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Gapless superfluidity in 3He films
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The effects of diffusive boundary scattering in the superfluid properties of thin {kF «d &g)
He films are studied. We assume that surface scattering arises from random, uncorrelated irregu-

larities in the substrate. For a specified surface roughness there is a critical thickness d' below

which superfluidity disappears. For d larger than d' superfluidity is only moderately suppressed
and certainly within observational limits. As the thickness decreases toward d' we find that the A-

phase-like behavior is followed by an intermediate, experimentally accessible region in which the ex-

citation spectrum is gapless. Thus, "dirty" anisotropic superfluidity is predicted to be realizable in

He films. %'e present calculations of the density of states in the gapless regime, and the zero-

temperature phase diagram. %'e briefly discuss the specific heat and other properties of the gapless
state.

I. INTRODUCTION

Since its discovery nearly fifteen years ago, superfluidi-
ty in He has been a very rewarding field of study, both
theoretically and experimentally. Progress in our under-
standing of this anisotropic superfluid has had widespread
implications in many areas of condensed-matter physics.
Similarly, superfluid "He films have provided a con-
venient testing ground for the theoretical ideas developed
in rceent years in the context of order in two-dimensional
systems. It is in this context that the recent experimental
report of superflow in He films must be viewed as par-
ticularly exciting. Due to the complexity of the order pa-
rameter, two-dimensional superfluidity may prove to be a
far richer and more extensive phenomenon in He films
than in their boson counterpart.

From the theoretical point of view, some studies of the
properties of clean, ideal 3He films have appeared. Possi-
ble phases were discussed in Refs. 6 and 7. In the physi-
cally relevant regime where only the superfluid com-
ponent is two-dimensional (i.e., the thickness d satisfies
ky

'
&&d (f, where g is the coherence length and kF the

Fermi wave vector) we have studied the NMR response
of He films and, recently, the detailed behavior of prop-
erties such as the transition teinperature as the number of
layers in the film changes. Our results, however, did not
include the effects of boundary roughness. Since it is well
known that any type of disorder has a pair-breaking effect
in anisotropic superfluids, ' it is clearly very important to
understand the qualitative and quantitative consequences
of this type of scattering. This is particularly relevant if
one bears in mind that in a real-world experiment, the in-
fluence of the substrate on some properties of thin He
films may be far from negligible.

The main question that we take up in this paper deals
with the effects that random scattering from the
boundaries has on films of superfluid iHe. Our main re-

suit is that, for experimentally relevant ranges of the sur-
face roughness, the transition temperature is only
moderately depressed, and the effects found in Ref. 9 are
merely broadened. Observation of superfluidity is, there-
fore, not inhibited. But the nature of the superfluid state
may be quite different from that in the bulk or even in the
ideal film. We predict that there exists a relatively wide
and experimentally accessible region in the surface rough-
ness versus thickness phase diagram (see Sec. III) in which
the excitation spectrum of superfluid He films is gap-
less. " Thus, if our prediction is correct, a unique oppor-
tunity to observe a qualitatively different superfluid state,
a "dirty" anisotropic superfluid, exists in He films.

This paper is organized as follows: In Sec. II we show
how the surface roughness problem can be mapped onto
the problem of an ideal fluid in the presence of a two-
dimensional random potential. This problem is in turn
equivalent to that of randomly distributed scattering
centers confined to a thin layer at the boundaries of an
otherwise clean film. Starting from the solution for the
clean limit we find the equations for the diagonal and
off-diagonal parts of the self-energy using a self-consistent
Born approximation (SCBA) treatment of random scatter-
ing. These equations are solved in Sec. III where results
are obtained for the transition temperature r, as a func-
tion of film thickness d, and surface roughness. The cal-
culation of the dynamical density of states then reveals
that there exists, for a given thickness, a critical strength
of the surface scattering (or, conversely, a critical film
thickness for a specified surface roughness) for which the
quasiparticle excitation spectrum becomes gapless. The
range of parameters for which such a behavior arises indi-
cates that the gapless regime could be reached in many
reasonable experimental situations. %e then present some
additional results for various quantities which are likely to
be of experimental interest. Finally, in Sec. IV we offer
some concluding remarks.
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Two more points are ~orth explaining. First we will
consider the thickness regime kF

