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Rayleigh scattering and weak localization: Effects of polarization
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The scattering of light from a disordered medium is considered. The effects of polarization and
the transverse nature of the light on the coherent backscattering arising from weak localization phe-
nomena are calculated. The angular line shape of the scattered light in an infinite medium and the
reAected light from a half-space and a slab is found. The scattered light contains several com-
ponents and the line shape is different from that found for scalar ~aves. The results are in qualita-
tive agreement with recent experiments.

I. INTRODUCTION

The scattering of light by an inhomogeneous medium is
a problem of importance and one that has a long history.
Ro:ently this problem has become one of renewed interest
because of the possibility of observing weak localization
effects associated with light waves. The case of light is
interesting because it provides the opportunity of looking
in detail at the elastic scattering and interference effects
associated with weak localization. ' For electrons in a
disordered metal, the details of the scattering of the elec-
trons by impurities is less accessible and inelastic effects
are generally more important. Localization is essentially a
one-body problem and the statistics of the particles or
waves is not important. Thus the same theory that ap-
plies for electrons should also apply to other wave phe-
nomena. For light, as we show below, there are interest-
ing effects associated with the polarization and transverse
nature of the light waves.

In most treatments of the scattering of light from a
disordered medium, the scattered hght waves arising from
different multiple-scattering paths are treated as being in-
coherent. However, it is now well known that even in a
disordered medium a wave scattered through a certain
multiple-scattering path can interfere coherently with
another wave which follows the time-reversed path. The
interference is most important for light scattered in the
backward direction. This interference effect was recog-
nized some time ago and presumably is the only impor-
tant interference effect remaining in a truly disordered
system. A recent detailed discussion for the case of elec-
trons in metals has been given by Bergmann. ' In recent
theories of weak localization of electrons in metals this
interference effect is the important physical effect.

It is interesting to note that enhanced backscattering of
light can also occur from a sufficiently rough surface. If
there is a path for the light into the surface, then there is
also a path out in the backward direction. This effect
should be enhanced by the coherent interference of time-
reversed waves. In this paper the scattering of the light is
assumed to occur in the bulk.

In the case of light, early work concentrated on the dif-
fusion constant. ' More recently, the coherent back-
scattering of light from a disordered medium has been ob-
served by van Albada and Lagendijk, Wolf and Maret,

[V'+k'( I+a'(r)]E(r) =j(r), (2.1)

where k =rulc, j is a source, and e' is the random part of
the dielectric constant with zero mean and correlation
function

k (e'(r)e'(r')) =65(r—r') . (2.2)

and Etemad. In the case of scalar waves the line shape of
the coherent back scattering from a half-space has been
considered by Golubentsev and by Akkermans, Wolf, and
Maynard. ' However, it is clear from the experiments
that there are interesting polarization effects and that the
line shape is more complicated and interesting than that
found for scalar waves. In this paper we consider the
scattering of polarized electromagnetic waves from a
disordered medium and find the angular distribution and
polarization dependence of the light coherently backscat-
tered from a disordered dielectric medium. It is found
that for polarized scattering the backscattered light has a
narrow component (in angle) of the form found in Ref 10.
superposed on a broader, roughly Lorentzian component.
The depolarized scattered light consists of two roughly
Lorentzian components, the weaker of which is destruc-
tive. Some preliminary results were given recently. "
These results are in good qualitative agreement with the
recent experiments of Etemad.

The paper is organized as follows. In Sec. II, in order
to establish a theoretical foundation, we discuss the effects
of weak localization on scalar waves, and in Sec. III we
determine the line shape for the scattering from a half
plane. The results obtained agree with those of Ref. 10.
In Sec. IV we generalize the theory in order to take into
account polarization effects and the transverse nature of
the light waves. In Sec. V we determine the effects of po-
larization on the line shape for the backscattering from a
half-space. These calculations are made for isotropically
polarizable scatterers. The theory is generahzed to the
case of anisotropic scatterers in Appendix C. In Sec. VI
we discuss the results and make a coinparison with experi-
ment. In Appendix D we give an expression for the light
reflected from a slab of thickness L.

