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The stochastic relaxation theory of Anderson and Sack is applied to the Mossbauer spectra super-
paramagnetic particles with uniaxial anisotropy by including all possible values of the component of
the magnetization along the quantization axis explicitly in the calculation. It is shown that for par-
ticles with a large number of states the Mossbauer line shape can be expressed directly in terms of
the solution of a differential equation. Explicit solution of this equation in the low-temperature
(high anisotropy barrier) approximation leads to effective relaxation rates between the two discrete
allowed orientations of the magnetization. These rates are equivalent to those derived by Brown
only if the relaxation matrix elements are assumed to have a certain rather arbitrary dependence on
the temperature and magnetization.

INTRODUCTION

The standard theory for the superparamagnetic relaxa-
tion of particles with uniaxial anisotropy' was derived by
Brown and refined by Aharoni. ' Though all possible
orientations of the magnetization with respect to the easy
axis are considered in this theory, the final result is ex-
pressed in terms of relaxation between only those two
states corresponding to the energy minima of the system.
For particles with energies given by

E = KV cos 8 H—M, cos8, —

where the magnetization M, =gP, S, g is the electronic g
value, P, is the electronic Bohr magneton, S is the total
spin of the particle with volume V, K is the anisotropy
energy per unit volume, and H is the externally applied
magnetic field, the transition rates, in the low-temperature
(high energy barrier) approximation, are

p, 2
= a'~'(1 —h')(1+h)exp[ —a(1+h) ],12 ~ l/2

p21(h) p12( (2)

where ct=EV!kit T, h =HM, /2KV, and yo is the
gyromagnetic ratio. Mossbauer spectra are obtained from
(2) by substitution into the standard expression for relax-
ation in a two-state system.

This rather specializ& case of relaxation is, fortunately,
exactly the expression required for many superparamag-
nets. The rapid transition from sextet to doublet which is
observed, ' with increasing temperature or decreasing
volume is consistent with (2) when the pre-exponential
factor is in the range 10' —10' s '. In this case the rates
p ~2 and p2l pass very rapidly through the region
p —10 —10 s ', in which transitional spectra are ob-
served as T, or V is changed, for values of k~T typically
in the region of kttT-0. IXV.

The Brown theory is a rather indirect method of obtain-
ing the Mossbauer line shape. By constraining the mag-

netization to lie near to the potential minima, phenomena
such as collective excitations are excluded. For Systems
with rather small pre-exponential factors, say, ~ 10'0 s
the doublet-sextet transition occurs over a significant tem-
perature range and transitional spectra become important.
Since a significant range of orientations of the magnetiza-
tion is now possible in the transition region, it is far from
clear that a two-state relaxation model adequately de-
scribes the spectrum.

%'e present below an approach in which all possible
orientations of the magnetization with respect to the
quantization axis are included in the calculation of the
Mossbauer line shape using the stochastic theory
developed by Anderson, expressed in a simplified form
by Sack, and first applied to Mossbauer spectra by Blume
and Tjon. The present model includes no assumptions
similar to the random-phase approximation which was
used by Dattagupta and Blume their treatment of super-
paramagnetism as a many-state relaxation problem. ' %e
follow Brown, at least initially, in assuming that the in-
teraction between the magnetization of the particle and
the environment can be expressed in terms of a rapidly
fluctuating random field. The new model contains one
"free" parameter describing the strength of this field. We
believe that questions concerning the functional depen-
dence of the effective relaxation rate of a superparamag-
net on the magnetization, temperature, and particle size
can only be reliably answered by calculations of this pa-
rameter.

