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The system S,-Mg-S, (S, and S, are superconductors, Mg is a semiconductor, a semimetal, or a
normal metal) is studied. Particular attention is paid to the case when My contains a two-
dimensional electron gas (e.g., an inversion layer). A one-dimensional (1D) case is also considered.
The Josephson current is evaluated and the main factors determining the field effect are studied. A
special diagrammatic method allowing one to calculate the thermodynamic Green’s function and,
consequently, the Josephson current, has been developed. The current depends strongly on the elec-
tron concentration which leads to a noticeable field effect. The dependence of j,, on other factors,
such as temperature, mobility, effect mass, etc. is also studied. The field effect appears to be
stronger for low-dimensional systems. An analysis of the experimental data obtained recently for

the Nb-InAs-Nb system is carried out.

I. INTRODUCTION

Systems of the type S,-Mg-S, (S, and S, are super-
conductors, Mg is a normal metal, a semiconductor, or a
semimetal) have attracted a lot of interest. The flow of
the Josephson current in such systems is characterized by
peculiar features and is promising from the point of view
of applications. In this connection, we would like to point
out a paper! in which the field effect has been used to
bring about a noticeable change in the amplitude of the
Josephson current flowing through the inversion layer in
the system Nb-InAs-Nb. It is important to note that the
inversion layer contains a two-dimensional electron gas.
In this connection it is of interest to carry out a theoreti-
cal analysis of tunneling system with low-dimensional
coupling.

The Josephson current in S- M-S systems has been stud-
ied by several authors.>~® They have described the case
of the usual three-dimensional M subsystem and calculat-
ed the corresponding current.

In this paper we focus our attention on the case when
M is a two-dimensional electron gas, although the general
method developed here can be applied to the 3D case. A
major example of such a 2D system is an inversion layer.
Another example is a size-quantizing film. We shall con-
sider also the 1D case. It will be shown that a transition
to low-dimensional systems is crucial for the intensity of
the field effect.

Because of the presence of degenerate electron gas, the
Mg part of the system differs in a striking way from a
usual tunnel barrier: the proximity effect plays a key role.
The length of Mg (see Fig. 1) exceeds the coherence
length £y and therefore it is necessary to take into ac-
count the space dependence of the pair amplitude. Our
approach is based on the method of thermodynamic
Green’s functions and the corresponding diagrammatic
technique. This method allows one to describe the
phenomenon of interest in any temperature region.

Our main interest is in the nature of the field effect and
in the analysis of the main factors which determine the
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change of the Josephson current due to an external electric
field. Low-dimensional systems appear to be very promis-
ing for the field effect.

The structure of the paper is as follows. Section II ad-
dresses the problem of obtaining the main equations. The
Josephson current will be evaluated in Sec. III. We will
discuss also the nature of the field effect and its depen-
dence on various parameters. Section IV contains an
analysis of the experimental data and a general discussion.

II. MAIN EQUATIONS

Consider the system S,-Mg-S, (Fig. 1) where S, and
S, are superconductors and Mg contains two-dimensional
degenerate electron gas. Suppose that only the lowest sub-
band of the transverse motion is filled [e.g., for InAs this
assumption is valid up to the surface-carrier concentration
N%~10'2 cm~2 (Refs. 1, 7 and 8)]. Note that the thick-
ness d ~10% A (see, e.g., Ref. 8, and for size—quantizing
films®). The case of several filled subbands can be con-
sidered in a similar way and will be discussed elsewhere.

The flow of a nondissipative current in the system of
interest is not the usual Josephson tunneling through a
barrier. The length L of the normal film is large [up to
~5x10° A (Refs. 1 and 7)], moreover M is not an insu-
lator and contains its own electron system which partici-
pates in the current-flow state. This state is caused by the
proximity effect. A complex state is induced in the Mg

L

FIG. 1. S,-Mg-S, system.
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system; it is determined by two superconductors with dif-
ferent phases.

Our subsequent consideration will be based on the
method of thermodynamic Green’s functions (see, e.g.,
Ref. 10). As is known, this method allows one to evaluate
the temperature dependences of various quantities.
Another important advantage of this method is the possi-
bility to use the diagrammatic technique in order to calcu-
late the corresponding Green’s function. We consider the
thermodynamic electronic Green’s functions G5, G g» and
G (the index s means that the a and y metals are super-
conductors). In this connection we can introduce the
complete sets {y,}, {¥g}, and {¢,}. For example, the
functions {4,} are the eigenfunctions of the Hamiltonian
H, describing the state of an isolated a metal in the ab-
sence of the proximity effect. The sets {1/g} and {4, ] are
similar. The Green’s function G %(r, r',w,) corresponds to
an isolated 3 system and can be written in the form

Gy(r,r,0,)= 3 Vp (DY (r)iw, — & 17", (1)
k

where w,=(2n +1)7T, &, =€g(k)—e€f; in the effective-
mass approximation, eg(k)=k*/2mp.