II. SCALAR WAVES

The field E of the radiation of frequency co and velocity
c satisfies the wave equation
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Equation (2.1) can be rewritten

E(r)= f D'(r,pj)(p)dp, (2.3)

where D' is the retarded Green's function of (2.1). The
coherent part of the field, E, is obtained by averaging (2.3)
(the bar indicates an average over e'}:

E(r)= f D(r —p)j(p)dp . (2.4)

The Fourier transform of the average Green's function D
in the effective medium or coherent potential approxima-
tion is D '(q)=k q —Xw—here ( Vis the volume)

I (R,r) =E(R+r/2)E'(R —r/2) . (2.7)

J(R,s)=2 f q dqI (R,qs) .

The correlation function (2.7) satisfies the equation

(2.8)

The Fourier transform of this quantity with respect to r,
I {R,q), is proportional to the intensity of radiation at R
with wave vector q. We also define a related quantity,
J(R,s), proportional to the intensity of radiation at R
traveling in the direction of the unit vector s, by

X=6/VQD(q) . (2 5) I {R,r}= E{R+r/2)E '(R —r/2)

In this approximation the mean free path is I
=k/X;=4m/S„where X; is the imaginary part of X.
The mean free path is of the Rayleigh form, i.e., I-co
From (2.5) the identity

+ D R+r 2 —p~ D* R—r 2 —p2

p3+p4
&&P(pi ++4)f'

2 p3 p4— (2.9)

V

is obtained.
The correlation function of the field is defined by

(2.6)
where P is the vertex part. In the weak scattering limit
we can calculate P by a perturbation method. According
to the thixiry of weak electron localization, in this limit
we must include the ladder and maximally crossed
graphs. ' These graphs give

P (Pre~. ) = »{Pi—] 2+(P~ —P.)l&(pi —Pi)+~ lD(pi —p» l

'+ .

+~~(pi P4)6(P2 P—3)l ~ I
D {Pl P3) I

'+ ] (2.10)

Q(E)=—QD(p+K/2)D'(p —K/2) .
V

(2.12)

Owing to the identity (2.6), for small K,
Q(K) —1 E / /3. Thus the fir—st term in (2.11) has the
diffusion form and the second term representing the
coherent back scattering peaks strongly in the backward
direction q+p=O. When the field is slowly varying in

space we can neglect the K dependence of the prefactor in
(2.11) and write

In the case of an infinite space we can sum these graphs
by taking the Fourier transform of (2.9} (omitting the
coherent terms}

I (K,q) = ~(q+K/2)D'(q —K/2)

1 1 Q(q+p)
V ~

1 —Q(E) 1 —Q(q+p)

(2.11)

where

fi(s s')= 1

V2( 1+cos8)[P+v'2( 1+cos8) ]
(2.15)

III. REFLECTION FROM A HALF-SPACE

%e suppose that the scattering medium occupies the
half-space z & 0 and that the light is incident normally on
the half-space from z &0. In (2.9), we omit the coherent
terms and evaluate I {R,r) at R=O. In the case of weak
scattering, we can replace I on the right by the coherent
part of the field, i.e.,

p3+pcI
2 p3 p4 -E(pi)E '(p4)

where P= 1/kl and s*s'=cos8. The cross section f,
diverges in the backward direction 1+cos8=0 and has a
width 8-P. This divergence is a consequence of the in-
finite space and the corresponding infinite number of dif-
fusion paths. In reflection from a half-space or a finite
geometry the extent of the diffusion paths gets cut off and
the cross section becomes finite.