One apparent disadvantage of the Sack method is that
for real superparamagnets it requires the inversion of
large matrices of order 2S+1, where S might easily be
several thousand. In practice there is no difficulty, as the
inversion of the rather specialized matrices involved takes
only O(S) arithmetic operations, and for large S the re-
sults converge reasonably rapidly for suitably scaled vari-
ables. In the limit of large S, the line shape can be ex-
pressed in terms of the solution of a second-order dif-
ferential equation which is rather similar to the Fokker-
Planck equation. The solution of this equation in the
low-temperature hmit gives effective relaxation rates be-
tween the two wells which can be made equivalent to
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those obtained by Brown only by making rather arbitrary
assumptions concerning the dependence of the parameter
describing the random field on the temperature and mag-
netization. The solution of a finite but large matrix turns
out to be an efficient way of solving the differential equa-
tion problem in the general case.

To make progress in what are potentially complicated
calculations, we find it necessary to assume throughout
this work that the nuclear Hamiltonian, which is fluctuat-
ing because of fluctuations in the magnetization, com-
mutes with itself at different times. Methods involving
Liouville superoperators for solving the combined
stochastic —quantum-mechanical problem" are therefore
unnecessary. We are therefore assuming either that the
principal component of the electric field gradient V is
equal to 0, and the anisotropy parameter for the quadru-
pole interaction q' is equal to 0, or, most realistically, that

&&H;„„where H;„, is the hyperfine field and that a
first-order perturbation treatment of the quantum-
mechanical part of the problem is sufficient. The latter
assumption is expected to be reasonably in most super-
paramagnets as the hyperfine field is typically larger than
the quadrupole splitting.

The parameters of our many-state relaxation model are
E, V, T, M„ the strength of the random field, which may
itself be a function of other parameters, and the static
Mossbauer parameters. %'e introduce the many-state
model with a discussion of two- and three-state relaxation
systems, for which the results are well known.

TWO- AND THREE-STATE RELAXATION MODELS
OF SUPERPARAMAGNETISM

(4)M =(ico+ I )I—i0 —11

is a matrix containing the physical description of the sys-
tem in terms of a set of line positions, the natural
linewidth I, and the transition probabilities. 0 is a diago-
nal matrix with elements co;, the line positions in the ab-
sence of relaxation, and II is given by

II,, =P,, 11,, = —gP,, (1@J), (5)
J

where P,J is the transition probability per unit time per
unit occupation of state i, from state i to state j. All that
is required to set up a relaxation problem for any number
of states is a set of IV~, and co;, and P,J. Thus for the
two-state system the result can be expressed as 8

As we have assumed that the nuclear eigenstates are
constant, the relaxation problem can be solved separately
for each pair of lines (1 and 6, 2 and 5, and 3 and 4) in the
static Mossbauer spectrum. We start from the expression
first given by Sack:

I(co)=2 Re(WM '1) . (3)

This is the general expression for the line shape I(co) for a
system which is undergoing Markov relaxation between X
different states. The X components of the row vector W
are proportional to the occupation probabilities of the
states in equilibrium, 1 is a column vector with all com-
ponents equal to unity and

(p p ) i (co—5)+p,2+ I
I(co}=2Re

P21+P i2)

—Pi2

i (co+5)+p21+I

where for slow relaxation the lines are found at co=+5
according to the sign of the internal field (25 is the mag-
netic hyperflne splitting between the pair of lines}. The
requirement for a Boltzmann population distribution in
thermal equilibrium defines the relative magnitudes of
Wi and 8'2 and the requirement that this population dis-
tribution is stable constrains 8'~piq ——8'zpz&. The solu-
tion of (6) gives

I(co)=2 Re
(5 co' )+2p—i (co' r)5)—

where

6) =CO —/I

'9 =( IVi —IV2) ~( IV1 + IV2) = (p21 —p12) ~(p21 +p12)

&P=Pi2+P2~ .

In general I(co,5) must be added to I(co, —5) since the
nuclei are not themselves oriented by the field. The two-
state model does not in itself provide a basis for a com-
plete model of superparamagnetism since the parameter p
cannot be calculated without reference to states at the top
of the energy barrier through which the system must pass

to relax from state 1 to state 2.
Consider now a three-state model of superparamagne-

tism, in which the state with S, =0, which for no applied
field is at the top of the energy barrier, is included as well
as those with S,=+S. We arrange the states in order of
increasing S„i.e, state 1 has S,= —S, state 2 has S,=O,
and state 3 has S,=+S.

