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We calculate the nuclear-spin relaxation time Tl and line-shape function for isolated ortho-
(s=1) H2 molecules in solid nonmagnetic hosts located at sites with various crystal-field sym-
metries. This work includes modifications of earlier work so that the formalism can be used in re-

gimes where I", the molecular angular momentum relaxation rate, is not large compared to the
molecular-nuclear spin coupling constants co, and coq. The formalism also allows for a nonzero
value of the quadrupolarization (3J, —J ). With these changes the theory can be used at tempera-
tures at and below about 4 K where line shapes evolve from Lorentzians into Fake doublets.

I. INTRODUCTION

In earlier work' we calculated nuclear-spin relaxation
times Tl and T2 for isolated ortho-H2 molecules in solid
nonmagnetic hosts. This work showed how the relaxation
times depend quantitatively and sometimes qualitatively
on the magnitude, symmetry, and orientation of the crys-
tal fields experienced by the H2 molecules. Several ap-
parent anomalies have been explained by using this
theory. However, the approximation used in this ear-
lier work was that I", the relaxati. on or correlation rate
of the molecular angular momentum (or spin), was much
greater than cod and or co„ the frequencies which charac-
terize the coupling of the nuclear spin to the angular
momentum of the molecule. Since I depends strongly
on the temperature, this approximation is not valid below
about 4 K in most materials.

However, there are recent NMR measurements at lower
temperatures of apparently isolated H2 molecules in amor-
phous Si:H whose spectra that broaden out into a Pake
doublet as the temperature decreases. Further, there are
elements of the NMR spectra at high concentrations of
H2 that we believe are independent of the concentration
and can be examined by our formalism. Thus in this pa-
per we extend our results to lower temperatures by lifting
the restriction that I be larger than m~ and ~, . In addi-
tion, we allow for a nonzero value of the quadrupolariza-
tion (3J, —J ), where J is the angular-momentum opera-
tor for the molecule and the angular brackets denote the
thermal average. Although some elements of our calcula-
tion have been considered by other investigators, ' some
important aspects have been left out of their work. In the
rest of this section we shall briefly review our inodel and
approximations. The calculations are described in Sec. II
and the results are discussed in Sec. III.

Since we will only be considering temperatures well

below 100 K, only the J=1 state of the ortho-H2 mole-
cule need be considered. As in Ref. 1, we refer to the
molecular angular momentum as molecular spin of mag-
nitude J =1 and the two protons will be referred to as a
single nuclear spin of magnitude I =1. Except for a Zee-
man splitting arising from an external magnetic field, the
nuclear spins experience the environment of the molecule
only indirectly through the molecular spin. The Hamil-
tonian 8;„, connecting the nuclear- and molecular-spin
systems of a single molecule can be written as

m =+2
2

rn =+1
Hint tttad g ~2m~ 2m i ™cg ~l m~ 1 m

m = —2

(1)
where the AI and 8~ are the irreducible multipole
operators for the molecular spin J and the nuclear spin I,
respectively.

The line shape and relaxation rates of the nuclear spins
are determined by the states of the molecular spin and by
the fluctuations among these states. The static environ-
ment of a molecule is characterized by a set of electric
field gradients Vz which, in turn, determine the frequen-
cies of the transitions between the states. Dynamically, an
isolated molecule can be characterized by a set of correla-
tion or relaxation rates I"I associated with the operators
Agm. %e shall usually assume that the main relaxation
mechanism is due to phonons (or some other independent-

ly fluctuating field that generates electric field gradients).
If this is the case then ' I t

——I t, and I 2
—0.6I, , since

we are dealing with an I = 1 system. Although our for-
malisrn is valid for electric field gradients of any magni-
tude, our calculations mill be limited to the more tractable
regimes where each VJ is very large or very small com-
pared to the I I or ~0, the Larmor frequency of the nu-

clear spins. Very large field gradients will push the
resonant frequencies of some of the molecular-spin nor-
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mal modes so high that they will cease to be effective in
relaxing the nuclear spins. If the I"I arise from phonons,
and thus depend on the temperature, the conditions of
large or small electric field gradients can also depend on
the temperature. For example, isolated H2 molecules in
rare-gas solids and in a-Si:H show '" relaxation rates
which are proportional to T at temperatures TROD
(the Debye temperature) and which are proportional to T
for T «SD. This is the expected temperature depen-
dence for the anharmonic Raman process. '

In the rest of this paper we shall consider only the cases
of axial symmetry and no symmetry since we believe that
sites of higher symmetry are rare or nonexistent in low-
temperature solids. Finally, we wish to note that our
description of the Hz molecule has a good deal of validity
even for concentrated Hz. This point will be addressed in
more detail in Sec. III.