I {K,q) =—f (q)J(K,s),1

k
(2.13) The change of variables

where f(q) =
~

D (q)
~

X;/m. Then, integrating (2.11) over
the magnitudes of q and p

p) 2
——R)+p/2, p3 4——Rq+p'/2,

pi, 4=RE —+p~» p2, 3=R2+p ~2 ~

(3.1)

J(K,s)= f ds' +f, (s s') J(K,s'), (2.14)3, k

4+k I E
where"

in the two sets of terms (2.10), respectively, brings them
into the diffusion form, and substituting in (2.9) gives the
intensity of the light reflected from the plane z =0 in the
direction s
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J(s)=b, f dRidR2 F(s,Ri)P" '(Ri —R2) iE(R2) i +F s, P' '(Ri —R2)e ' 'E(R2)E'(Ri) (3.2)

where J(s)=J(R =O, s), and

F(s,R)=2 f q dq f dre ''1'D ——R D' —+R
2 2

(3.3)

The quantities P' ' in (3.2) are both of the diffusion form (I. and C denote ladder and crossed graphs, respectively)
with Fourier transforms

1 3

1-Q(l(;)

p(c)(~) Q (I(.') 3

1 —Q(j') X'i'

(3.4)

The solution to the half-space problem is obtained from the infinite-space case by the method of images. We restrict the
integrations in (3.2) to the half-space z &0. The diffusion propagators P are required to vanish on the plane z =0. A
slightly better approximation is to require these propagators to vanish on a plane z = —zo with zo-l. In the interest of
simplicity we will ignore this detail, and thus P in (3.2) are replaced by

P' ' '(Ri —R2) [P' ' '(xi —x2, yi —y2, zi —z2) —P' ' '(xi x2 yl y2 zl+z2)] (3.5)

ik "R—s/2l
The coherent field in (3.2) is E(R)=Eoe where k; is the incident wave vector (along z). The function F(s,R) is
well approximated by (see Appendix A)

F( —z, R)=me '~'5(x)5(y), (3.6)

where z is a unit vector along z. Substituting the above results in (3.2), we obtain for the light reflected close to the back-
ward direction

J(s)= Eo dzidz2d rexp[ —(zi+z2)/1]P(r z, ,z2)(l+expfik[s r+(1—s z)(z2 —z, )]I }
3h 2

41
(3.7)

where

1P( r,zi, z2) =
2 1/2fr +(zi -z2) ]

1

[&2+(z +z )2]1/2

(3.&)

k(1 —s z) (z2 —zi)-(1+cos8)kl

and r is a two-dimensional vector in the x,y plane. This
result agrees with that of Ref. 10. The term

IV. POLARIZED LIGHT

The previous results are easily generalized to include
the effects of polarization of the light. The vector field
E;(r) of the light satisfies the wave equation (2.1) with
V E=O. A term V[K.V in(1+@')] has been omitted from
(2.1) which is small if the disorder is slowly varying. We
begin by assuming that the scattering is due to isotropical-
ly polarizable particles, i.e., e' is a scalar. In Appendix C
we consider the case of anisotropic particles. The average
Green's function of (2.1) is now of the form

is small for n 8-1/kl. —Neglecting it and carrying out
the integrals (see Appendix 8)

DJ(q) =5;J(q)D(q), (4.1)

31rkl 2 1

(ril+1)'
(3.9)

q is a unit vector,

X= QD(q),26

where 5,
&
(q) =5;~ q;qj. , —

D '(q}=k q Xand— —

where g=k sin8 and 8 is the angle between s and the z
axis. The intensity in the backward direction (ri=O) is in-
creased by a factor 2 over the background and the
coherent backscattering is confined to a cone of angular
width 8-1/kI. This result was obtained by Akkermans,
Wolf, and Maynard, ' who also include the effects of the
more accurate boundary condition. This line shape only
applies in the scalar case, and we now consider the effects
of polarization.

I,J(R,r}=E~(R+r/2)EJ'(R —r/2) . (4.3)

We first examine the case of scattering in an infinite
medium. Equation (2.11) now becomes (repeated indices
are to be summed)

and (2.6) is replaced by 1=26,/3VQ ~D(q)
~

. The
mean free path is l =6@lb. The correlation function of
the field is a tensor
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(s(K,q)=AD; (q+K/2)Ds"„(q —K/2) —g ms rs + ms rs) ('„(K,)s),1 1 Q(q+p)
V 1 — K

P q+p
(4.4)

where the matrix Q is given by

Q „„,(K)=—gD „(p+K/2)D'(p —K/2) . (4.5)
y PRE'

o'j ' ' g——[5;,(s)5jb(s)+5;b(s)5j, (s)]5 5,bf,'b ' '(K),
ab

(4.13)