The proximity effect is due to peculiar features at the
boundary region which separates ¢ and 8 (y and B) sys-
tems. Namely, Cooper pairs can penetrate from the su-
perconductor to the normal crystal y. In addition, the 8
electrons can make transitions into the a and y supercon-
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ductors with formation of Cooper pairs. These processes
can be described by the special pairing self-energy parts A’
and A" (the indices / and r correspond to the S,-Mg and
S, -Mg contacts, respectively).

We can write the following diagrammatic equation for
the Green’s function Gg:

(a)

G Gg VWA -
.. L, .;,./\I /\
x X X X XX X X % X
P
+ xu.‘ (
XXy Xp o Xp X x ?)
F
(b) F (©) o (@ a
a Y
e AN
9. Ds  9ga
o K,

where (a) is the diagrammatic equation for the thermo-
dynamic Green’s function; A’ describes a B—a transition
with the formation of a Cooper pair, Ag, is the corre-
sponding vertex; (b) and (c) are the self-energy parts A’
and A’ in the local approximation, F* and F ;," are the
anomalous Green’s functions; (d) is the self-energy part
due to the electron-phonon coupling. In the analytic
form,

Gp(r,r,0,)=Gy(r,r'0,)+ fG%(r,r,,m,,)A’(rl,r'l;w,,)Goﬁ(r'z,r’,;—a),,)A’*(r’z,rz,w,,)GB(rz,r',w,,)dr,drzdr’ldr’z

+ [ GBI I,0,) A0y, 150, )G Y(r), Ty — 0, )AL (£,11,0,)G g(11,1', 0, d 1 dr,d TS . 21

Here
r‘—‘f%)’,z}a rlzixlaylyzlg’ rl=[01y1v21} ,
r'1={0,y',,z’1}, rZZ{L’yZ’ZZ}’ rIZZ{LainIZ; .

We made a Fourier transformation with respect to the
imaginary time 7; @, =(2n +1)7T.

We would like to stress that the diagrams and the corre-
sponding equation (2') are given in the coordinate repre-
sentation. The self-energy parts A’ and A" are introduced
in this representation; they describe the electronic transi-
tions a«B and Yy« with formation of Cooper pairs
occurring in the boundary regions.

The factor

f G%(r’z,r’l; —, )A’t(r’z,rz,a),, )G (11,0, dry,dr, (2")

represents the anomalous Green’s function F E(r'l,r',w,,)
which differs from zero because of the proximity effect.

|

Gp(x,x';py;2,2"30,) =G p(x,x";p,32,2" 30, )

f

Note also that the right-hand side of Eq. (2) contains as a
factor the exact Green’s function Gpg, thus it is not as-
sumed that the self-energy parts are proportional to any
small parameter.

One can see directly from Eq. (2) that the self-energy
parts A’ and A" are the amplitudes of formation of Cooper
pairs, or, which is the same, the amplitudes of electron-
hole transitions. Such processes are known as Andreev’s
reflection!! (see also Ref. 12). The functions A’ and A7
describe this phenomenon.

The general equation (2) can be simplified for our sys-
tem. First of all, the system is uniform along the y direc-
tion. Hence Gg(r,r',0,) depends on y —y’, and we can
make a Fourier transformation with respect to this vari-
able. Moreover, the self-energy parts A’ and A’ can be
taken in the local approximation. As a consequence of lo-
cality and uniformity, these functions do not depend on y.

We then obtain

+ f G%(x,O;py;z,z] s0,)A w, )G%(L,O; —Py3223Z1; — Oy )A"r(a),l )G p(L,x";py;25;2" 0, )dz dz;

+ [ GYx,L;pyi2,25;0,) A (@0, )GHO,L; —py321,20; — 0, )A " (0,)G 5(0,x";p, 521,20, )z, d2, -
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Note that if the B system were a 3D electron gas, then one would make a Fourier transformation with respect to

p=1{y,z}. In our case the B system is size quantizing.

The Green’s functions G 03 and Gg can be written in the diagonal representation (see Ref. 13), with respect to the eigen-
functions X (z) describing the transverse motion of the electrons, i.e.,

G%(x,x’;py;z,z’;co,,)z > G%k(x,x';py;w,, Xi(2)X(2') .
k

As a result we obtain

Gﬁk(x,x,;Py;wn)zGoﬁk(x’x’;Py;a’n )+ng(x’0;py;wn )Al(wn )G%k(L’O; —DPy; —@p )Ar*(wn )GBk(L’x’;py;wn )

+Gopk(x,L 3Py 0, ) A (0, )Gof;k(O,L 3 —Dy; — @y )AI*(w,, )G g (0,x";py;00, ) 4)

Approximately, the projection p, can be used as a transverse quantum number. Different subbands correspond to its
different quantized values p, =k /d (d is the scale of the transverse motion, e.g., the thickness of the inversion layer).
We focus on the case when only the lowest subband is filled. For example, for InAs this is valid up to N ~10'? cm~2.