%hen it is not mixed with the other states by relaxa-
tion, the state with S,=0 gives a line at ~=0. The situa-
tion is analogous to that in paramagnets —in slowly relax-
ing Fe(III), each of the three Kramers doublets give rise to
separate component spectra with a splitting proportional
to

~
S,

~

. In real particles there may exist energy barriers
around the "equator" of the particle, but if these are large
enough to significantly localize the moment in a particu-
lar orientation so that a full hyperfine splitting is ob-
served, then the particle anisotropy is not well described
as uniaxial. An upper bound on the relaxation rates is
provided by the requirement that for Markov relaxation,
the response time of the particle must be longer than the
correlation times of the random field, which is typically

1013 3

If we assume that relaxation between the states with
S,=+S can only occur via S,=O, as ~ould be expected if
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the relaxation is envisaged as a random walk of the mag-
netization vector with small step lengths, then there are
just four relaxation rates to calculate in the three-state
model, p)2, p», p32 and p23. The matrix M is therefore
tridiagonal. The intensities of the lines and hence the
values of 8; are given by the populations of the electronic

states which give rise to each line. These can be found us-

ing Eq. (1). As with the two-state problem, the require-
ment that the equilibrium populations are given by the
Boltzmann distribution provides constraints on the p,j.
Thus 8'~p~2 ——8'2p» and 8'2p23 —fY3p3z. %"e can there-
fore write

AE2)
pi2=p exp

kgT
, p»=p»p23=p * p»=p exp—

where ATE&, and ~&i are the (positive) energy differences between the relevant states. It is natural to put the tempera-
ture dependence of the rat& into those transitions to higher energy, as to undergo thee transitions the system must find
the thermal bath defined by its environment with the required energy, whereas transitions to lower energy can occur re-
gardless of the state of the bath. Alternative fo~s of (8) which still cow~pond to a Boltzmann distribution are possible.
They lead to different results for the three-state model, but they leave unaffected the result for the many-state model,
which 'is described below. If we assume that the temperature independent parts of the rates are determined by a random
walk of the magnetization diction, then p'-p" by symmetV. The expression comMponding to (2} is then

(Wi, W2 Wi)
I(co) =2 Re

1+ 2+ 3

i (co —5)+ I +ap
—p
0

—Ap

lN+ I +2p
13p—

—p
(ico+5)+ I +Pp,

where W, =exp( E;IkaT—), a=exp( EEz&lk&—T), P=exp( b,Eiilka—T).
In evaluating (9) it is convenient to postmultiply M by the diagonal matrix whose elements are the reciprocal of the

W; before inversion. The result is

I(co)=2Re (i [ ( —Pcopco+ —acopco —aPco+co )+ip[P(a +2a+2}co++(a +P )cop+a(P +2P+2}co ]

+p (a+P+aP) ] }[copco+co ip (ac—opco++Pcopco +2co~co ) —p (aco++Pco +aPcop)] (10)

where icop ico+ ——I, ico+ i (co+5——)+ I . At low temperatures (10) can be simplified by neglecting a and P compared to
unity, to obtain

i (—cop 2ip)(P—co++ aco ) p'(a+ —P)'I (co)=2 Re
(a+0) (cop 2ip)(co+—co ) —p (aco++pco )

If then we assume p~pco in the region of interest, so
(2p+ico)-2p, the result is

i (cop+ri5)+p(a+13)I2
I(co)=2 Re , (12)

5 —cop+ ip [(a+P)/2](cop —g5)

where g, the net magnetization, is now (P—a)/(P+a).
This is exactly (7) with effective rates p&i

——ap/2 and

pii ——Pp/2. Physically, if the system is excited from state
1 to the state S,=0 at a rate ap, relaxation down to states
1 and 3 occurs almost immediately, with a probability of
50% that the system ends up in a state different from the
first. As a result of assumption (8), (11) has the same ex-
ponential form as Brown's equations (2) and for large p it
predicts a rapid doublet-sextet transition with tempera-
ture.

