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An icosahedral crystal in the non-Euclidean three-dimensional space S models domains of
icosahedral order in metalbc glass. Crystal symmetries allow explicit construction and classification
of vibrational eigenstates. %e evaluate phonon frequencies numerically. Long-wavelength, low-

frequency vibrations follow the predictions of continuum elastic theory in S3, and of a hypothetical
perfect icosahedral crystal in I . Isotropy of elastic moduli distinguishes icosahedral order from
face-centered-cubic order.

I. INTRODUCTION

Polytope 120 (a close-packed, icosahedral crystal can-
sisting of 120 atoms in S } models local order in metallic
glass. ' I Structural and electronic properties of the poly-
tope approximate corresponding physical properties of
real glass in fiat space. This paper addresses the
acoustic and vibrational properties of Polytope 120. Iso-
tropy of the elastic moduli distinguishes close-packed
icosahedral order from face-centered-cubic order. s Isotro-

py of elastic moduli is shown to arise from the high sym-
metry of the icosahedral point group. Soft modes are
suppressed because the polytope contains only tetrahedral
cells, which resist distortions more effectively than octahe-
dra.

Continuum elastic theory describes long-wavelength,
low-frequency vibrations of crystals. Section II of this pa-
per develops continuum elastic theory in the three-
dimensional curved space S . We generalize elastic free
energy and strain tensors to non-Euclidean space and
derive the spectrum of phonons on S .

Section III of this paper addresses the spectrum of pho-
nons on the polytope. We assume atoms interact with
their neighbors through the potential 4(s)=4/s', where
s is the Euclidean distance between atoms. Symmetries of
Polytope 120 allow explicit construction of vibrational
wave functions transforming under irreducible representa-
tions of the symmetry group. We evaluate the frequencies
of these vibrational modes. Finally, we discuss the rela-
tionship between continuum elastic theory and the poly-
tope vibrations. Elastic constants are calculated and com-
pared with a hypothetical perfect icosahedral crystal in
R

The remainder of this Introduction develops the
mathematical tools required to describe and manipulate
vector fields in S . We use quaternions to label points in
S . Quaternion multiplication provides a convenient set
of local coordinate systems and simple expressions for co-
variant derivatives. Vector fields in these coordinate sys-
tems may be expanded in terms of vector spherical har-
monics. We investigate properties of these harmonics.

u=u e GR

v=v e ER
(l.la)

(l.lb)

The quaternion product of u and v is

uv=(uovo utvj )—eo+(uov'+vou')e, +s'tkujv~e;,

(1.2)
where i,j,k E t 1,2, 3 I. The inverse of u is

u =u eo —ue;.—1

Quaternions may be added together by

u+v=(u +v }e

We also define the dot product of two quaternions

(1.4)

o'v —u v

The group of unit quaternions,

Q=Iu~e: u u, =lI,
is isomorphic to SU(2} through the mapping

Q +EQ EQ +Q
u=u eaEQ~u=, , o . , ESU(2) .

Eu —Q Q —EQ
J

(1.6)

Tlilis the 1cosa11edial symmetry gl'oup F CSU(2) call
be embedded in Q. Because of the isomorphism between
I" and Polytope 120, the four components of each quater-
nion in F' are the four Cartesian coordinates of each
atom in the polytope. " Furthermore, Q is isomorphic
to the unit s~phere in four dimensions, S . Thus the sym-
metry group of S,

SO(4) = [SU(2)x SU(2)]/Z, .

A. Quaternions

Previous studies of Polytope 120 exploited the isomor-
phism between S and the group SU(2) (Refs. 6, 7, and
10). In this paper we exploit an additional isomorphism
between the vector space R and the ring of quater-
nions. " Consider
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~A A ~A Ae 1/21/2 eo+~e 3 e 1/2 —1/2 ~e1+e2

e —1/21/2 ~e 1 e 2 e —1/21/2 e 0 ~e 3

(1.9}

which form a basis for the (1,1) irreducible representation
of SO(4).

Two inequivalent, orthonormal, local coordinate sys-
tems for R at u6 Q are furnished by

e (u)=e u,
e (u) =ue

(1.10a)

(1.10b}

We will always work in the coordinate system
e~(u)=e~(u). The outward normal to S3 at u is
e0(u)=u. The remaining coinponents e (u) (a=1,2, 3}
form a right-handed local coordinate system for S .