' «d (g. Since g-400
A at T =0 and it increases with temperature, this is a
very wide regime. For d &g the A phase is stable (at sa-
turated vapor pressure, -0.28 bar) in the film. If d »g,
textures would develop in the order parameter connecting
the surface favored ABM state to the bulk stable 8 phase
(Balian-Werthamer state). The case of a semi-infinite slab
of He-8 in contact with randomly rough wall has been
studied by Buchholtz' using quasiclassical methods.
Note, however, that the thickness range for which our
methods are applicable is not bounded from above provid-
ed only that the A phase is stable throughout the film.
For example, in the slab case (d »g) at high pressures

(p & 21 bar) the results of Secs. II and III are still correct,
although, of course the importance of surface scattering
effects will diminish as the thickness increases. On the
other hand, we will limit ourselves to thicknesses much
larger than the interparticle spacing (i.e., d »k~ ) when
it is safe to assume that the properties of the normal fiuid
are basically the same as in the bulk. The very thin film
region, d-kz ', is more difficult to study because the
normal fluid itself is two-dimensional and the substrate
effects may strongly influence the quasiparticle interac-
tions. The available experimental information' indicates
that very thin He films do indeed have an intricate
behavior, quite different than thicker ones. The second
point is that the methods discussed in this paper have
wider applicability. In Ref. 14 they have been applied to
the question of a possible anisotropic pairing in heavy-
fermion superconductors.

II. MODEL FOR SURFACE ROUGHNESS

The effects of surface roughness on the properties of
superfiuid He films are overwhelmingly determined by
the pair-breaking nature of random scattering. This is
closely related to the pair-breaking property of nonmag-
netic impurity scattering for anisotropic superfluids. ' In
the present section we will further elucidate this connec-
tion.

The first step along the way is to choose a specific
model for surface roughness. In a particular experimental
setup the substrate parameters will be fixed but there is a
wide variety of materials which could be used as a sub-
strate in different experiments. Therefore, we need a
model of sufficient generality, yet simple enough to allow
finiteness of calculational effort. In what follows, we will
assume that the dominant part of the surface scattering
comes from random, uncorrelated irregularities in the sur-
face. We will also assume that the average "strength" of
surface scattering is small in a sense that will become
clear below. This will lead to a "white-noise" type of dif-
fuse scattering. While the assumption of uncorrelated ir-
regularities may not be fully justified for most realistic
substrate materials, we still think it is a very reasonable
one, for the following reasons: First, the main effect of
the correlations will be to "renormalize" the pair-breaking
field found for the uncorrelated case. Therefore, we can
hope to account for this by simply choosing some "effec-
tive" uncorrelated surface to represent the real physical

one. Secondly, if the correlations are included, the calcu-
lation becomes significantly more complicated with the
additional angular dependence of the pair-breaking pa-
rameters. These complications seem unnecessary for our
purposes, which emphasize the physical nature of the ef-
fects of surface scattering, as compared to the smooth
case. It will therefore suffice to use the uncorrelated
model.

In Ref. 9 we have modeled the films as an infinite
square well of thickness d in the direction of z axis. ' To
simulate surface roughness we will assume that the thick-
ness of the film is now a function of position in the plane
of the film (x-y plane},

d (x,y) =d +w (x,y), (2.1)

where d is the nominal average thickness. Consistent
with our assumptions, we will take w (x,y} to be a Gauss-
ian random function,

( w(x, y) ) =0,

( w(x, y)w(x', y')) =w 5(x —x')5(y —y') .

(2.2a)

(2.2b)

Equation (2.2b) expresses our assumption of totally un-

correlated irregularities. The parameter w, which mea-
sures the overall surface roughness (the rms fluctuations
in thickness) may be thought of as a product w =ha,
where h is the average "height" of the bumps and a some
scattering length. We will be assuming in what follows
that w jd «1. Also, we will be considering a situation
in which only one of the surfaces is rough; the one at
z =0 presumed smooth. All the results are straightfor-
wardly generalized to the case when both surfaces are
rough.

The problem of scattering by a random surface has
been considered in some detail by Chaplik and Entin. '6

There it has been shown how the boundary condition for
the Green's function at a random surface can be
transferred into the Schrodinger equation for motion in a
two-dimensional, state-dependent random potential, as-
suming that w (x,y) «d. The single-particle Green's
function can then be found from a perturbation expan-
sion, quite analogous to that used by Abrikosov and Gor-
kov to treat impurity scattering in superconducting al-
loys. '7 While the procedure applied in Ref. 16 is concep-
tually straightforward the details are rather involved. We
will, therefore, briefly sketch here how to rederive some of
their results by a more direct method.