The three-state model has the potential advantage that
it gives expressions for the line shape when the doublet-
sextet transition occurs over an extended temperature
range, i.e., when p is comparatively small and the sextet-
doublet transition takes place gradually as a function of
temperature. However, the coexistence of sharp sextet
and sharp doublet (or singlet) spectra, which is observed
when the rate p becomes very slow, can be explained en-

tirely as a spurious result of allowing only discrete orien-
tations. This is hardly a physically reasonable model of
superparamagnetisrn.

There are also several problems relating to the defini-
tion of the three-state inodel. Firstly, S,=O corresponds
to the maximum electronic energy only in zero applied
field. The intermediate state cannot be "moved" to an S,
corresponding to the maximum electronic energy, since
this would give a net magnetization even in the limit of
fast relaxation, hence the model cannot give the correct
dependence of the rate on the appliml field. A method of
calculating the dependence of p on the particle size V is
also required. Brown's treatment showed that the shape
of the potential well near both the minima and the max-
imum has an effect on the rate; a three-state model cannot
include such factors. Finally, collective excitations are ex-
cluded as they were in the two-state model. All these
problems are solved in the many-state model.

THE MANY-STATE MODEL

Consider a particle of total spin S. All (2S+1) possi-
ble values of 5, can be included in the relaxation problem
by increasing the dimension of the matrix M to (2S+1).
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The relaxation rates between the various states can now be
calculated directly as the squares of the quantum-
mechanical matrix elements corresponding to the transi-
tions. On the assumption that the forces causing relaxa-
tion can be represented by a random field perpendicular to
the z axis, the Boltzmann distribution independent parts
of the transition probabilities are

r(S„S,+i)=Z
~

&S, [S ~S, +1) ~'

=R[S(S+1)—S,{S,+1)] (13)

This angle is

Sg
58=cos

S
S,+1—cos S (cos x)1 d

S dx

for adjacent S, states, and zero otherwise. The matrix M
therefore remains tridiagonal. R is now a parameter pro-
portional to the square of the random field; it determines
the absolute rate of relaxation. The constancy of the pa-
rameter R implies an effective "classical spin" for the en-
vironment.

The quantum-mechanical-transition probability (13) has
a classical analog for large S. If the random field is imag-
ined to cause the angle 8 between the magnetization and
the easy axis to undergo a random walk, then the rate of
relaxation between configurations related by a small rota-
tion 58 will be ~ 1/(58) .

diagonal elements or "pivots" and subtractions of one row
from another. The particular form of M means that the
diagonal elements of the transformed M remain large
compared to the off-diagonal elements, and therefore the
method is stable without searches for suitable pivots.
Since M is tridiagonal, the number of computations in the
calculation of the inverse is proportional to N . A further
significant saving in computer time is obtained by noting
that since M ' is postmultiplied by the column vector 1,
only the sums of the rows of M ' are required.

%riting

m-1i =V—-mV=1, (16)

The problem becomes a problem of solving a set of simul-
taneous equations for V. As well as a large saving in
storage requirements, the "inversion" now requires a
number of operations which is proportional to ¹

With this method, spectra for S up to several hundred
can be simulated with modest computers and on large sys-
tems inversion of matrices of order 1000—1000, corre-
sponding to spins similar to those found in real systems,
would be possible. However, it soon becomes apparent
that very large calculations are not really necessary, as the
computed spectra converge fairly rapidly with increasing
S as long as the ratios k+T:EV:Sare kept constant. This
convergence suggests that in the continuum limit, I(co)
can be expressed in terms of the solution of a differential
equation.