Misner, Thorne, and Wheeler' discuss the differential
geometry of SO(3). They find that the connection coeffi-
cients of S are given by

a a (1.11a)

the commutation coefficients are

We refer to the set SU(2) = I(i,r)6 SO(4}: i =r I as the
"diagonal subgroup" of SO(4). Irreducible representa-
tions of SO(4} are denoted by integers (M, iV), where M/2
and N/2 label corresponding irreducible representations
of SU(2). Irreducible representations of the form (M,M }
are "diagonal irreducible representations" and describe
scalar fields on S . Note that the SU(2) inatrix elements
may be associated with the four vectors

C,b ———2F.b, ,

and the Riemann tensor is

(1.11b)

0;b it', b +a bc' (1.12)

B. Vector hyperspherical harmonics

Vector hyperspherical harmonics' ' provide a com-
plete set of basis functions in which to express vector
fields on S . The harmonies may be defined by their
transformation properties under SO(4}. In this section we
derive expressions for vector hyperspherical harmonics
and analyze the differential equation they obey.

The most general vector field on S3 may be written

f(u)=g (u)e (1.13)

where f (u) are scalar fields. Expanding the scalar fields
in hyperspherical harmonics, substituting the (1,1) irredu-
cible representation (1.9) of SO(4) for the usual R ~ basis
e, and exploiting the relationship (1.8) between SU(2)
and SO(4), we find that a complete set of vector fields on
S is given by'

(l.1 lc)

The factors of 2 by which Eqs. (1.11) differ from Misner,
Thorne, and Wheeler arise because they discuss the rota-
tion group SO(3), not the sphere S . The covariant
derivative of a vector field P' is

Ybibr br m m (u) = g
pi»
a, b

M/2 M i /2 —,
' M/2 M3/2

p iii i g v yii b M,pv ~ ab (1.14)

Equation (1.14) multiplies the (M+1) dimensional
scalar hyperspherical harmonic (M,M) by the four-
dimensional vector representation (1,1), yielding two diag-
onal representations (M+ 1,M+ 1) of dimension
[M+(1+1)] and two off-diagonal representations
(M+1,M+1) of dimension M(M+2). One can easily
show that the off-diagonal vector fields are tangent to S .
The 2M +4M+4 diagonals are not, in general„ tangent
to S . In fact, one can show that M linear combinations
form vector fields normal to S transforming like the
M —1 hyperspherical harmonic. The other (M+ 2)
linear combinations form tangential vector fields.

Interesting special cases of Eq. (1.14) include

Y]0i 0+i(u) = [ie", (e)+ei (u)],
6i

~102,00(u) . e 3 (u)
3l

(1.15b)

,(u) = &M, ,(u}e0(u) (1.16)

which we recognize as left and right screws. Also, we
find Y0» „(u)as constant vector fields in R pointing
in the direction e „,and Yi00 00(u) =u as the "breath-
ing mode".

The split into normal and tangential components is
most easily seen in the local coordinate system e (u):

Y»0, +i0(u)= . [hei(u)+e2(u)],
6i

1
Yi2000(u) = e, (u)

3l

(1.15a)

are normal vector fields transforming like the Mth hyper-
spherical harmonic. The remaining diagonal vector fields
are tangent to 5 and may be expressed

(1.17)

We call the vector fields (1.17) "longitudinal phonons" be-
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cause in the large-M (short-wavelength) limit (1.17) is the
usual definition of a longitudinal mode as the gradient of
a scalar field.

Off-diagonal vector fields can also be easily expressed
in terms of local coordinate systems. Define

where ~= —,0, + and o = —,+,3. Longitudinal phonons
correspond to ~=0, v =+ denote the (M+1,M+1) irredu-
cible representation of SO(4},and

Sen' demonstrates

, ,(u)=cosa(M, mi)Y~. . .(u),

,(u) =~2 sina(M, m i }cosP'(M, m i )

X Y~, , +i, ,(u),

,(u) =V 2 sina(M, rn, ) sinP'(M, m, )

XY~,~ i~ (u),

(1.20)

e+(u}=iei(u)+e2(u) . (1.19) where

a(M, m i)= cos 'I [(M+2m i+1)(M—2m i+ 1)/2M(M+ I)]'r I,
p+(M, mi)= —tan '(I[(M—2mi) —1]/[(M+2mi) —1]I'~ ),
p (M, mi }=m—tan '(I[(M+2mi+2)2 —1]/[(M —2rni+2)2 —1]I'~~) .