Q „(0)=,(, (65,5 +5 „5 +5 5„„), (4.6)

In order to evaluate (4.4), we require the eigenvectors and
eigenvalues of the matrix Q, and these can be found by
expanding Q in powers of K . The eigenvectors can be
found from

(c i) 5i~ +i~ 3 (i)
irijrs =

2 2 f (S'S') slk
o';; "=5;,(s)5 „(s)(35 —1)f' '(k(s+s')),

oIj ' ' ——+[5;,(s)5jb(s)5b, 5,„+5;,(s}5j,(s)5,b5,b]
ab

(4.14)

(4.15)

and using these eigenvectors, the eigenvalues can be found
to order K from the expansion of Q (K). The normalized
eigenvectors and eigenvalues l(, are given by where

~f(C3,4)(k ( (4.16)

5 /3/3, l(, )
——1 K l /3—, (4.7)

5„(5„,+r05„„+a) 5„,)/~3, A, 2 ———„(1——,
' K I ),

(4.8)

f(L 2)(K)
9+7K'l'

(L 3)(K)=
35(1—5,b)

21+(23K —10K, 10Kb )l—

(4.17)

(4.18)

and the complex conjugate (co=e ' ),

(5 5,b+5„b5„)/v2,
l2

(23K —10K, 10Kb ), —
10 70

l2

10
(3K 2K, 2Kb )—, —

(4.9)

as in (2.13). After integration over the magnitudes of q
and p we obtain the generalization of (2.14}

J~j(K,s) = ds'[o', j '(K)+o,'j '(s, s')]J (K,s') .
8~

(4.10}

Each of the cross sections in (4.10}can be written as the
sum of four parts corresponding to the four types of
eigenvectors in (4.7)—(4.9). Thus

4
(L,C& ~ (I., C,i)
iJPS ~ EJPS

i=1

where a, b =x,y, z and a&b This give. s a total of nine
eigenvectors as required.

We use these eigenvectors and eigenvalues in (4.4) and
write

I ij(K,q)= —f(q)J j(K,s)
1

(L4) 5( 1 —5gb )(K)=
5+(3K —2K —2K )l

f(c2) & f(L2) f(c3) 7 f(L3) and f(c4) ) f(L4)
10 ~ 10 2

The upper and lower signs in (4.13) and (4.16) apply to the
indices 3 and 4, respectively.

The form of the scattering in (4.10) is simply illustrated
by considering light being scattered from s' to s (see Fig.
1) so that Eq. (4.10) is

(4.19)

Jj(K,s)= o;,„(s,s')J'(K, s') .IJrS (4.20)

S

%e choose the x axis perpendicular to the scattering plane
defined by s' and s and the y axis in this plane and per-
pendicular to s. Thus for the incident light J' =J',
Jzz ——cos 8J', Jr =sin 8J', where 8 is the scattering an-
gle. For the scattered light J~ =Jq and Jyy Jll Equa-
tion (4.20) can now be written

where

o'; '= [5; (35;„—1}—s;s.(35;,+35 „—1 —3s„)]

x5„f""(K)

(4.11)

(4.12)

FIG. 1. Scattering of light from s to s. J&,J& and Jil, Jll are
the incident and scattered intensities perpendicular and in the

scattering plane, respectively.
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+(3cos 8—1)f' )(K)+cos 8 +2f' ' +sin 8(f~ ' f—~ '} JI)

f(L 2)(I(.)+f(C3) f(C4)

8~ xy xy (4.21)

J f(L2)(g ) + os28(f (ci) f(c4))+sin28(f (c ) f(c )) Ji3 1
xy xy xz xz

3 1 r(1)
+2f(L2)(g)+ f s's +2f(C2)

8 k l
(4.22)

The first two terms in each of the large square brackets
are the Rayleigh scattering terms and the last two terms
in each bracket arise from weak localization. The argu-
ment of f is f(k(s+s')) if it is not explicitly included.
We discuss these latter terms. The most important back-
scattering term is f"'(s s') [Eq. (2.15)] which preserves
the polarization. This term was discussed in Ref. 11. The
most important depolarizing term of the backscattering
terms is

The line shape of the depolarized light (4.23) is approxi-
mately Lorentzian and very different from the polarized
component (2.15). These results apply in the case of the
infinite medium. In order to compare with experiment we
now consider scattering from a half-space.