1

(S2 S2)1/2

which implies

(14)
DERIVATION OF THE DIFFERENTIAL

EQUATION FOR THE MOSSBAUER LINE SHAPE

r(s„sg+1)~S —S, ,

which is equivalent to (13). M can therefore be written

Mkk = ( k)+I' Mk—k Mk- —

Mkk+ i
———rkk+ i [exp( hE /kz T—)], (15)

where k =1 to 2S+1, k(S, )=S,+S+1, and rkk+i and
rkk i are defined by (14), the exponential factor is includ-
ed only for transitions to higher energy, and cok
= ( S —k + 1)5/S. The previous two- and three-state
models correspond to (15) with S = —,

'
and S = I.

The inverse of the matrix (15) is required for each value
of co in a simulated spectrum. One method of finding the
inverse which has often been used for combined
stochastic —quantum-mechanical problems, ' is to note
that since M contains co only as a multiple of the identity,
the transformation which diagonalizes M is independent
of ~. M can therefore be diagonalized just once for each
spectrum and then the calculation for each involves the
simple inversion of a diagonal matrix. Unfortunately, di-
agonalization of matrices of order N requires at O{N )
arithmetic operations and rapidly becomes impractical for
N greater than a few hundred.

We have found it efficient to calculate I(co) for each co

using the standard Gauss-Jordan procedure, in which in-
version is achieved by successive divisions of rows by their

Each row of (16) gives an equation of the form

~k, k —1 Vk —1+~k,k ~k +~k, k+1 Vk+1 (17)

The expansion of u must be taken to second order since,
though successive differentials with respect to k are
smaller by O(N) the coefficient of the u' term may van-
ish. But, from (15), keeping only terms of highest order
in S,

Mk, k —I+Mk k+Mk @+1 i (~ ~k)+~
S —S, dg

~k, k+1 —~k, k 1=~
k k

+2S,
g T

Mk, k+ i+Mk, k
2 2

(19)

since M is tridiagonal. The convergence for large matrix
order N suggests that in the limit of large N, Vk can be
assumed to form a continuous function u(k) for which
u (k + dk) can be expanded as a Taylor series about u (k).
This gives

duk
(Mk, k —I+Mk, k +Mk, k+ 1 )uk +™k,k+1™k,k —I)

dI

Mk, k+1+~k, k —1 d Uk
2

+ =1 . (18)
dk
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where the result for the second equation, which involves an expansion of exponential of the energy, is independent of
whether (8) or some alternative form is used. Changing to the variable x =cos8=(k —1 —S)/S gives the differential

equation
I d U

[i(co —5x)+I']u+R (1—x ) +2x —R(1—x ) =1,
kgT dx

(20)

which is equivalent to

p d
[ /(} 2) p]

1 [—i(co—5x)+1]u
dx R

This is exactly the Fokker-Planck differential equation de-
rived by Brown except that we have a [1—[i (co
—5x)+ I ]u]/R term in place of Brown's Av. i Changing
variables to 0 gives

p. dU
e sin8

t 1 —[i (co —5 cos8)+ I"]u I =0 .
R

(22)

This form is useful since the potential which defines the
problem is periodic and hence u(8)=u( —8), therefore
dv/d8=0 at 8=0,a, whereas du/dx at these points is
merely finite. The line shape is now

1 7r

I(co)= f u(x) W(x)dx =f u(8) W(8)sin8d8 .

Equation (22) becomes trivial in the limits of large and
small R. As R tends to zero, the requirement that U'

remains finite means that

u (co,x)= . — = I(co) =-
1 ' dx W(x)

I +i (co —5x) —i I +i (co —5x)
(24)

which is just a superposition of nonrelaxing lines. v (co,x)
is seen to be the absorption at co per unit population of the
state x. To solve for large R, it is useful to integrate (21)
once and apply the boundary conditions; U can be taken
out of the integral since u' tends to 0 for large R. This
gives the expected result

f xW(x)dx
u (co,x)= jI +i(~ ri5) —f W(x)dx

where g is the magnetization.
In general the equation for u(co, x) must be solved nu-

merically and the inversion of the large matrices from
which the differential equation was derived provides an
efficient method of doing this. However, a good approxi-
mate solution where k&T gECV can be obtain using tech-
niques similar to those used by Brown in the derivation of
(2).