II. CALCULATIONS
A. Axial symmetry

For a given set of electric field gradients there exists a
coordinate system where the local axes are the principal
axes of the electric field gradients. The axis that has the
largest electric field gradient is defined to be the z axis in
the crystal coordinate system and the external magnetic
field Hp defines the z axis of the lab system. It is con-
venient to refer to the nuclear spins in the laboratory
frame and to the molecular-spin operators in the crystal
coordinate system. Thus, in the rest of this paper all
nuclear-spin and molecular-spin operators will be under-
stood to refer to the laboratory and crystal coordinate sys-
tems„respectively.

If the largest electric field gradient is large with respect
to the I I and pio, but the remaining electric field gradients
are not, the system is said to possess axial symmetry. As
discussed earlier, ' the normal modes (I,m) with m =+1

I

then have frequencies that are so large that they are total-
ly ineffective in relaxing the nuclear spins. Thus, all
operators AI with m =+1 can be ignored. Using the
coordinate transform in Ref. 1, one thus obtains

H;„,= —, fic—o,A I pea(1, 0,m)81

fi—cod g[Az za(2, 2, m—)8z ~

+Az pa(2, 0,m)8z ~

+Az za(2, 2, m)8z ~], (2)

where the a (I,m, m ') are given in Ref. 1.
The calculation for Ti proceeds almost exactly the

same as in Ref. 1. The reason for this is that the effective
coupling between the nuclear and molecular spins for pro-
cesses which change the nuclear magnetization is 0,

0—co» I I/(pip+ I'i), (3)

where co„ is co, or cod, coo is the Larmor frequency of the
nuclear spins, and we use the fact that I i-I z. For the
purposes of this paper we shall assume that cop is large
enough that 0 && I . Since co„-10 sec ' and typically
coo-10 —10 sec ', this restriction is essentially always
met. Since 0« I, the effects of the nuclear spin on the
molecular spin can be ignored as in Ref. 1. However, in
this paper we are considering low enough temperatures or
large enough electric field gradients that ( A zp )
—((J,——,')) is nonzero. Since the formalism in Ref. 1

makes use' of the fact that the thermal average of all of
the operators is zero, the appropriate dynamical operator
for I =2, m =0 is A zp, where

Azp ——Azp —(Azo), (Azp) =3(J» —
& )/2 . (4)

With this modification the calculation is then similar to
that in Ref. 1 and one obtains

1/Ti ——(1+ I a) I (2PI, /3)(1 z)FI (aio)—+ (3d/4)[(1 z} Fz(2oio+—2' z)+(1+z) Fz(2Pio 2oiiz)—
+(1—z )(1 z) Fz(cop+2p—iiz)+(1 —z )(1+z) Fz(cop 2clljz)] j

+(1+—,
' a)(1—a)(9ai~/2)[(1 z) Fz(2coo)+z—(1—z )Fz(aio)],

where

Fi(co) = I i/(piz+ I i },
z =cos8,
a = (A„)2'"= (3(g,'——', ) ),

(6)

I

this truncated Hamiltonian, one obtains an equation
which couPles to A, p811 and Azp8zl. In fact, this trun-

cated Hamiltonian connects the following six operators:

8)I, 82), A)o8)), A)o8p], Apo8]), and Ap082). These
six equations can be written as

and co~ is the Larmor frequency of the molecular spin.
In order to solve the line-shape problem, we must treat

all terms in 0;„, that conserve mz and mJ exactly, while
the rest of the terms in the Hamiltonian can be calculated
perturbatively as in Ref. 1. The reason for this is that
these diagonal terms cause changes in the molecular-spin
spectrum of order co„/I &, which is not necessarily small
with respect to I i. The remaining off-diagonal terms
contribute terms of order Q as given by Eq. (3). These di-
agonal terms are those that are proportional to Aip8i p in
Eq. (2). If oIle forllls all equation of Iilotloll fol' 8 i i llslllg

where the nonzero elements of the 6X6 matrix M p are
given in the Appendix by Eqs. (Al) and the operator com-
binations p& are given by Eqs. (A2}. In these equations

a, = —', pi, z, az= ,' pid(3z 1) . ——(g)

