(10 and 4.3&(10 rad/s and have been magnified by
8.8 and 4.8, respectively. The solid lines are signals computed
from Eq. (33) with A, =3.7)&10 6, x=10.7 IMs, co ——202 m/s,
corresponding to a rectangular initial envelope with t„f——4 ps,
convoluted exponentially once with v& ——8.5 ps, as explained in
the text.
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agreement with the square-root dependence of the Bessel-
function argument in Eq. (66). Signals off resonance are
also shown in Fig. 11. The solid curves are obtained from
Eqs. (33), (34), and (20) with A, =3.7X10 and v=10.7
ps, using a fast-Fourier-transform algorithm. The agree-
ment between calculations and observations is quite satis-
factory. It shows how a dephasing factor coming from a
shift from the resonance frequency gradually erases the
precursors and restores the initial shape of the signal.

Although the discussion of the preceding section leaves
no room for ambiguity, we emphasize here that the wig-
gling pattern of precursors is a linear effect. In particular,
it is a priori not related to the pulse breakup at high power
level observed by Polturak et al. which is believed to be
a nonlinear effect. In the course of the experiment, we
have performed linearity checks by varying the excitation
level by a factor 2, i.e., power level by a factor 4. The
maximum total energy in the sound pulse per unit area
used in these experiments amounts to 10 erg/cm for
~~=4 ps, that is, with a sound velocity cu ——233 m/s a
maximum energy density of the order of 10 erg/cm .

Complying with usual practice, we have used the fol-
lowing operational definitions of the signal velocity and
attenuation coefficient. The signal arrival time is defined
by the time at which the signal reaches —, of its maximum
amplitude; it is thus independent of the detector sensitivi-
ty, which is assumed to be always adequate, but it will be
strongly affected by the change in shape of the signal.
The amplitude attenuation coefficient is computed from
the ratio of the observed peak amplitude to a reference
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FIG. 12. Measured (squares) and calculated (solid line) at-
tenuation coefficient and inverse signal velocity change as func-
tions of the departure from resonance. The cw peak attenuation
would be 80 cm ' for the case studied here. The delayed signal
velocity, as computed from Eq. (63), is given in Fig. 6. It is
clear both from the signal shapes in Fig. 11 and from the curves
shown above that the sonic response is dominated by the precur-
sors in the anomalous dispersion region.

level defined as the limit in the case where no damping is
present. This reference amplitude is an instrumental con-
stant which depends on frequency. It has been deter-
mined by two separate experiments. First, in He in the
normal (i.e., nonsuperfiuid) state, zero-sound damping de-
creases with temperature as T and is independent of fre-
quency, at least as long as quantum effects can be neglect-
ed. A fit to this quadratic temperature dependence yields
the zero-attenuation level. The second method takes ad-
vantage of the fact that damping in the 8 phase becomes
very small at temperatures very low with respect to T,
and frequencies far from any pair-vibration modes and
from the pair-breaking region. These two methods agree
to better than 0.1 cm

We have plotted the attenuation coefficient a and the
inverse signal velocity 5(co/c, ) variation obtained from
the real and computer-simulated signals in Fig. 12. This
figure calls for several comments. The signal velocity is
seen to follow the general behavior already met in Figs. 6
and 9, that is, a slowing down of the signal which reverses
itself in the immediate vicinity of the resonance and be-
comes close to the unperturbed sound velocity. This ef-
fect here is due to precursor takeover and not to the re-
entrance of cs. It gives rise to the fiat portion of the
curve about hco=0. The apparent attenuation peaks at
about 7.5 cm ' with a full width at half maximum
(FWHM) of 2/r=0. 874)&10 rad/s. The cw attenuation
at maximum, as computed from Eq. (40), is equal to 78.3
cm ' with a FWHM of 2/r=0. 187&(10 rad/s. The pre-
cursors reach their peak about 245 dB above the level of
the continuous wave: the medium is quite transparent to
pulses of duration rd of the order of r. Both A, and r are
seriously in error if due care is not given to this trans-
parency effect in the analysis of sonic data. '

Figures 11 and 12 show without ambiguity that Eq. (33)
yields a quite accurate representation of the observed
sound signals in the vicinity of the real squashing mode.
The various properties of signals and first-order precur-
sors that we have derived from Eq. (33) in Sec. IV are
found in the observed signals in a better than qualitative
manner: the precursor extinction points are given by the
zeroes of Ji(2&Axt'), and its amplitude is well approxi-
mated by

(Ao/r)(vt'/u~x)'~ Ji(2&Axt')exp( t'/r) . —
Another illustration of precursors is provided by the

beautiful subpicosecond detection experiment in the opti-
cal domain of Rothenberg et a/. This experiment yields
pulse envelopes for the electromagnetic field which are
strikingly similar to those of Fig. 11. The experimental
evidence coming from both works, Refs. 6 and 45, leaves
actually no room for doubt.