We start with the twice-integrated form of (21):

8 ~ 8'

u(8)=u(0)+ f . , e~ f d8"e-~sin8"
I 1 —[i(co 5cos8—")+I']uI,

0 R sin8'

where the boundary condition u' =0 is already included. u'(n ) =0, therefore

f d8"e ~sin8" [1 [i (co 5cos—8")+I—]u]—:f f(8")d8"=0,

(26)

(27)

[1—(ico +I )uo]Ii+[1—(ico++I )u„]I2——0
(28)

Ii ——f e ~sin8d8, I2 —f
where co~ ——co+5, uo ——u(0), u =u(m), and q is some
small number chosen to include the range over which the
integrand is significant. Now, by assumption, I(co) can
now be written in the form

e ~sin8d8

I(co)=(uoIi+u I2)/(Ii+Ii) . (29)

To find I(co) we therefore need just one more equation
in uo and u to solve simultaneously with (28). The 8' in-

as in the derivation of (25). For small T this integral is
dominated by contributions from near the endpoints.
Since v'=0 at the endpoints„u changes very little in the
range where the integrand is finite and can be taken out-
side the integral. This gives

l

tegration provides this equation since

(30)

where f(8") is defined in (27). We have already noted
that the 8" integral is dominated by its end points there-
fore

f d8"f (8")= I, ((ico + I )u—o —1)

=I2((ico++I )u —1)=cc, (31)

for all q &8'&n —q. But the 8' integral is dominated by
its maximum since it contains exp(E/ksT) The integral.
can be approximated by writing E =E~ —E"8 /2 where
E"&0, and replacing the limits by ao. If sin8 is now

replaced by its value at this maximum we obtain
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E /k~T
CKI~ 8 g l r( el )2

,I = exp
00 BT

Solution of (28) and (32) simultaneously gives

R'+a (ice++1 )

R'[i(co —rI5)+I ]+a[5 +(I +ice) ]
Em /k—g T

R'= I

(33)

X 2 Re[R '+ia (a)+g5)] (34)

But this expression is just (7) with p =R'/2a. We have
therefore obtained expressions for the effective pi& and

p2i for the system. For the E(8) of equation (1) the
values of the constants and integrals are

ka T KV(1+2h)
2@V(1+&) kg T

ka T KV(1-2h)
2EV(1 —h) ka T

' 1/2
eke T

KV(1 —h )
sine~ =(1—h )'~ (35)

where g=(I, —Ii)/(I, +I&), is the magnetization [same
as in expression (25)] and a =I,I2/(I ~ +I&) and a similar
equation for U . Substitution into the expression (28) for
I (co) gives

I(co)= IR'(I +i(co ri5)—+a [5 +(I'+ice) ) )

parameter in Brown's theory is the diffusion constant k',
which is given by k'=kTh'/V. Our R is therefore
equivalent in soine sense to Brown's diffusion constant,
k'. The multistate relaxation method therefore gives the
same result as Brown's method does with the assumptions
that k' =k~ Tyo/2M, U and critical damping. In the
present model these assumptions appear rather arbitrary.

To make progress in predicting 8 given E, M, and T it
would be necessary to consider the spin-lattice coupling
process in more detail. %e do not propose to do this here
but we would note that the negative power of T in the
prefactor of (36) has the effect of making the doublet-
sextet transition less sharp. However, spin-lattice interac-
tions are generally proportional to T raised to a power
which may be quite large and which is almost certainly
& 1. Brown's treatment may therefore tend to underesti-
mate the sharpness of the Mossbauer double-sextet transi-
tion.