(1.21)

Transverse vector fields satisfy'

V Xftri, ,———r(M+1)ilrsr (1.22}

whereas longitudinal vector fields have zero curl. Similar-
ly

i2

V pier ~
~ ~,—VYrrr ~

~

~—, M(M+—=2) Y~ ~ ~

(1.23)

whereas transverse vector fields have zero divergence.
Transverse phonons in I obey a differential equation
similar to (1.22), e.g. ,

lkCg'R, ~ ~ lkCg'R
V X (ie +er )e * = k(ie„+e—r )e (1.24)

II. CONTINUUM ELASTIC THEORY

This section adapts continuum elastic theory to non-
Euclidean space. The strain tensor in curved space resem-
bles the strain tensor in flat space with covariant deriva-
tives replacing ordinary derivatives. The free-energy den-

sity remains a quadratic form in the strain tensor. We
show that the elastic moduli of an icosahedral system are
isotropic, distinguishing icosahedral symmetry from any
flat-space crystalline symmetry. Useful identifies among
vector differential operators, and integration by parts, are
used to calculate the phonon spectrum of S .

Given a displacement field ifr=~e, in flat space one
defines the symmetric strain tensor'

Note that in the coordinate system [e (u)], the connec-
tion coefficients (1.9}cancel in Eq. (2.3). Thus the defini-
tions (2.3) and (2.1) are equivalent in any coordinate sys-
tem in which

I'~+ 1"'~——0 . (2.4)

Equation (2.4) holds, in particular, in orthonormal coordi-
nate systems in spaces of constant metric.

Were we to find the strain tensor in the coordinate sys-
tem of our flat, embedding space, additional terms would
have to be included in the strain tensor to relate this sys-
tem to our intrinsic coordinates. These terms are required
to compensate for the fact that a curved surface is not al-
ways "horizontal" in the flat, embedding space. Sachdev
and Nelson' show that these terms are

Bxi Bxi
A,b

———
2 Bxg Bxy

(2.5)

where [x,] forms an orthonormal coordinate system of
the non-Euclidean space at some point, and [x&] includes
the remaining orthogonal coordinates in the flat, embed-
ding space.

Following Landau and Lifschitz' we write the free-
energy density

Euclidean space. To compensate for the rotation of in-
trinsic coordinate systems as viewed from a higher dimen-
sional embedding space, one simply substitutes covariant
derivatives for ordinary derivatives, '

(2.3)

1 Bf' Bg
2 Bxb Bxg

(2.1) f= 2A~gu su (2.6)

(dR') =dR +2u,bdx, dxi, . (2.2)

Now imagine deformations which occur within a non-

After deformation, two points initially separated by
dR =(dx, dx, )'r become separated by dR', where

Symmetries of the polytope constrain the number of in-
dependent components of the elastic tensor A,,s,z. In fact,
icosahedral symmetry allows only two independent elastic
constants. Thus the continuum elastic theory of the
polytope is identical to the continuum elastic theory of an
isotropic medium.
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~aacc ~ ~ahab & ~ahba . (2.8)

However, the last two are equivalent because of the sym-
metry of the strain tensor

a b
Q b=Q (2.9)

Each index of A,ab,d runs over the three spatial com-
ponents of our coordinate system [e,(u)]. Thus, under
mtations of the polytope leaving a site invariant, an index
of k,b,~ transforms like an 1=1 spherical harmonic under
the icosahedral symmetry group. In order to construct an
invariant free-energy density, we must find combinations
of the indices which transform under the unit representa-
tion of I" B. y addition of angular momentum we can
construct the following irreducible representations:

D'eD'eD'eD'=3D e6D'e6D e3D eD (2 7)

where each D' on the left-hand side of (2.7) corresponds
to one of the indices of A,ab,d.

Spherical harmonics F~ contain the unit representation
of F' when 1=0,6, 10, 12, . . . .b Thus only the three com-
binations of indices yielding Do transform as the unit rep-
resentation of I". These are

I; p=H;po+~. p 0" (2.17)

Recognizing the contraction of the Riemann tensor as the
Ricci tensor

(2.18)

we obtain

(2.19)I = — 0 - ~ —2 0
Finally, Eq. (2.13c) may be simplified using the identity

V Vt/i=VV $+2$ VX—V Xi/i,

which is the analogue on S of

V i/i=VV i/i VXV—Xi/i.