Let us assume that in an otherwise clean film of thick-
ness d there is a thin layer of thickness w '~2 &&d near one
of the surfaces, in which particles experience random im-

purity scattering given by a potential U(x,y). Except
within this layer, U (x,y) vanishes everywhere in the film.
A perturbation theory expansion in U(x,y) can be worked
out using the Abrokosov-Gorkov method, as we shall see
below. It turns out that such a perturbation expansion is
equivalent term by term to that for the surface scattering
problem, as given in Ref. 16, provided only that one estab-
lishes the proper connection between (U (x,y)U (x',y') ) and

( w (x,y)w (x',y'}).'
To perform a perturbation expansion in U(x,y) we first

need the matrix element describing scattering from state
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1/2
2

u„(z)= GATV

sin z, v=1 2, . . . .
d

(2.3)

This matrix element is easily found to be

(k,v) to state (k', v') caused by this random potential.
Here and below, k denotes a two-dimensional wave vector
and v is the principal quantum number associated with
the boundary condition in the z direction. If the eigen-
states of the unperturbed Hamiltonian along the z direc-
tion are taken to be those of an infinite square well poten-
tial, i.e.,

1 vm.

2' d
I

2

{2.11)

4 =~k

Ek',.=~'+(gk+x )'+
I
Tra" (k) I'.

(2.12)

(2.13)

The chemical potential p must be found self-
consistently in terms of the density and the number of
layers. Only in the liinit d —+ oo is it given by kz/2m. '

In Eqs. {2.10) and (2.13), 6"(k) is the coefficient in the ex-
pansion of the gap in terms of the u„,

( k', v'
I

U (x,y) I
k, v)

U(k —k') 2 V K . V7T
dZ Siil Z slii Z

A d d —u''

b~~ (z,z', k) =g u„(z)u„(z')b ~~ (k)

and it can be written in the form

(k) =6 (k)sin8„,

(2.14)

2 i 1/22 (k k)
( 1)+' (24)

3 A d

where A is the area of the film. If we now assume that

( v (x,y)u (x',y') ) = u 5(x —x')5(y —y') (2.5)

from Eq. (2.4), it follows by direct comparison that every
diagram in the perturbation expansion of Ref. 16 can be
identified with the corresponding diagram in the
Abrikosov-Gorkov perturbation expansion in U(x,y), pro-
vided that

W U = W
32 9 2

Sm
(2.6)

Equation (2.6) enables us now to study the effect of a
rough surface using perturbation theory. In particular, we
are interested in finding the self-consistent expression for
the normal and anomalous Green's functions. To do this,
we first perform some useful manipulations very similar
to those employed in Ref. 9.

First the normal and anomalous Green's functions
G (r, r', co„) and F (r, r', co„) are Fourier transformed
in the x-y plane. These Fourier transforms can then be
expanded in terms of the eigenfunctions (2.3),

G (z,z', k;co„)=g u„(z)u, (z')G~ (k,c0„), (2.7)

where sin8„ is the discrete equivalent of the usual sin8,
'2 1/2

V
sin8 = 1—

Vp
(2.16)

In all the sums the index v runs from 1 to v„where v, is
the largest integer smaller than vo=—2md p/m .

Let us now consider what happens in the presence of a
random boundary. As discussed before, we can treat dif-
fusive surface scattering by performing a perturbation
theory expansion for a random potential U (x,y) and using
Eq. (2.6). The self-consistent Born approximation (SCBA)
that we utilize leads to the following self-consistent equa-
tions for G„(k,co„) and F„(k,co„):

[icci„—gg —A,„—X„( ice„)]F (k—,co„)+b,„(k)G(k,a)„)=0 .