As 8 increases the doublet-sextet transition occurs at
increasingly low temperatures compared to EV, the low-
temperature approximation becomes exact, and the spec-
tra produced by the many state model become identical to
those produced by the two-state model. Any distinction
between the two models can in this case be made only
after a quantitative calculation of absolute relaxation rates
as a function of temperature, magnetization, and particle
size becomes possible and the models are compared to ex-
perimental spectra. This will require the development of
a theory for the microscopic interaction that couples the
particle, with a large spin, to its environment. The in-
teraction has in this paper been approximated by a classi-
cal random field but in reality may arise from spin-lattice
relaxation of the paramagnetic type, magnon-phonon in-

so that

HM,

2EV '
(a)

0.00'= (b)

p)p= (1—h )(1+6)2 2EV
217 B

Xexp (1+& ) (36)

p =h' V

2wkBT
(H, M, ) (1+h)(1—h )

Equations (2) and (36) are equivalent for
R =(k&Tyo/2M, V). The relationship between the two
expressions can be shown by considering the derivation of
(2) in more detail. (2) is obtained from

' 1/2

15.QG-
G. QG =

z

CL

tx-:S.QG-
Q. QG

CO

UJ
U~ '. S.QG-

Q ~ QEi

lid
CL, - nQ

7.50 t-

15.GQ-
Q, GQ

15.GQ-
Q. QG

7.(Q

1C AQ

QQ—

1C PA-: ~ u'4

Xexp — (1+h)EV

i '=q/(1/@0+A'M, '), a, =2@/M, ,
(37)

. 3 VQ

-8.0 -4. 0 Q. Q 4. 0 B.G

VELOCITY (mm/sec)

15.GQ— t

I

-B.Q -4.0 G. G 4. 0 B.Q

VELOCITY (mmlsec3

by assuming h '(il ) has its maximum value, i.e.,
g= 1/(yoM, ) and ii'=yo/2M, . In the original paper
this assumption is justified by reference to the damping
constants of "ordinary sized specimens. " It is not neces-
sarily applicable to microscopic particles. Another crurial

FKJ. 1. Simulated spectra for the many-level relaxation
model with parameters {a) k~T/Kv =0.1, R {from top to bot-
tom) =0, 100, 500, 2000, and 10000 mm s '; (b)
kgT/KV=0. 5, R =0.0, 0.2, 1, 10, and 100 mms '. The hy-
perfine field is 50 T throughout and I =0.4 mms '. Eighty
levels have been used in the calculation.



D. H. JONES AND K. K. P. SRIVASTAVA 34

teraction or magnon-magnon interaction or some com-
bined process. '

The principle advantage of the many-state model is that
it allows the magnetic interaction of the particle with en-

vironment to be expressed in terms of the above micro-
scopic processes rather than the macroscopic "damping*'
and "diffusion" parameters found in Brown's model.
Thus it is now possible in principle to derive for the first
time a complete model of superparamagnetism including
parameters describing the particle, its environment, and
the coupling between them.

For E. =0 the many-level model gives simply a distri-
bution of internal fields. Spectra with R —1 show a com-
bination of field distribution and relaxation effects. Some
typical spectra of this type are compared to those obtained
with large R in Fig. 1.

CONCLUSION

A stochastic treatment of the Mossbauer lineshape
gives additional insight into phenomena of superparamag-
netic relaxation. Though the rates predicted by the new
model are similar to those derived by Brown the differ-
ences are important. In the future it should be possible to
calculate the random field parameter R from the proper-
ties of the superparamagnetic particle and its environment
in terms of transition probabilities calculated from matrix
elements describing the interaction between the particle
and its environment. This method may provide the
answers concerning, for example, the difference between
superparamagnetism in antiferromagnets and ferromag-
nets, which cannot be adequately answered by the Brown
model.
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