We now turn to another mode-crossing situation, that
provided by the squashing mode, which strongly repels
the zero-sound mode. At temperatures below 0.8 T, or so,
the lifetime has become large enough for the strong-
repulsion regime to prevail (see Fig. 4). A striking feature
of this regime resides in the existence of very long group
delays. Group velocities smaller than co/IO have been
recorded in He-8 at 3.5 bars and 75 MHz, as shown in
Fig. 13. This figure illustrates a situation in which
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FIG. 13. Measured attenuation coefficient, group velocity,

and inverse phase velocity change vs temperature in the vicinity

of the squashing mode at 3.5 bars and 75 MHz, for two values

of magnetic fields applied along the direction of sound propaga-

tion (+, attenuation; C3, group velocity; 5{1/cz) at 00——0 6;
6, attenuation; o, group velocity at Ho ——1000 6). This figure

sho~s a regime of very slow group velocity combined with low

attenuation and should be compared qualitatively to the com-

puted group velocities in Fig. 4.
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strongly dispersive effects coexist with small attenuation.
This situation, which is quite similar to that of polaritons
or exciton-photon —propagating bound states, lies out-
side the scope of this study. In particular, boundary con-
ditions play an important role, as shown by acoustic im-

pedance studies. Let us, as a side remark, mention that
precursors were seen neither on the detected output nor on
a wideband oscilloscope connected at the preamplifier out-
put: their predicted frequency, as shown in Fig. 14 ob-
tained by computer simulation, is quite high. Precursors
in this strong-mode-repulsion case have been observed by
Pleshko and Palocz in wave guides, but their existence in

matter has still to be demonstrated,

VI. CONCLUSIONS

%e have studied the propagation of pulses in a medium
exhibiting a well-defined resonance weakly coupled to the
propagating wave. In the case of Lorentzian line shapes
and for a broad class of pulses with a bounded spectrum,
or, in the case of strong mode repulsion and for pulses
with a bounded but broad spectrum, the medium disper-
sion law can be represented by Eq. (1) and the pulse en-

velope at location x by the time-convolution integral (4)
or the Fourier integral (33). These expressions are more
useful than the exact solution (2) because they are amen-
able to precise computer simulations and to asymptotic
analytical evaluations.

According to the results derived in Sec. IV, the propa-
gation of pulses shows the following general features.

True signals possess a well-marked beginning, for in-
stance, at t =0: this is the very condition by which
causality may be defined. Such signals give rise to a
causal response at any later time, i.e., they never propa-
gate faster than co. Their front is marked by the discon-
tinuous occurrence of a nonzero derivative of rank n at

T iree |;mi cr oaeconda)

FIG. 14. Computed signal shapes as functions of time in the
case of the squashing mode at 13.5 bars with A, =10 ', ~=5 ps,
co ——310 m/s at a frequency of 45 MHz. The initial envelope is
a rectangular pulse with t„&

——1.5 ps filtered by a single exponen-
tial convolution with ~R ——5 ps. In this computer simulation,
the full dispersion curve has been used in Eq. (33). From top to
bottom, the curves correspond to b,~=50X10, 8/10, 4X10,
2.5&106, and 0 rad/s, magnified by 1, 2.7, 34, 105, and 110,
respectively. The sound flight path is 0.25 mm. It is seen that,
even for such a small path, the precursor envelope oscillates
quite rapidly. The slow modulation of the fast resonant precur-
sors arises from interference between transients from the leading
and falling edges of the input envelope.

t =(). Such discontinuities in time of the initial envelope
generate transients. These transients travel at velocity co
and precede the rest of the signal. Generalizing a concept
introduced by Sommerfeld and Brillouin, we call these
transients precursors.

Precursors arise from the free response of the Lorentz
oscillators. Their general expression (65) contains the pre-
factor exp( iso t t/~): they —are mo—dulated at the Lar-
mor frequency m and decay in time with the transverse
relaxation time ~. For an nth-order discontinuity, the
leading precursor develops a characteristic wiggling pat-
tern going as (t'/Ax)"~ J„(2&Axt'). They decay with
distance not exponentially, but as x " ' for their
long-time part, or x "~ at the maximum. Therefore, the
purely transient response quickly overcomes the smoother
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parts and makes up the truly elephantine feature of the
received signal. The pseudofrequency of their envelope at
fixed local time t' increases as Ax. When this pseudofre-
quency is much larger than ~~, they become identical to
Sommerfeld's well-known precursors. In the case studied
here, where the Larmor modulation plays an important
role, we call these features "resonant precursors" in or-
der to draw a distinction between them and Sommerfeld's
high-frequency precursors and Brillouin's low-frequency
precursors, although they all arise from the spin-transient
response.