We obtain

(2.20)

(2.21)

I, = f,dQi/i VXV Xi/i

—f dQt/i VV i/i 2 f—dQi/i. t/i. (2.22)

Substituting the form (2.10) of A,,b,d into the formula for
the free energy (2.11),

Thus the most general elastic tensor takes the form F= —,
'

(AI, +PIb+PI, ) . (2.23)

~abed =~fiab~cd+ 2P1iac~bd . (2.10)

Cubic systems possess an additional invariant, iL,~„be-
cause the l =4 spherical harmonic contains the umt repre-
sentation of the cubic-symmetry group.

The continuum elastic free energy is thus

F= —, , Q,b,gu'bu'g . (2.1 1)

yp

and hence

i/';p =V V i/'

(2.14)

(2.15)

Noting Eq. (1.23) we find

I, = —f,1Q Q VV.i/i . (2.16)

In Eq. (2.13b) we commute the derivatives' on a and P to
find

Evaluation of (2.11) requires the following integrals:

I, = f,1Q i/i . +aa.p, (2.12a)

Ib ——f,d Q i/i pi/i a, . . (2.12b)

I, = f,d Q t/ia. pi/i 'P, (2.12c)

which can be integrated by parts

I, =—,dQ .p +, 0 .p, , 213a

Ib = — dQ . P+ 0 . .P, 2.13b

J,=—,0 '~.p+, 0 '~ .p . 2.13c

The second terms in Eqs. (2.13) are exact divergences and
hence vanish.

In Eq. (2.13a) we recognize

Using the identities (1.22) and (1.23), we find

FM ——[(—,
'

A, +p)M(M+2) —2p] f,dQQ t/i (2.24)

for longitudinal phonons and

Fbd
——[—,P, (M —1)(M+3)]f,dQ i/i i/i (2.25)

for transverse phonons. Inspecting Eqs. (2.24) and (2.25),
we find for large M that continuum elastic theory on S3
is identical to R, provided that we identify

kL ——v'M(M +2),

kT ——v'(M —1)(M+3),

(2.26)

(2.27)

III. POLYTOPE 120

At long wavelengths, vibrations of Polytope 120 resem-
ble vibrations of the continuum. At short wavelengths,
however, the discrete symmetry group' ' "6
=(F'X Y')lZ2 of the polytope reduces the high dimen-
sional vector hyperspherical harmonics into smaller, ir-
reducible representations. The vibrational frequencies of
each irreducible representation may be very different from
the predictions of continuum elastic theory. In this sec-
tion we classify vibrational modes of Polytope 120 accord-
ing to irreducible representations of G. We construct
wave functions and numerically evaluate their frequen-
cies.

Isotropy of acoustical properties simplifies the calcula-
tion of elastic constants of real glass in R . Assuming a
microcrystalline model of glass in which fragments of

as the longitudinal and transverse wave numbers. The re-
sulting sound speeds are simply

cL ——&(I,+2@)lp, cT &plp . ——
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TABLE I. Character table of icosahedral symmetry group F'CSU(2). Q=(v 5+1)/2 is the golden
mean.

12VI 30' 12V~ 20F6 12V7

A

FI
F2
Gi
G2
H
I

1

0
—0

Q
—n-'

1

—1

0
—1

1

1

I
0
0

—I
1

—1

0

1

0
—0
—n-I

0
—1

—1

0
1

1

0
0

—1

—1

0
0

. 1

0

1

—n-'
0

—n-'
0
1

—1

0
—1

1

—1
—1

0
0
1

1

—1

0

1

—0
n-'
0

—0
—1

—1

0
1

1
—2
—2

3
3
4
4
5

—6

Xp, E,(I,r ) =XE,(1)XF (r ), (3.2)

and the resulting 480-dimensional representation, known
as the total representation, has characters

XT(?,r )=5i (()r(„)'( Y')XE (? )XE (r )/'(I ) . (3.3)

Polytope 120 pack with random orientations, the elastic
constants of the glass are, to a first approximation, ' equal
to the elastic constants of the polytope. This section con-
cludes with a calculation of the elastic constants of the
polytope by matching the long-wavelength behavior with
continuum elastic theory, and by calculating the sound
speeds in a hypothetical perfect icosahedral crystal in R '.