(2.18)

In (2.17) and (2.18) spin indices have been suppressed.
The self-energy X„(ice„)is given by:

6
4 1/2

X„(ice„)= (2.19)v v g(v') G„(k,co„) .
k, v'

[ia)„—gi, —A,„—X„(ice„)]G„(k,co„)+b „(k)F„(k,co„)= 1,
(2.17)

F~~ (z,z', k;co„)=g u „(z)u„(z')F„(k,co„) . (2.8) As a consequence of assumptions (2.2a) and (2.2b) there is
no contribution to the self-energy from the anomalous
Green function. Then, G,(k, co„) is found by solving Eqs.
(2.17) and (2.18) and can be written in the following form:

—i co„(v)—g'1, —A,„6 (k,co„)=
~ „'(v)+(gq+ A,„)'+6'sin'8

(2.2o)

O 'Ccin fk ~v
G„(k,co„)= E2 (2.9)

where

The three-dimensional Fermi sphere degenerates into a
set of circles, and v may be thought of as the index which
enumerates these different "subbands. " In the limit of
perfectly smooth boundaries G„and F„are given by,

(k)
F„(k,a)„)= (2.10)

~here, for clarity, we have suppressed spin indices in G
and F. In the above,

co„(v)=co„+iv X„(ico„). (2.21)

The sum over k in Eq. (2.19) can be done using standard
techniques, and one then obtains from (2.21) and (2.19)
the self-consistent equation for the self-energy (from now
on we drop the index n in the Matsurbara frequencies)
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Q)icos 0~
co~=et)+I Ocos 8~

,~e [cop+b sin 8, ]'~

where, with the help of (2.6), we have:

(2.22)
~cg l.O—

g BULK
C

f e I l
(

I $ i l
i

I i I I

y =0.0

kDI"o—— vo .
2md' d4

Similarly, the self-consistent equation for the gap parame-
ter is also obtained from (2.17) and (2.18),

2 kF& —,~8 (ap„+Alsin28„)'

0.4—

0.2—

where we have assumed that the strength of the pairing
interaction is not significantly affected by the surface
roughness. This is a reasonable assumption, since the
roughness should not affect normal state properties, under
our assumptions. Equations (2.22) and (2.24) contain, in

rinciple, all the required information about a superfluid
He film on a rough substrate.

III. PROPERTIES OF SUPERFLUID STATE

We are now in a position to calculate the effect of dif-
fuse surface scattering on various physical quantities.
First, let us find the transition temperature, T, . This can
be accomplished by expanding Eq. (2.24), assuming small
5, and making use of (2.22). After straightforward alge-
bra the following expression is obtained:

Tq(d) 1 I cos 8„
T, (d0) 2 2m T(d) (3.1)

where T,o(d) is the transition temperature in the smooth
boundary limit, P is the digamma function, I is defined
as

v, (v, +1)(v,+ —,
'

)
I =To

3~o

and the brackets denote the weighted average:

gsin8( ) gsin8, —= ( ) .

(3.2)

(3.3)

Equation (3.1) does not have the universal form charac-
teristic of a uniform pair-breaking field. This is obvi-
ously due to the state dependence of the self-energy (2.19).
%e will see later that this state dependence leads also a
somewhat unexpected behavior in the dynamical density
of states.

From Eq. (3.1) the variation of T, as a function of the
thickness and of the parameter w which determines the
strength of the surface scattering can be plotted. To this
end, it is useful to introduce the dimensionless parameter

(3.4)

which measures the surface roughness as given by the rms
parameter w defined in (2.2) in terms of the interparticle
distance. For specified values of y, the plot of T, as a
function of d is shown in Fig. 1. The most prominent
feature is the existence of a critical thickness d'(y) below
wlilch sllpclflllldlty is destroyed. For tlllckllcsscs largcl

0.0 150

FIG. 1. Transition temperature of a superfluid He film as a
function of thickness. Surface roughness parameter y is defined
in (3.4). In an ideal (y =0.0) film case, the wiggles in T, are
due to quantum size effects. %'e show results in the region
kFd p15.

d'(y) -=0.75yrigo, (3.6)

where go is the standard BCS coherence length.
For y =1 one has kFd =—35. It follows that super-

fluidity in He films of moderate thickness (say twenty to
several hundred layers) will not be destroyed by surface
roughness except when y ~&1 wh&ch would represent a
very high degree of rms strength for the uncorrelated fluc-
tuations: there would have to be, for example, a large
number of bumps and holes, covering altogether a large
percentage of the surface, having an average radius of two
or three interparticle distances and a height or depth ten
times as large.

The above has a direct bearing on the results obtained
for ideal boundaries in Ref. 9, where the quantum size ef-
fects in quantities such as T, and the transverse NMR
frequency shift, Qz, were discussed. The quantum size
effects in T, were found to be small; the characteristic
large oscillations with thickness which are found for s
pairing do not appear for p wave. %e concluded that
these oscillations would be difficult to detect, even with
an ideal boundary. The frequency Az, however, exhibits
a reasonably strong oscillatory behavior related to the os-
cillations found in the density of states, and it is, there-

than this d'(y), however, T, is only moderately
suppressed, typically by 25%, and is certainly within ob-
servational limits.