V. REFLECTION OF POLARIZED LIGHT
FROM A HALF-SPACE

(C3) (C4)f.y f.y- 49

21+k 1 [46(1+cos8) —10sin 8]
5

5+k 1 [6(l+cos8)—2 sin 8]
(4.23)

%e consider the same geometry as in Sec. III in which
light polarized along x is incident normally on the half
plane z & 0 occupied by the scattering medium. Equation
(3.2) for the light intensity reflected from the plane z =0
generalizes to

J;,(s)=h f dRidR2 F(J~„(s,R))P~„'„(Ri—R2)E„(R2)E,'(R2)

(5.1)

where

Fz „(s,R)=2 f q2dq f dre 'q'D; (r/2 R)DJ'„(r/2+—R) (5.2)

and the kernels P' ' ' each consists of four parts
4

p(L, C) g p(L, C, i)

The Fourier transforms of these quantities are

P'„„"(I(:)=5„5 /I(: I

P'.~«}=5~.4(35m. 1)f""«—»
(5.3)

(5.4)

I

f (Li) b f(Ci)

The light scattered from the half-space is now obtained
as before from (5.1) by restricting the integrals to the half
space z &0. The kernels (5.3}—(5.5) are calculated in real
space and the boundary conditions satisfied by the method
of images as in Eq. (3.5). The coherent field on the right
in (5.1) is E,(R)=E05 e ' with k; along z. In the
above geometry F in (5.1) is

P"„„'"(I(.)=g(5 .5 +5,5 )5„5„f(,""(IC).
ab

(5.5)

P~„'~ is obtained from I'~„'~ by interchanging the indices
n and s on the right-hand side of (S.3)—(S.5) and replacing

FJ.„( z, R) =me II—5,.5J„5(x)5-(y) . (5.6)

The above results are substituted in (5.1) and the inten-
sities of the light reflected close to the backward direction
polarized along x and y, respectively, are

AFJ (s}= dz)dz2d re ' ' [Po (r,zi,z2)+e' "Po (r,zi,z2)],
=0 2 zl+ 2) I (L) iks r (C)

4I
(5.7)

AE0 —(zl +z~ )/I iks rJ~(s)=
3?F 4I 2 dz, dz2d re ' ' [P)(r,zi,z2)+e' "P2(r,zi,z2)] . (5.8)
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As in (3.7), we have neglected the small term
k(1 —s.z)(zi —z2). The four kernels in (5.7) and (5.8) are
each of the form

P, (r,z) = (1——,e ),—L]/li

1

(5.12)

P;(r,zi,zi) =P;(r, zi z2—) P;—(r, zi+zt } (5.9)
49 Li—lti 5 L3—l&3

26L2 2L3
(5.13)

P' '(r,z)= (1+2e ' '),I.i

(5.10}

(5.11)

We substitute (5.10)—(5.13) in (5.9) and then in (5.7)
and (5.8) and carry out the integration (see Appendix B).
The refiected intensities are

1 20 1

(1+rII) 7 (1+I/I i
)2

7/10

1+—(1+rI I i
)'~1

Ii

(5.14)

JYr(s)=C 1—lO 1
2+(1+I/I i )

49/46

~ 1+—[1+g'(I' )']'"I

l2

5/6

[1+~2(I~ )2]1/2I

l3

2 (5.15)

where (lt) = z', I, (!3) =I /5, rI=ksine, and

C =nhEOI/2. These results give the diffusely reflected
light from a half-space close to the backward dire:tion
8-n. The incident light is polarized along x and thus
(5.14) gives the polarized component and (5.15) the depo-
larized component.

ized backscattering is shown in Fig. 2. The sharp peak
present in the polarized scattering is absent in the depolar-
ized part again in qualitative agreement with Etemad s re-
sults.