Techniques from the theory of molecular vibrations'
may be generalized to four dimensions and applied to
Polytope 120. One defines, first of all, the "regular repre-
sentation" with the 120 vertices of Polytope 120 as basis
elements, and characters

Xg (?&r ) =5r(()r(z) ( Y' )/ (r ),
where I (u)C Y' is the class of u&Y' Table .I presents
the character table of Y'. Recall that the regular repre-
sentation is the union of s-band electronic wave func-
tions. s At each vertex we now place a vector which
transforms under E(E(, which is the (1,1) irreducible rep-
resentation of SO(4). Thus

finds the values of N(apC T) presented in Table III.
The 480 modes in Table III include 360 "phonon"

modes tangent to S and 120 "electronic" modes normal
to S . To confirm this, note that the product

E((g)E) F)eA ——.
Equation (3.6) thus splits into two terms

(3.7)

N(aPc T') = g '(r)[X.'(r)Xp (r)X,",'(r)'(Y'} rcr
+X,"(I )Xp (r}]. (3.8)

The first term consists of vector (phonon) representations
of G and the second term denotes scalar (electronic) repre-
sentations;

N(apCT)=N„(ap)+N, (ap) . (3.9)

N, (ap) appears in the s-band electronic properties of
Polytope 120 and is known6 to equal 5~p. Thus Table III
with 1 subtracted from the diagonal classifies the phonon
modes. Adding the two values of ? associated with ap in
Table III yields the principal quantum number M of the
vector hyperspherical harmonic containing ap, and
through Eqs. (2.26) and (2.27) yields the wave number.

Choose a ve:tor, A6 R, based at the north pole,
u= 1 ES, as a typical basis element of the total represen-
tation T. This basis element transforms under

How many times is the irreducible representation (ap)
of G contained in the total representation'? Using (l, r}: A

~
1)~1Ar '

~?r '); (3.10)

XGp{l,r)=X (1}Xp(r)

and"

(3 4) thus, we can project an element of the irreducible repre-

N(aPC T)= g XNp(?, r }Xr(l,r),'(G } (&,r) cG

we obtain

(3.5)
TABLE II. Irreducible representation multiplication table of

icosahedral group.

N(aPCT)=, g '(I')X"(I )Xp (r)Xp, (r)XE,(r) .'(Y') rcr
(3.6)

Equation (3.6) vanishes unless the quadruple product
apE(eE( contains the unit representation of Y'

Table II shows the irredgcible representation multiplica-
tion table of Y'. Using the information in Table II one

A

GI
62
H
I

El
A @FI
62
E,@G,
I
FIH
E,@I
GII
F,sG, eH

FI
EI GI
I
AeF, eH
G,+H
EI GI @I
F2@62@I
E&eF&eG2eH
E2G&e2I
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TABLE III. Occurrences of (XP in T, Eq. (3.6}. Diagonal entries in parentheses denote number of
tangential vector representations.

1

2
3
2

0

613

2 {&)

2 {1)

7

sentation (aP) from T using the formula

P p , g——Xp(l, r)l Ar '
~

/r ) )'«) ((..)eo

specify the interactions between atoms. Straley ' per-
forms Monte Carlo simulations of atoms on a sphere in
four dimensions interacting along the chords of the sphere
with the pair potential

In view of Eq. (3.4), we find P(s ) =4s (3.15)

P,gu)=, 2 g X" (/)Xp (l 'u)/Al 'u .
['( I ')l' (mr

(3.12)

Equation (3.12) is guaranteed to produce a vibrational
eigenstate, provided aP is contained only once in A

~
I ).

Inspecting Table III we see we must work a little harder
for the longitudinal modes.

If we choose our vector normal to S', A=en(1), A
will commute with all l C I ' and Eq. {3.12) cannot gen-
erate any tangential components. Equation (3 ~ 12) yields

„(u)=5 pF „(u)e(u), (3.13)

~here F „arediagonal irreducible representation basis
functions. Similarly, if we choose A tangent to S then
Eq. (3.12) cannot generate normal components. This fol-
lows because AE R implies /Al ' E R ' for all
/&SU(2) and therefore /A/ 'u belongs to the tangent
space of S3 at u.