Hence, we can put k=1 (the index k will be omitted below) and finally we obtain
Gp(x,x";py;00, ):GOB(x,x’;py;a),, )+G%(x,0;py;w,, Al w, )G%(L 30, =Dy —w, )A"(a),, )Gg(L,x";py;0,)
+GY(x,L ;py;0,)A(@0,)GHO,L ; —py; — 0, )A  (0,)G 5(0,x";p,;0,,) . (5)

The evaluation of the Green’s function G% can include the contribution of ordinary scattering [see Fig. (2) part (a)].
An estimate of these diagrams is given in the Appendix. It turns out that this contribution is small in the region of small
Py (this region makes the major contribution to the Josephson current, see below). The term describing multiple succes-
sive contributions of the pairing self-energy parts near the boundary [see Fig. (2) part (b)] also appears to be small (see the
Appendix).

Hence, the Green’s function Gg satisfies Eq. (5). This equation can be solved (see the Appendix), and we arrive at the

expression:

G (%, X "3Dy;00) =G §(x,X"py0,) + [ G R(X, 050,50, )A 0, )G §(L,0; —py; — 0, )A” (a0, )f

+GR(x,L;p,;0,)A(0,)GH(O,L; —py; —a, A" (w,)g]R ", (6)

where

f=a,(1—c¢)—ac,, g=a(l—b;)+ab, R=(1—c)1—b;)—cb, a =G%(0,x’;py;w,,) ,
a1 =GY(L,x";py;0,), b=G%0,0;5p,;0,)Aw,)GHL,0;—p,; —w,)A (),

(7

by =GH(L,0;p,;0,)A 0, )GH(0,L ;py;0, )0 " (@), ¢ =GHO,L;py;0,)A 0,)GH(O,L;—py; —w,)A " (,)

cy =G%(L,L 3Py30y A" (@), )G%(O,L 5 —Dy; — @ A (w,) .

If L>>Ey [this is the main case we consider; £y=(Pr/2mmpT), we put #i=1], then the Green’s function
G %(O,L ;Dy;0,) contains the exponential factor exp(— L /£, ), see below, Eq. (15). Hence, in the lowest-order approxima-
tion with respect to this small exponential factor, f~a,, g~a, R~1, and we can write

Gp(x,X"3py300) =G §(X,X";p, ;00 )+ GH(x,0, ;0 ) AU 0, )G §(L,0; —py; — @ A" (0, )G J(L,x";py;0,)
+G%(x,L;py;00)A (0,)GHO,L; —py; — @, A (@, )GH(0,x";p,,0,) - ®)

III. JOSEPHSON CURRENT, FIELD EFFECT

A. Supercurrent

Let us turn to the calculation of the Josephson current.
Consider the general expression

ir)=
m

ie ,
LT [(V— V)G (1,00, | = -
‘l)ﬂ
Thanks to the equation of continuity, divj=0, one can
evaluate the current at any point x (j, =const, see, e.g.,
Ref. 14). The expression describing the current can be
written in the form

, ie ,
Ix= m* TE f dpy(vx—‘vx')GB(xax ;py’wn)|x=x'=L/2 .
mn

9)

We have selected x =L /2.

Based on Eq. (8), one can obtain, after simple manipula-
tions, the following expression:

jx=

2
mi ImY [ dp,Akw,)s " (w,)

X G(L,0;—py; —w,)Sp(L /2,py,0,)
(10)
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where

S%(X,py,w,, )=G%(x;0;py;wn )Sa;Goﬂ(L’x sPy;@n )

-—GOB(L,x 3Py @y )%G%(x,o;py;w,,) . (10)

Consider the self-energy parts A’ and A"*. The corre-
sponding diagrammatic equations are presented by Eq. (2)
part (b); (we can write similar equations for A" and A").
The functions F, and F; are the total anomalous Green’s
functions of the superconductors a and y respectively;
Kg, and Kp, are the effective vertices describing the
proximity effect. For example, Kpg, describes the elec-
tronic transition S—a with the formation of a Cooper
pair. Equation (2) part (c) corresponds to the passage of a
pair from the ¥ superconductor to the B system. It is im-
portant to note that the dependence of j, on different pa-
rameters is determined mainly not by the vertices, but by
other factors (see below).

The vertices Kg, and Kp, are determined by a number
of mechanisms (strictly speaking, Kg,= ,; K}, the in-
dex i denoting the various mechanisms). First of all, we
should take tunneling into consideration. This mecha-
nism has been considered by Aslamazov et al.> In this
case Kpg, can be expressed in terms of the tunneling ma-
trix element.!”> Note that the use of the diagrammatic
technique allows us to consider large values of the
penetration coefficient.

Another possibility is connected with specific features
of the electron-phonon interaction in the boundary region.
This interaction may result in an electronic transition
B—a, described by the Hamiltonian

Hop= f g (YLD r)B(r)dr

W and 9 are the electron operators, ¢ is the phonon
operator, g(r) differs from zero only in the boundary re-
gion. The corresponding self-energy part A’ is shown in
Eq. (2) part (d). The main contribution to pairing comes
from the short-wave part of the phonon spectrum. As a
result, the phonon Green’s function D can be taken in the
8 function approximation (see Ref. 16), that is,
Dmn (r, r’)=Dmn 8(r—r') and this leads to the local approx-
imation [Eq. 2(b)] with K,,ﬁ=g‘2,,gD,,,n_,‘,n, (in the weak
coupling approximation, D ~ 1, see Ref. 17). It is possible
that the low-frequency part of the phonon spectrum also
contributes to the proximity effect. In this case it is
necessary to go beyond the local approximation. This
question will be considered in detail elsewhere.