As the wave equations (5) and (6) are Hnear, solutions
can be superposed and discontinuities in the signal else-
where than at the wave front will display the same
behavior as precursors.

Smooth portions of the initial envelope propagate dif-
ferently according to whether they vary rapidly or not on
a scale fixed by r Sh.ort pulses travel at velocity co with
little attenuation and give rise in their wake to a wiggling
tail which is a "precursor" of order —1. Signals which
are not rapidly varying on this timescale are attenuated
exponentially with distance and experience group delay
and distortion as described by Eq. (59). When due al-
lowance is made for their change in shape, they can be
said to propagate with the classical group velocity
throughout the anomalous dispersion region as long as
causality is preserved. Such a shape alteration is always
present when the signal is delayed, even far from the
mode-crossing region. Insisting on no shape alteration to
apply the concept of group velocity would restrict very
narrowly its range of validity. In our view, severe pulse
deformation does not prevent the group velocity, as de-
fined by Eq. (59), from providing a valid description of
the pulse motion from x to x +dx. A vivid illustration of
the usefulness of the result (59) is provided by the propa-
gation of signals with no marked front, such as Gaussian
pulses. These signals, for which precursors are
suppressed, can be seen to propagate with faster-than-
light, or negative, velocities over a certain depth in the
medium. Such group velocities should not be considered
unphysical, but simply as the propagation velocity of a
low-frequency (sine-wave) modulation on top of a high-
frequency carrier wave. This modulation carries the same
type of information as the phase of the carrier wave. In
this formulation, the group velocity, including its imagi-
nary component, always has a well-defined meaning.

Thus, our result (59) represents an extension of the
group-velocity concept to distorted signals in the
anomalous dispersion region of a Lorentz medium. One
of the main consequences of this result, together with the
realization of the true nature and importance of precur-
sors, is to bring together various notions about the veloci-
ty of signals and recent experimental advances in resonant
pulse propagation. These concepts have now been tested
in practice and not just in theory. ' Baerwald's approach
has been shown to represent the time, given by Eq. (54), at
which transients leave room to the long-lived part of the
signal, if any. It also corresponds to the steady-state ve-
locity of energy in the medium. This quantity is marked-
ly different from the group velocity in the anomalous
dispersion region. Brillouin's insightful formulation is

imprecise by nature since it is based on the shape of an in-
tegration path in the complex plane that can be deformed
freely within large limits. In spite of this arbitrariness, it
yields results, embodied in Eq. (65), which are not in gross
conflict with the views presented here. In particular, it
does contain the essential fact that, in the anomalous
dispersion region, meaningful information propagates
with near-maximum velocity. It can, however, not be said
to provide more than a rough qualitative discussion of the
phenomena involved in resonant pulse propagation.

We view received signals as being made up of several
parts: a "delayed" signal which carries information on
the original shape of the envelope and precursors generat-
ed by the various kinks in the original envelope. As the
flight path increases, the "delayed" signal is attenuated
exponentially while the precursors are damped with a
much weaker length dependence and their pseudofrequen-
cy increases. The arrival time of the signal, defined by a
given fraction of its peak amplitude, depends on the com-
petition between these various parts, which, in turn, de-
pends on the distance. Also, as the weight of high fre-
quencies in the received signal spectrum grows with dis-
tance, the detector bandwidth becomes an important fac-
tor. The actual signal velocity, its shape, its information
content, etc. , result in the interplay of these different fac-
tors and are a matter of the particular circumstances of
the experiment at hand. A few cases, close to experimen-
tal situations and showing the various aspects that we
have just discussed, have been illustrated in Sec. V. It is
also clear that one can meet other cases in which all con-
stituents are completely entangled with one another be-
cause the front rise times are neither large nor small with
respect to ~, or because the propagation length does not
warrant the validity of the asymptotic evaluations. In
these intermediate cases, our description is no longer use-
ful. A full numerical solution, using Eq. (33), is then
needed to obtain the shape of the propagated pulse.

A number of questions are still left open. Although our
discussion seems to imply that a smooth wave packet al-
ways propagates with the classical group velocity, this re-
sult has been established only in the (slightly extended)
case of a Lorentzian resonance line. From the work of
other authors, ' the generalization seems warranted, but
a proof encompassing all cases appears to be still lacking.