Inspecting Table III, we find we can guarantee that
A

~

I ) contains each diagonal irreducible representation at
most once by a suitable choice of AE R in all cases but
one. One normal and two tangential irreducible represen-
tations transform as II. Thus,

f p(u) = g X (/)Xp (l 'u)fe, / 'u'(I') (er
(3.14)

produces a basis element of a tangential irreducible repre-
sentation of G for all aPC T except aP=AA which is the
normal vector yield Yi(e(N (breathing mode), aP=E2E2,
and aP=II for which (3.14) produces the sum of basis
elements of two occurrences of II in T.

Basis elements of vector irreducible representations are
the vibrational eigenstates of Polytope 120. To calculate
the vibrational frequencies of the polytope we need to

The radius of the sphere is taken as Q=(v 5+ I )/2 so
that the equilibrium separation of atoms is so ——1. We
adopt Straley's interactions to allow comparisons between
our results and the simulations. With the interaction
(3.15), an atom at R'E' R exerts a force F(R' —R) on an
atom at RE R, where

F(R' —R)=48(R' —R)/
i

R' —R
i

' (3.16)

P[i){)]= lim F,[f], (3.18)

where F denotes only the tangential part of Eq. (3.17).
Clearly, f~p are eigenvectors of 4 with eigenvalue k~p.
We can dceompose frr into two eigenvectors of 4 by
writing Ar =&(fa)) +b(lb' }2 N«ing ~' [kr 1

0 {i41) i(4ll )1+b{A re )2{%sr )2, we generate four equa-

Equation (3.16) allows easy numerical calculation of vi-
brational frequencies. We construct eigenstates corre-
sponding to an irreducible representation aP using Eq.
(3.14). We then displace each atom uE I" of Polytope
120 to u+ ef~p{u). The total force on each atom is calcu-
lated by summing Eq. {3.16) over all other atoms of the
polytope. When f~p{u) is an eigenstate, the total force
takes the form

F,[g p]=A(u+ef p)+eh, pf gu)+O(e ), (3.17)

where the component proportional to u+ef~p is normal
to the sphere, and the component proportional to f is
tangent to the sphere. Because atoms move vrithin a
sphere, a constraining force cancels the normal com-
ponent of F.

The tangential force on an atom may be expressed as an
operator
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TABLE IV. Vibrational eigenvalues of Polytope 120 classi-
fied according to irreducible representation aP and degeneracy
d ~p.

50
(

E1E1
F1F1
6161
HH
II1
IIg

Longitudinal
4
9
16
25
36
36
16

508.01
1572.67
2638.98
3436.11
1487.03
3810.23
2415.68

I'1A
G1E,
HI'1
IG1
F2H
G2H
G2F2
E2I

Transverse
6
16
30
48
30
40
24
24

0
309.01
686.01

1085.67
1197.34
1661.68
3836.24
2572.66

70

tions for the four unknowns a, b, (A,tt ) &, and (hatt )2. We
find a=b= 1/v 2. Table IV presents the spectrum of 4
classified according to irreducible representations of G.
Figure 1 displays the vibrational density of states The.
calculations leading to Table IV and Fig. 1 include only
nearest-neighbor interactions. When long-range interac-
tions are included the eigenvalues change by a few tenths
of a percent.

In the limit of small wave numbers the polytope vibra-
tion spectrum should match the continuum elastic theory
Because of the compact topology of Si, only a discrete set
of wave numbers is allowed, so rather than take the limit
as wave number goes to zero, we must work with the
lowest principal quantum numbers for which the vibra-
tional frequency is nonzero. Thus we identify Et with
—

2 tlat, g, and Ft with ——,
'

AG E,. The resulting elastic

constants are A, =367.7 and @=177.3.
It is interesting to note that we can drive a similar re-

sult by considering a hypothetical perfect icosahedral
crystal in R . If every atom in a crystal has a set of near
neighbors, denoted by IRI, identical to every other atom,
the dynamical matrix of the crystal may be expressed22

FIG. 1. Density of states of Polytope 120. cud' ——( —A,~p)'

D(k)= g sin ( —,
' k R)(A I+BkR),

Re IRI
(3.19)
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where I is the unit matrix, 2 =Q'(R)/
~
R ~, and

8 =2[/"(R)—P'(R)/
~
R

~
]. Evaluating the small wave-

number limit of Eq. (3.19) in the case where I R j is the set
of 12 vertices of an icosahedron yields )1,=364.8 and
@=172.8. In contrast, the fcc crystal has nonisotropic
sound speeds leading to soft modes in certain directions.
These soft modes significantly reduce the cubic crystal's
rigidity compared with the isotropic icosahedral crystal.
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