The self-energy parts A” and A’ are directly related to
the anomalous Green’s functions F, and F, [see Eq. (2)
parts (b) and (c)]. Each one of them s characterlzed by its
own phase, so that F®=|F,|e' ", Fr*— |F, | e—ifr,
Based on these expressions and Eq. (10) we obtain an ex-
pression for the Josephson current j,=j,sin(6,—8,),
where

. me AaAy
=——5ga.5a,1 I(L,0,) .
Jm B Ba” By % ( 3, :‘21)1/2( %‘ 53,)1/2 n)

(11)
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FIG. 2. (a) Ba and By scattering; (b) successive pairing near
the boundary.
Here
I(Lo,)= [~ dp,GH(L,0;p,; —,)S (L /2:py,00,) -

(12)

We took into account the fact that the integral in Eq. (11)
is an even function of p,. We used expressions for A'and
A" which can be obtained from Eq. (2) (see also the Ap-
pendix), e.g.,

A,
| Mlwn) | =Kpa | Fol0)| =spu [ 46 s

=§sﬁaAa/(w,2,+A?,)‘/2. (13)

A, is the absolute value of the order parameter in the a
superconductor, sg, =Kg,Va, Sga =Kp,Vy, and v, is the
density of states. Note that A, is the order parameter in
the presence of the proxnmlty system and, strictly speak-
ing, is not equal to A2, where AJ is the order parameter of
an isolated a superconductor. Its values can be evaluated
from the self—cons1stent equation for A,. The deviation of
A, from A% depends on the value of K ap- A similar ex-
pression can be obtained for | A”|.

If we study a junction S,-Mg-S, with two identical su-
perconductors, then Eq (11) can be written in the form

T I(L,0,), (14)
=7 E +Aa n
where
~ me
V=58’
mﬁ

I(L,w,) is defined by Eq. (12).

We see that the problem of evaluating the Josephson
current is reduced to the calculation of the quantity
I(L,w,) and the subsequent evaluation of the sum in Eq.
(11). As usual, we should distinguish two major cases,
namely the “clean” and “dirty” limits for the B system.

B. “Clean” B system: Dependence on N

The function I(L,»,) [see Eq. (12)] contains the
Green’s function of an isolated B system (in the absence of
the prox1m1ty effect). The length L is assumed large
(~2—5x10° A) it exceeds noticeably the atomic scale
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and even the size of the Cooper pair 5. Under such con-
ditions, we can classify states as in bulk material (see Ref.
14). In some sense, our system is described by the model
in which each subsystem a, B, and ¥ is replaced by a
“sheet” of 3D space (the B system is restricted in the z
direction), and these sheets are connected along the lines
x=0 (ap coupling) and x =L (yB coupling). This means
that plane waves can be taken as eigenfunctions describing
the electron states of the B system. The dispersion rela-
tion will be taken in the effective mass approximation.
Then the Green’s function G% is equal to (see, e.g., Refs.
14 and 18)

Gp=A,'m*explir, |x—x']), (15)
where

Ao, =[2m*(i0, —Ep)]"% Eg=py/2m* —e€p . (15
€r, is the Fermi energy corresponding to the lowest trans-
verse level €,; €p, =€ —€.

Substituting (15) into Eq. (12), and choosing the
branches of A, which correspond to damping of the
Josephson current, we arrive, after some manipulations, at
the expression

A A
im =7Pr(m )T s
In=Tpr(mBT 2 A e 4 A

1
X fo d&u ~%exp[ —2uL sin(n/2)],

(16)

where {=p, /pr, pp=(2m§epl)”2 is the two-dimensional
Fermi momentum, u =i (2m)!/? ﬂ=(wi+§§)”‘=[mﬁ
+€5,(1—£2?], and n=arctan(w,/ | g|)=arctan[w, /
er(1—£H)]. At first, we consider the case when the pa-
rameter L /&y > 1, where £y =pr/(2rTm™) is the coher-
ence length.! We will see that this case is the most
promising from the point of view of the field effect. An
analysis of the integral in Eq. (16) shows that the main
contribution comes from the region of small { (qualita-
tively, this means that the current is due mainly to elec-
trons moving almost perpendicular to the boundary). The
integral can be easily evaluated by the method of steepest
descent and we obtain [for simplicity we restrict ourselves
to the case of two identical superconductors S, see Eq.
(17); generalization to systems containing different S, and
S, is straightforward]

172

. — | TPF —1;. %13
= (mg)'T
AZ 20,mp
X ¥ 55— 75exp S e 3 a”n
2o (@l + AL Pr

Because of the condition 2mTm gL /pr > 1 (see above), we
can keep the first term only (other terms contain an addi-
tional exponential smallness). We then obtain

jm=Aexp{—2wTmgL /pr} , (18)
A=V(pp/mpLT)pr (mpY AL(wT*+AL]"! . (18)
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For example, if L~5X10"° cm and Vp=pp/m}
~7X 107 cm/s, then expression (18) is valid in the region
T>3K.