The quantity d'(y) can be extracted from (3.1) by ex-
panding around T,~O. The result is

(3.5)

where y = 1.78. . . is Euler's constant and
in') = (lncos 8„). Equation (3.5) is an implicit equation
for d' since T,o also depends on thickness (see Ref 9).
However, for 1'&~kF ' this dependence is very weak and
one has T,o

—T, "'". One can th—en show from (3.5) that
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fore, the most obvious candidate for experimentally find-

ing quantum size effects in superfiuid He films. Surface
roughness has a twofold effect on Q~. First, its overall
magnitude decreases: it scales with T, and will obviously
disappear at d =d'. Second, random boundary scattering
will tend to smooth out the sharp jumps in the magnetic
susceptibility, which are directly reflected in Qz, and to
eventually diminish the oscillatory character of Qz. The
oscillation will be observable so long as I /hA, „& ( « )1,
where bA.„=A,, +)—A, After a short calculation one

C C C

finds I"/bk, „=y/6m which is much less than unity for y
in the range of interest {i.e., d'&gp). As a consequence
we expect that, for d larger than d', boundary scattering
will not substantially alter the oscillator behavior of Qz.

Many low-temperature properties of the superfluid are
determined by the character of the quasiparticle excitation
spectrum. To study these properties it is first necessary to
find the dynamical quasiparticle density of states. We
start by writing Eq. (2.20} in the following form:

CO u„cos 8„
', e [up+sini8g])~~

where u„=—(u„/b, and g—=3I /b. Equation (3.7) is an im-
plicit equation from which u„=u„(p)/b, ) is to be calculat-
ed. The complications again come through the v depen-
dence. It is useful to make the following ansatz:
u„=~/b, +gU cos 8„. Equation (3.7) is then transformed
into an equivalent equation for U,

(co/b, )cos 8„+(Ucos 8„
U

z i i vz', () [(pi/b, +gUcosi8„) +sini8„]'~i

0.
2.0——

(o)
I

1.0

00

I

ooI
1.0

(e)
{

].0 2.0

FIG. 2. The dynamical quasiparticle density of states for
various values of g=(3I )/6: (a) /=0. 0, (b) (=0.5, (c) (=1.6,
(d) (=6.0, (e) (=18.0, (fl generic form of the density of states
in the gapless regime exhibiting the peaked structure around
co/6 = 1.

that is,

N(0) —Cil v
—g —A,v

Imp dg —(o„+((+A,„}+b sin 8,

N(ai) =N(0)Im g„[b sin 8„—a)„]'~

pi/6+gUcos 8„
=N(0)lm

, a [sin 8„—(co/5+(Ucos 8„) ]'~

(3.9)

Equations (3.8) and (3.9) have to be solved numerically.
N(ai)/N(0) is plotted in Fig. 2 for several values of g.
Two kinds of behavior are present. For g & 1.6 the densi-
ty of states vanishes at the Fermi level and the system
resembles an A-phase state, with X(co)-a) for small co,
the coefficient in front of (o being increased from its
clean film value. When (~1.6, one observes gapless
behavior, 1.c., thclc 1s a finite dcnslty of states at thc Fc1.-
mi surface, although of course it is smaller than in the
normal fiuid. Thus, in this case the superfluid film

Once {3.8) is solved and U(pi/5) known, the dynamical
density of states can be found from

X{ai)= ——Imp g G„(k,co)
1

k v

resembles a dirty superconductor. The transition disap-
pears altogether as I ~I', as previously discussed. Com-
parison of Fig. 2 with the density of states obtained in the
presence of uniform impurities ' reveals another charac-
teristic feature of the boundary scattering effects. While
the peak in the density of states is very quickly reduced
and broadened by an increase in the concentration of uni-
form impurities, the sharp-peaked structure survives in
the case of even very rough surfaces. This can be traced
back to the state dependence of a pair-breaking field; close
to the equator of the Fermi "sphere, " where the gap
reaches its maximum the effect of boundary scattering is
strongly reduced.