The results obtained in this paper are based on various
approximations, such as the slowly varying envelope ap-
proximation and on asymptotic evaluations of integrals.
No estimate of the errors have been given here, apart from
a few comparisons with numerical computations. This
problem is being tackled by Macke et ol. using a new
operational approach.

The resonant medium has been considered here as
homogeneous. Extension to the case of inhomogeneities
on a microscopic scale has been treated in particular by
Shiren' and Crisp: no qualitative changes are brought
to the results. Large-scale inhomogeneities pose a com-
pletely different problem of their own, a problem which
might be relevant to a number of experimental situations
where precursors should have been seen but were not. 83

Nonlinear effects ' have not been considered, al-
though the slowly varying envelope approximation is, in
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fact, designed to deal with these effects. It does lead to
interesting indications that, at least far from resonance,
the signal velocity in the self-induced transparency case
merges into the classical group velocity.

Also, the fresh but short insight which has been given
to precursors is far from complete. This interesting
phenomenon certainly deserves more experimental studies,
particularly on their ultimate decay at large distance and
high frequencies, and also in non-Lorentzian situations.
Neither Brillouin's precursor, seen in an artificial delay
line only, nor the excitonic precursor predicted by
Frankel and Birman, ' have so far been identified in
matter. We have also failed to identify them on computer
simulations using reasonable input parameters mimicking
the squashing mode in superfiuid He-8, and conclude
tentatively that, in the situations that we have studied,
they form a very weak part of the transmitted signal.
Further work on these open questions, for which both
acoustical studies in He-8 and ultrashort-pulse propaga-
tion in optical systems like that of Ref. 45 should prove to
be quite valuable, is clearly desirable.
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These equations are the linearized form of the usual
self-transparency equations. ' For this problem, they
are particularly useful on resonance (b,to =0) (Ref. 33) be-
cause P and D remain identically zero. In the present sit-
uation, for which b,co may be different from zero, the non-
linearities introduced by the polar representation consti-
tute a drawback. Hence, we revert back to Cartesian
coordinates for p, go to the rotating frame for E and D,
and introduce, explicitly, the retarded local time
t'= t —x lco.

from Eqs. (A3) lead to the following set of equations of
wave motion:

AppENDIx

p( t,x)=A (t,x)cosg, (A 1)

with g= cos[coo(x/co t)+P]. —
The two functions A and P describe the behavior of the

components of p in phase and out of phase with
too(t —x/co). The pair-vibration amplitude can likewise
be represented by

6(t,x)=D(t,x)cosg+E(t, x)sing . (A2)

The purpose of this appendix is to show that the slowly
varying envelope approximation carried out as is conven-
tionally done ' also leads to the approximate dispersion
relation (1).

As a well-defined wave packet contains many periods
of the carrier wave, we can replace the density fiuctuation
p(t, x) by two slowly varying functions, the (real) ampli-
tude A (t,x) and the phase P(t,x), by letting
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We obtain the following set of equations:
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Provided that the coupling constants and the damping
terms are not abnormally large, the simplifications arising

The conditions that the amplitude and phase of the sig-
nal are slowly varying functions of space and time are ex-
pressed by the following inequalities:

These equations express the behavior of the X and Y com-
ponents of the low-frequency signal envelope and of U
and V, the transverse components of the pseudospins
equivalent to the Lorentzian oscillators, in a reference
frame traveling at velocity co and rotating with angular
velocity too+ a//at'.

This set of equations, together with the initial-value
conditions, can be solved readily by Laplace transforma-
tion. The general solution for the envelope is of the form:

A (t',x)=W 't A (s, x =0)exp[ —A"x/(s +i boo+ I/r] ),
(A12)
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with A"=tooyoy /4co. Equation (A12) is identical to
Eq. (39) to the extent that A" is equal to A. Such is the
case when the coupling is not large. Thus we conclude
that the slowly varying envelope approximation leads to
the approximate dispersion relation described by Eq. (1).
This result holds if the inequalities (A3) are satisfied and
if the coupling is moderate or small. No restriction is im-

posed directly on the mode lifetime r. However, if the
phase velocity becomes too different from co, then t)P/t)x
will not remain small compared to coo/co and the slowly

varying envelope approximation will eventually fail.
Thus, the validity of Eq. (1) extends beyond the Lorentzi-
an approximation, but this extension is ill delimited as it
stems from the neglect of small terms in differential equa-
tions. It will remain valid as long as the left-hand sides of
Eqs. (A4) and (A5) represent the bulk of the propagation
phenomenon, i.e., are not too small. The envelope must
not vary rapidly but tnust still vary somewhat if there is a
sizable amplitude E or D of the pair-vibration mode, a
condition which may be expressed by Eq. (42).
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