One can see from Eq. (18) that the Josephson current in
the system of interest depends on many factors. If we are
interested in the field effect, the most important factor is
the dependence of j,, on the electron concentration n, be-
cause applied voltage affects mainly this quantity.

For a 2D system, pp=(21TNSf)l/2, Nys=nd, and hence

jm=A exp[—-p/(st)l/z] , (19)

where p=(2m)!*Tm L.

The exponential dependence of j,, on the electron con-
centration can lead to noticeable effects. The sharpness of
this dependence is determined by other parameters, name-
lyby L, m*, and T. We can see from Eq. (19) that an in-
crease in their values results in an increase of this sharp-
ness, that is, in an increase of the field effect (although the
absolute value of j,, is getting smaller). A more detailed
discussion is given in Sec. IV.

Consider now the case when 2rTLm* /pg << 1 (e.g., the
low-temperature region, although the smallness of this ra-
tio can be caused by other factors as well). Assume that ¥
is small; then we can use Eq. (8) despite the inequality

L «<é&y.
We can pass from summation to integration
Q7T Ew,, — | do, see, e.g., Ref. 10) and we obtain
Jm < Ag[ci(b)sinb —si(b)cosb] , (20)

where ci(x) and si(x) are the cosine and sine integrals and
b=2LA,/Vg. If b>>1, we use the asymptotic values of
ci and si (see, e.g., Ref. 20), and we obtain j,, <pr/L. Itis
interesting to note that in this case j, depends on L not
exponentially, but according to a power law. The pres-
ence of the degenerate 3 electron system makes the pic-
ture different from the usual Josephson tunneling through
an insulator.

The field effect does not manifest itself strongly in the
low-temperature region. The effect is much stronger at
intermediate temperatures and in the region T~7T, [see
Eq. (18)].

C. “Dirty” case: Dependence on the concentration

We have considered a “clean” B system (§y <<I). This
case is realistic even for strongly doped materials (see
below, Sec. IV). In this section we consider the opposite
(“dirty”) case.

We use the method developed in Ref. 2; it is applicable
to a 2D system. Based on Eq. (11), we can obtain

A A
i =7T 4
Im =Y wzntwﬁ+A§>‘/2(wi+A§)”2

W(O,L;2i |, ).

(21)
Here

W(x1,x2,2i | @, |)

= | dp Go(xl,xz;—p ;—a),,)GO(xz,xi;p ;@) .
yJIB y B y

The bar denotes averaging over the positions of the im-
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purities. The function W satisfies the diffusion equa-
tion®! and can be written in the form?
1 cos(mkx /L)cos(mkx, /L)

W(x1,%x2,2i |0, | )=—
vx2,2 | | L,E_ 2| @ | ++(mk /LYPVEr,

(22)

T is the transport time between collisions. Based on Eqgs.
(21) and (22), we obtain

AzA
im=77T 3 (—1) m—
Im =¥ ,Z_ w,.2>0 (02 + A2 @l + A2)!172

1
X 1 22
2wy | +3(mk /L) VETy

(23)

If T > T* [an expression for T* will be obtained below,
see Eq. (26)], we keep only the term with n=0. Then we
arrive at the following expression (for simplicity we con-
sider the case A,=A,):

jm=7(m*/4pp)wrT)~2exp(—L /ED) , (24)

where &8 =(D/2nT)"*=(£51/2)"?, D=V}r/2 is the
diffusion constant, £y is the coherence length for the
“clean” system (see above), and

I =pVpmj/e (25)

is the mean free path (u is the mobility). A dependence
similar to (24) has been obtained in Ref. 3 on the basis of
the Ginzburg-Landau theory. The effect of localization
has been studied in Ref. 22. It has been shown that this
effect also results in a decrease of the coherence length.

One can neglect the terms n>1 [see Eq. (23)] if
(27T /D)L >>1; then these terms contain an additional
exponential smallness. Hence Eq. (24) is valid if T > T*,
where

T*=D/2wL?, (26)

or T*=Vgl/4wL?. For example, if u=5x10° cm?/Vs,
[~3%10% A, Vp=7X10" cm/s, L =4X 103 cm, we ob-
tain T*=0.1. K. A similar analysis can be used in the
3D case studied experimentally in Ref. 23.