The various equilibrium states of the superfluid film
are summarized on the T=O phase diagram in Fig. 3.
Depending on the values of d and y, three different types
of states are predicted: (i) the A-phase-Iike state with the
low-temperature quantities having algebraic temperature
dependences characteristic of the 3 phase, but with modi-
fied numerical constants, (ii) the "gapless" regime, with
finite density of states at the Fermi sphere, and, finally,
(iii) the normal liquid, where the pairing correlations are
completely suppressed by random scattering. Potentially
the most interesting regime is the gapless one. It has not
been possible up to now to prepare a dirty He superfiuid
sample in which the interplay of superfluidity and re-
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terplay between the two characteristic lengths, g and the
impurity scattering length, as in ordinary superconduc-

tors.

IV. CONCLUSIONS

0.0

FIG. 3. The T=O phase diagram of superfluid 'He film.
Quantitatively, boundaries between different regions will depend
on the particular model for surface scattering but the qualitative
features are expected to persist. By controlling the thickness, or
by a careful choice of the substrate material, it should be possi-
ble to experimentally "open" the "window" with a view on
properties of a dirty anisotropic superfluid.

duced mean free path could be studied. He films on real-
istic, rough substrates, offer this unique opportunity, with
a wide range of consequences for superflow, transport
properties, and behavior in magnetic fieid. Particularly
attractive is the possibility of effectively "tuning" the
strength of surface scattering by controlling the thickness.
The "window" of thickness for which the gapless
behavior is obtained seems reasonably wide and there
should be no unsurmountable experimental difficulties in
observing it.

The experimental property in which the absence of a
gap will be most obviously felt is the specific heat. At
low temperatures, instead of the T law characteristic of
the A phase one will find linear behavior. The slope will
be, as required by thermodynamics, smaller than that of
the normal phase. The jump in the specific heat at T, is a
decreasing function of T„going to zero when T,~O
[and I ~I"(d)]. The specific heat can be calculated in a
fairly straightforward way, making use of the appropriate
generalization of methods used to treat gapless supercon-
ductivity.

In addition, the presence of surface roughness will in-
troduce new contributions to transport properties. Ordi-
narily, He at low temperatures is the ultimately clean sys-
tem, since no impurities can be dissolved in it. Transport
properties are determined by quasiparticle collisions, ex-
cept in the ballistic regime, (when the mean free path is
very large). As the thickness of a superfluid He film is
reduced, or the roughness increases, impurity-like contri-
butions to quantities such as the sound attenuation coeffi-
cient or thermal conductivity should become apparent.
Indeed, one should be able to observe the full range of in-

The main conclusions of this paper are summarized by
examining the zero-temperature phase diagram of Fig. 3.
We see that, depending on the thickness and the degree of
surface smoothness one can have three different regimes:
in the first, an ordinary, A-phase-like superfluidity is ob-
tained and the results of Refs. 8 and 9 (for example) are
applicable; the second is a normal regime; and finally,
there is an intermediate region in which the excitation
spectrum of the superfluid is gapless. In the last regime,
the thermodynamic and transport properties of the system
vary according to what may be thought of as an effective
mean free path.

The actual calculations are performed assuming a
"white noise" model for surface roughness, with uncorre-
lated irregularities in the substrate. This assumption was
dictated by calculational convenience and may not be real-
istic for many surfaces, where irregularities may be,
within some length scale, highly correlated. However, we
do not believe that the qualitative conclusions as to the ex-
istence of different regimes and, in particular, of the gap-
less state are likely to be changed should one use a more
realistic description of the surface.

Superfluidity in He films, therefore, may exhibit a
richer variety of phenomena than had been previously
thought. It would be of great value if the preliminary re-
port of Ref. 5 proved to be an inspiration for more experi-
mental effort in this area.¹teadded in proof. L. H. Kjaldman, J. Kurkijarvi,
and D. Rainer [J. Low Temp. Phys. 33, 577 (1978)] point-
ed out the existence of critical thickness for superfluidity
in narrow channels and pores. Using their quasiclassical
approach a single critical size is obtained corresponding to
fully diffusely refiecting boundary conditions (which have
no clear microscopic meaning). We thank Professor D.
Rainer for useful discussions. One of us (Z.T.) is grateful
to Professor R. C. Richardson, Professor J. Reppy, Pro-
fessor J. P. Harrison, Dr. A. Sachrajda, Dr. M. Freeman,
and Dr. T. Guamilla for their patience in explaining to
him some experimental aspects of He in confined
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