I.Q

VI. DISCUSSION

We now discuss the form of the coherent backscattering
from the half-space (5.14) and (5.15) and compare with
the experimental data of Etemad. For polarized scatter-
ing (5.14) the intensity in the backward direction (tI =0) is
increased by a factor 1.9 over the background (tII &1).
The backscattered light has two peaks: the second term in
(5.14) which was given by Akkermans, Wolf, and May-
nard, ' and the fourth term which is approximately
Lorentzian. The relative heights of these two peaks are 1

and 2(1+I/I, ) =0.44 and their widths at half max-
imum are Hi~2

——0.414/kl and Hi&z
——1.67/kl, respectively.

These results are in good qua1itative agreement with the
results of Etemad. A plot of the angular dependence of
the backscattering is given in Fig. 2.

For the depolarized scattering (5.15) the intensity in the
backward direction (rI=O) is increased over the back-
ground (rII~ 1) by a factor of 1.2. The backscattered
light again has two peaks, the third and fourth terms in
(5.15). The negative sign of the fourth term indicates de-
structive interference. The relative heights of these two
peaks are 0.28 and —0.16 and their widths are 1.97/kl
and 3.17/kl, respectively. The fourth term in (5.15) is
thus quite broad and may be difficult to distinguish from
the background. The angular dependence of the depolar-

Q,S—

I
—06—
(f)

W Q.4—

0.2—

'
~ . (a}

(b)
~I-

~ ~
~Issggg

~ ~
~ ~ ~ ~ ~ ~ ~ ~

] 1

6
ANGLE (degrees)

10

Q 4

0,3—

{f)
Z 0,2—

(c)
QI—

0
0 6 8

~OGLE (degrees)
IQ

FIG. 2. The angular dependence of the coherent backscatter-
ing for kI =10. Curves a and b are the two polarized com-
ponents [the second and fourth terms in Eq. (5.14)] and c the
depolarized component [the third and fourth terms in Eq.
(5.15}].
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APPENDIX A

We calculate F(s,R) in Eq. (3.3) with

0.4

I I I

4 6 8
ANGLE (degrees)

10

D(R) =

1
exp ik ——R

2!

0.3—

(7) 0.2—

(c)z'
O. l

Then for r ~R,
Tr, r exp( ikR —r/R —R /l)

(4mR)

and substituting in (3.3) gives

0 I I I

0 2 4 6 8 IO

ANGLE (degrees)

FIG. 3. The angular dependence of the coherent backscatter-
ing for kl =10 for a slab of finite width I.=10l. Curves a and
b are the two polarized components [the second and fourth
terms in Eq. (D5)] and curve c is the depolarized component
[the third and fourth terms in Eq. (D6)].

F(s,R)= e "/' f q dq5(q+kR/8) .

For q along —z we get

F( —z, R)=n e '/'5(x)5(y) .

(A2)

(A3)

APPENDIX 8

The integrals required to evaluate (5.7) and (5.8) are all of the form

f dz, dz, f d rexp(iq r)exp[ —(zl+z2)/l] exp( [r +(—zl —z2) ]' /ll)
0 [r2+ (z —z )2]1/2

exp( [r +(z, +Z2—)2]'/ /l, ) .

[P2+(Z +Z )2]1/2
(81)

Introducing a new variable u =zl+z2 in the two te~s in the square bracket rmp~tively and integrating over the
remaining z variable (81) becomes

du(l —u)e " d re''2' 1
exp[ (r'+u—'}'/'/l ]0 (P2+ u 2)1/2

This reduces to

(82)

, 2, /, f du(l —u)exp[ —u(1+q'l', )' '/l, u/i]—
(1+q'l', )'/'

2@i
'2

1+—(1+q'l', )'/'
1

(83)

The remaining integrals can b obtain~ by setting q =0 and/or l 1
—M in (83)