We are interested mainly in the dependence of j,, on the
electron concentration because this dependence is related
to the field effect. We can see from Eq. (24) that the ma-
jor contribution to the dependence of j, on the electron
concentration N =N, (see above) as in the “clean” case
[see Eq. (18)], comes from the exponential factor

Jm x<exp{ —r/[Nu(N)]'?} , 27

or

Jm <expl—pg /N2, pg=pl#/7rT)V/?, (28)

where r =(2m*Te)!/2L, p is the quantity introduced ear-
lier [see Eq. (19)]. In addition to the direct dependence of
Jm on N, the field effect is affected also by the N depen-
dence of u.
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D. 1D case

In this paper we are concerned mainly with the situa-
tion when the coupling between two superconductors is
provided by a two-dimensional electron gas. However,
from the point of view of the field effect, it is interesting
to consider the Josephson current in the junction S,-Mpg-
S, with the B system being a 1D gas. It can be, for exam-
ple, an inversion layer limited in two directions. Mg can
be, for instance, a film of InAs, characterized by size
quantization in the y direction due to the small thickness
L,; quantization along the z axis, like in the usual case, is
due to the presence of an inversion layer. The electric
field is perpendicular to the plane. Here we consider the
“clean” case only. A more detailed analysis will be given
elsewhere.

Evaluation of the current is analogous to the 2D case
[see above, Eq. (16)]; one should not integrate over p,. As
a result, we obtain

m=rLm3’pi’T 3, Aglwn+A85)7"

@, >0
Xexp(—2w,mpL /pp) . (29)

We consider the case of two identical superconductors.
If 2nTLmg /pr > 1, then

Jm=vL(mpYpr *TAL (x TV + 5]~
Xexp(—27TmgL /pg) . (30)

Let us analyze the dependence of j,, on the electron con-
centration. In the 1D case, pr=27N;, where N; is the
linear concentration:

Jm <exp(—p/Ny), 3D

where p=p/27 [see, Eq. (19)]. The dependence of j,, on
the concentration becomes, generally speaking, stronger
than in the 2D case where j,, ~exp(—r/N3’%) [see Eq.
(19)]. Of course, the sharpness of j,,(N) depends on the
value of the quantity p (see Sec. IV), but one can expect a
strong field effect in the 1D case.

IV. DISCUSSION

We are studying the current-flow state in the system
Sq-Mg-S,. This state is described by Eqs. (19), (24), (27),
and (31). In this section we are going to discuss in detail
the field effect and various factors contributing to it.

A voltage applied to the system affects mainly the elec-
tron concentration. The exponential dependence of j,, on
the electron concentration results in a noticeable change
of the current. Of course, quantitatively, it is necessary to
take into account the pre-exponential factor, but the main
contribution comes from the exponential factor. The
latter is equal to exp( _f/N 172) in the “clean” case, and
to exp{—r/[Nu(N)]'/#} in the “dirty” case, where
p=(2m)'"?mp3TL and r =(2em*T)'/2L. Note that both
factors p and r increase with increasing m;,', T,and L. It
is important to stress that an increase of the parameters
mp, T, and L leads in both cases to a decrease in the ab-
solute value of the Josephson current, but at the same
time it leads to an increase of the field effect, that is, the
dependence j,, (N) is getting sharper. Indeed, if for exam-
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ple, r=2.2x10° V=2 cm~!s~!, then B=j,(N;)/
jm(N)=2, if N;=5x10" cm~2 N,=10" cm7?
w(N{)=4Xx10° cm?/Vs, u(N,)=6.5x 10> cm/Vs. If we
change some of the parameters m,'g, T, or L so that
B=4x10° V-'em~'s™!, then the ratio B is getting
bigger and becomes approximately equal to 6. Hence in-
creasing the effective mass mp, temperature, and the
length L is favorable to the field effect. Quantitatively,
we obtain different values of j,, in the “clean” and “dirty”
cases, but the nature of the dependence j,(mp,T,L) is
similar. Speaking of the dependence w(N), one should
note that this dependence can be nonmonotonic (see, e.g.,
Refs. 1 and 7). One can see directly from Eq. (27) that the
field effect is stronger if the electron concentration corre-
sponds to the region where u(N) is an increasing function
of N. For example, for InAs, u(N) is an increasing func-
tion of N up to N~10'2 cm~2"7 The subsequent de-
crease of u in the density N > 10'2 cm~2 is due to the fil-
ling of the next subband.” In this case each subband is
characterized by its own coherence length, and usually
En1>>Eno- The main contribution comes from the lowest
subband, but the mobility decreases sharply because of the
appearance of a new relaxation channel: intersubband
scattering. This case should be considered separately; this
will be done in detail elsewhere.

Equation (19) is valid in the “clean” case (if the condi-
tion L > &} is satisfied). As was noted above, this case
can be relevant even for heavily doped semiconductors.
The current is described by Eq. (19) or Eq. (24), depending
on the ratio 1/&y=(2m/e)umpT [see Eq. (25)]. One
should use Eq. (19) if (2m/e)umpT >>1. For example,
this condition is satisfied if p=5.5x10>° cm?/Vs,
m*=0.05m,, T~12 K.

Let us consider the system studied in Ref. 1. Assume
that the electron concentration changes from
N;=5x10" ¢cm~? to N,=10"2 cm~2 Assume that
T=2 K, L =3%x107° cm, and mg=0.025m,. All these
values are realistic for the inversion layer of InAs.! The
mobility x(N) changes from u(N;)=3.3X10* cm?*/Vs to
w(N,)=6x10* cm?/Vs. 1In this case, the ratio
1/&% =0.16 and hence the current is described by Eq. (24)
(dirty case). The dependence j, (N) is given by the factor
Jm < (uN)~V2exp[ —(uN)~'?/r], where r =(2mpTe)'/’L.
In our case, r~1.3x10® V—1/2s—1/2_ With the use of
these values of r, pu;, and N; (i=1,2), we obtain
jm(N2)/jm(N{)=~2.3. This is in good agreement with the
experimental data.!

Hence, the exponential dependence of j, on N results
in a noticeable change of the Josephson current. As was
noted above, an increase in temperature results in an in-
crease of the field effect. For example, if T=4 K and the
other parameters are the same, then j,,(N;)/j,,(N,)~4.2.
The values of T are restricted by the critical temperature
of the proximity system and the latter is related to T, of
the superconductors. From this point of view, it would be
interesting to study the field effect in systems containing
NbN, because T, non> T |no- Of course, an increase in
T leads to a decrease in the value of j,, but the ratio
Jm(N2)/jm(Ny) is getting larger.

Consider another numerical example. Assume that
T=12 K, L=2X10"% cm, mp=0.05m,, and p=>5.5
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X 10° cm?/Vs. Then [/£4~2. In this case Eq. (19) pro-
vides a more accurate description of the current. Then
Jm < N~ YZexp(—pN ~'/?), where F=(21T)l/2Tm L. If
N,=5x10" cm~2 and N,=10"7 cm~2 we obtain
Jm(N3)/jm(N{)=3.6.

In Sec. II we considered also the case when the B sys-
tem is a 1D electron gas. As was noted [see Eq. (31)], the
dependence pr o« N; leads to a possibility to observe the
strong dependence of j,, on N;. For example, consider
the situation when T=5 K, L=3x10"° cm,
m*=2.5%x10"% g, N;;=10° cm™!, and N;,=2X10
cm~!. According to Eq. (30), j,, < N %exp(—Tm*L/
N.). Then jp,(Ly)/jm(Ly)~2.7. If Ny ;=7.5X10* cm™!
and N;,=1.5X10° cm~! then j,,(L;)/jm(L{)=5.9.

Thus, the field effect is affected by a number of param-
eters (mE, L, T, u, N). This variety of parameters allows
to change the current in the desired direction.

V. SUMMARY

In this paper the state of the proximity system S,-Mg-
S, has been studied (S, and S, are superconductors, Mg
is a normal metal, semimetal, or a semiconductor). We
have focused on the current-flow state of the system for
the case when My is a 2D degenerate electron gas (inver-
sion layer, size-quantizing film). The main results are as
follows.

(i) Based on the method of thermodynamic Green’s
functions, a general method of describing the proximity
system has been developed. This nonuniform system is
described by a diagrammatic technique in the coordinate
representation [see Egs. (2), (2'), and (5)]. The nonunifor-
mity is due to the presence of different materials and the
coordinate dependence of the pair amplitude.

(ii) The Josephson current in the system has been
evaluated [see Egs. (10), (18), and (24)]. Its behavior de-
pends strongly on the temperature [see Egs. (18) and (24)],
thickness L, the mobility, etc. The “clean” and “dirty”
cases are analyzed.

(iii) The field effect is caused mainly by the dependence
of the current on the electron concentration [see Egs. (19)
and (27)]. The exponential dependence of j,, on N leads
to a noticeable effect. The magnitude of this effect can be
affected by the values of various parameters.

(iv) The effect of electric field on the Josephson current
has been observed experimentally in Ref. 1. A compar-
ison with the experimental data is carried out (see Sec.
Iv).

(v) The field effect in the case when My is a 1D elec-
tron gas is considered [see Egs. (30) and (31)].

ACKNOWLEDGMENTS

The author wishes to thank Dr. H. Takayanagi for a
valuable discussion and sending copies of unpublished
manuscripts. I am grateful to Dr. M. Beasley, Dr. M.
Gurvitch, Dr. M. Nisenoff, and Dr. S. Wolf for interest-
ing discussions. This work was supported by the U.S. Of-
fice of Naval Research under Contract No. N00014-86-
FO0015 and carried out at the Lawrence Berkeley Labora-
tory under Contract No. DE-AC03-76SF00098.



7594

VLADIMIR Z. KRESIN 34

APPENDIX

Let us note the following points.