APPENDIX C

In this Appendix we generalize the previous results to
the case where the particles responsible for the scattering
have an anisotropic polarizability. The dielectric constant
fluctuations in (2.1) are replaced by a tensor 5e', (r) with
correlation function

k'(5e, (r)5e (r'))=a5(r —r)C „
where

C „= [(1—2y)5, 5 +y(5 „5 +5,5„„)].
1

PANTS

(C2)
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y is a measure of the anisotropy and is given bg
y=(a b—)/(3a+2b) where a =a, +az+a3,
6 —0 $EZ2 + (x2cK3 +(x3A $ and the a are the principal polari-
zabilities of the scattering particles. For a low density n

of scatterer I( -16m nk a/3 T. he eigenvectors of C „„
are the same as those of Q „~(0) given in (4.7)—(4.9).
The corresponding eigenvalues denoted by k' are

f~(L2)(I(.) Y f(L2)(It I
1+9y

f~(L3)(g) Y f(L3)(IC I )
1+9y

fr (L4)(g )
Y f(L4)(g I )

1+7y

(C4)

1+2y ' + 1+2y ' 1+2y
In (4.4), 1/(1 —Q) and Q /(1 —Q) get replaced by
C/(1 —CQ) and CQC/(1 —CQ), respectively. The fact
that C and Q have the same eigenvectors means that the
cross sections (4.17)-(4.19) get multiplied by certain scale
factors depending on (C3). Thus the f functions in (4.12)
and (4.13}are now replaced by

fi(C2)(g) Y

1+2y

fv (C3)(g) Y

1+2y f(C3)(g I
1+9y

fi (C4)(It) 1 3Y

I+2y

These same factors then carry over into (4.21), (4.22),
(5.4), and (5.S).

The reflected intensities from the half-space (S.14) and
(5.15) now become

where I, =(1—y)l /(1+9y) and Iy=(1 —3y)l /(1+7y).
The notation on the right-hand side of (C4) means for ex-
ample that in f' )(K) of (4.17) I is replaced by I, and the
whole function multiplied by a factor (1—y)/(1+9y). In
a similar way the f functions in (4.1S) and (4.16) are re-
placed by

J~(s)=C 1+ 1 20 1 1 —y2+
7/10

(1+2)l) 7 (1+1/I„) 1+2y [1+Ill),(1+212l„))/2]2

10 1 49 1 —y 1

7 (1+I/1), ) 46 1+2y [1+l/12, (1+21 12, )' ]

5 1 —3y 1

6 1+2y [1+I/13b(1+v'I'3'b)'")'
(C7)

2 7 2 2 23 2 2 3 2 13
where li, ———,1„12,——» 1„13b———,Is, and (12, ) = » I„
(13$) =ls/5. We thus see that polarizability anisotropy
of the scattering particles does not qualitatively change
the results.

This can be achieved by the method of images but an in-
finite set of images is required. Thus (3.5) and (5.9) are
replaced by

P(r,z(,z2)= g [P(r, zi —z2+2Ln)

APPENDIX D P(r, zi+z2+2—Ln)) . (Dl)

In this Appendix we give the expressions for the reflect-
ed intensity from an infinite slab of thickness L. We con-
sider the same geometry as in Sec. V in which light polar-
ized along x is incident normally on the slab which occu-
pies the region O~z ~I.. The boundary conditions that
we use are that the diffusion propagators (3.5) and
(S.10)—(5.13) vanish on both surfaces z =0 and z=L.

J(s)= E()[I(0}+I(rll)),
2

where (L'=L/I)

(D2)

The expressions (3.7), (5.7), and (5.8) can be evaluated as
before. In the case of scalar waves

I(x)= x —e ' "+"'+(1—x)e ' + e ' (1—e " "')
x(1+x} 1 —x

—2L 'x
e

~
—21.'x

~
—I.'{1+x) e

—L'{1—X)
'2

1 —x
(D3)
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I(0)=1—4e +3e +2I. 'e —,(1—e I—.'e ) (D4)

In the case of polarized waves, (5.14) and (5.15) are replaced by

(s) =C II(0)+I(ril)+ , I—(1/1))+2I [(1+g If )'~ 1/1)]I,
Js~(s)=C(I(0)—", I(—l/1,)+ ,",I[—[1+rl(lz) ]' 1/12I ——', I[[1+g (1', ) ]' 1/13I) .

A plot of the angular dependence of the backscattering is given in Fig. 3.
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