(1) The Green’s function Gg(r,r',0,) satisfies the following equation:

Gg(r,r';0,

)=G(r,r;0,)+ fGOB(r,r;-;a),,)A(r,-,rK;w,,)FE(r';rK;w,, dridrg ,

(A1)

where A(r;,1;;m,) is the self-energy part describing pairing. Equation (A1) is a general one and is valid even in the case
of usual electron-phonon coupling. In our case of a proximity system, A(r;,r’;w,) differs noticeably from zero only in

the boundary region, which leads to the equation

Gg(r,r';0,) =G%(r,r’;a),, )+ f Goﬁ(r,r?,w,, ALY 0, )FE (r'; 1%, 0, )dridry

+ [ G0, ATE (5 %0, IF [ (1 )%, 1d ()% (£ )°

Here r'={0,p;,2;}, Tx = {O,yx,2x }, (£;)°={L,p;,z!}, (r )°
={L,yk,zx}, and the quantities A and A" are defined by
the relation

f A(I',',I'K,(Dn )dX‘de

=Ar%(rk )% 0, ]+ AT (rk)%w,] . (A3)

In the local approximation, A(r;,rg,m,)=A(r;w,)8(r;

—rg), and we obtain

[ Alr,0,)dx; =A100,) + AT (1) %0,] - (A4)

A'and A" are related to the values of the self-energy parts
in the regions near the a and y superconductors, respec-
tively.

The Josephson effect is described by those terms in the
Green’s function Gg which contain both quantities A’ and
A’. Separating the corresponding set of diagrams [see Eq.
(2) and Eq. (2"")], we arrive at Eq. (2').

Gg(r,rl,w,, )=

where r={x,p,z}, r'={x',y',z'}, and r;={x,y,,2,}.
the form

éoﬁ(r,r’,w,,)-f- f G%(r,r,,w,, )2(r, 0, )G%(rl,r',w,, )dr, ,

(A2)

f

(2) In order to solve Eq. (5), we put x=0, and then
x=L. As a result, we obtain a system of linear equa-
tions, which can be easily solved. We find

G(0,x";p,;0,)=[a(1—b})+ab]R ™",
G (L,x";py;0,)=[a;(1—c)+ac;JR ',

(AS)
(A6)

where R =(1—b)(1—c)—c,b; the quantities a, a,, b,
by, ¢, and ¢, are defined by Eq. (7). For the symmetric
Sqo-Mg-S, system, b=c; and b;=c. Note that the
quantities b, by, ¢, and c; contain an additional exponen-
tial smallness relative to a and a,. For example, b con-
tains the Green’s function G,g(L 0; —py; —@,) [see Eq.
(15)]; one can see that GJ(L,0;—p,; —w,)~e PRt 1
(the main contribution comes from the region where
l )"m" | ~PprF)-

(3) Let us write down the equation for the Green’s func-
tion G (r,r',0,) (in the absence of pairing)

(A7)

If we consider a 3D electron gas, then Eq. (A7) can be written in

G%(x,x';p—-p’;w,,):@ Oﬁ(x,x’;p—p’;a),,)—i- f G%(x,xl;p~p1,w,, )2(x1,p1,0n )G%(xl,x';p,——p';w,, dxdp, . (A8)

Equation (A8) is a general equation valid for any scattering mechanism, including the usual electron-phonon scatter-
ing. As is known, the electron-phonon scattering leads to renormalization of the Fermi velocity and the electron-phonon
coupling (see, e.g., Ref. 10). In our case, the scattering is connected with 8—a and B— ¥ transitions [see Fig. 2(a)]. This

scattering is described by the self-energy part 2(x;,p;) which is a sharp function differing from zero only in the

boundary region. Hence we obtain

G%(x,x';p—p';a),,)z f5OB(x,O;p——pl;w,,)Zl(pl,w,,)G?;(O,x’;p]—p’;w,,)dpl

+ f6%(x,L;p—p,;w,,)2’(p,,a),,)G%(L,x';p,——p

Here the quantities 3/ and 3" are defined by the relation

[ 3xipi0n)dx; =2Hp0,) + 2 prw,) . (A10)
The integrand in (A10) differs from zero in the regions
near x; =0and x, =L. =/ and 3’ describe scattering near
the left and right boundanes, respectively. By analogy
with A’ and A’ (see above), =' and =’ do not depend on py;
Fourier transforming in p, we obtain

wgp)dpy . (A9)

r
Gg(x,x";p;0, )=G %(X,x';p;wn )
+G §x,0;p;0,)210,)G(0,x"; 30, )
+G %(x,L ;P00 )2 (0,)Gp(L,x";p;0,) .
(A11)

This equation can be solved by analogy with Eq. (5). We
shall not write down the complete solution. It is easy to
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see that the presence of the self-energy parts 3/ and 37
leads to renormalization of the Green’s function. The
value of the renormalization factor depends on p, and T.
In the region of small p, [this region makes the major
contribution to the Josephson current, see Eq. (16)] and ei-
ther at T~T, or in the intermediate temperature region,
this factor is small: 7(T /ep)pra << 1 [¥ is defined by Eq.
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(14), the length a corresponds to the atomic scale, so that
pra~1].

We shall also estimate the contribution of the diagrams
in Fig. 2(b), that is, terms of the type G(x,0;p,;
0, )AG (0,0;py;w,)A. One can see that these terms are
small ~(T,|A,|)pra~(T./€p)pra <<1, and these dia-
grams can be neglected.
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