The decay rates I, I and I,2 are the decay rates arising
from the off-diagonal terms which can be treated as per-
turbations. They' are easily seen to be
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I, &

——(co, /3)(1+ —,
' a )(1—z )F&(coo)

+cod(1+ z a) I —, (1 z—) F2(2cojz)+ 4 (1—z )[(1 z—) F2(coo+2colz)+(1+z) F2(ohio 2—cojz)]

+—', (1—z )[(1+z)F2(O2o 2c—ozz}+(1 z)—F2(coo+2cojz)]

+—„[(1+z)F2(2~o 2c—o~z)+(1 z)—F2(2mo+2cojz)] I

+cod(1+ —,'a)(1 —a)[—", z (1 z)—F (~ )+—(1—z ) F2(2' )],
I,2 ——(5', /3)(l+ —,

' a)(1—z )Fi(coo)

+cod(1+ —,
' a) [

—", (1 z—) F2(2o2jz)+ —', (1—z )[(1+z) F2(coo 2coj—.z)+(1 z) F—2(coo+2cojz)]

+ —,', [(1+z)F2(2coo 2co~z—)+ (1 z) F—2(2coo+ 2rojz )] )

+cod(1+ —,
' a)(1—a)[—', z (1 z)F2(o—2O)+ —, (1—z ) F2(2roo)] . (10)

If the difference between I „and I"2, is ignored, the 6X6
matrix equation reduces to two 3X3 matrix equations.
This point is discussed further in the Appendix.

B. No symmetry

In the case where the second largest electric field gra-
dient in the principal axis system is greater than I I and
coo, the system is said to possess no symmetry. In this
case, following Sullivan, ' we let 8 and P be the spherical
angles of the magnetic field Ho with respect to this

~bo (~2,2e +~2, —2e

The part of the Hamiltonian that survives is

(12)

crystal-field system. In terms of our earlier work, '

r =2cos P —1 .

As discussed in Ref. 1, all of the normal modes except
two are now pushed to high enough frequencies so that
they are ineffective in relaxing the nuclei. The two opera-
tors that are left are A2O and Abo, where

~~« = ~o2d g {~2oa(2, 0,m)B2m+ ~ho[a(2, 2,m —)B2~e '&+a(2, —2m)e' F2]/2' 2I .

The calculations now proceed very much as in the case of axial symmetry. We apply one restriction in assuming that
(+bo) =0. If this restriction is not imposed, the equations become extremely messy. Thus we are limited to describing
systems where not more than one splitting is large compared to kT. In this case, T& is given by the equation

T] =ada+ I6[z'+ —,(z' —1)cos p]F2(2coo)+ —,(1—z')[1 —(1—z2)cos2$]F2(ohio)I

+ada+a [—,(1—z ) F2(2coo)+ —,z (1—z )F2(coo)], (14)

a+ ——1+—,a, a =1—a .2 1

The form of the 6 X 6 matrix corresponding to Eq. (7) has the same form as given by Eq. (A 1), except that

a1= 2&d(1 —z }cosp ~ a2=
& &d(3z —1)

The relevant pp's are given by Eqs. 4,'A4). Further, I, &
and I,2 are given by the equations

1 =~da ~+ I Y2[z + 4 {z —1)cos p]E (2coo)+ —", f 1 —( 1 z)cos p]F2(coo—) I

+coda+a [—,(1—z ) F2(2coo)+ —",z (1—z )F2(coo)], (17)

I,2 coda+ I —,
'

[z——+ —,'(z —1)cos p]E2(2coo)+ —,[1—(1 —z )cos p)E2(~o)]

+coda+a [ —,'(1—z ) F2(2coo)+ —,z {1—z )E2(coo)] .
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III. RESULTS

In this section we shall present and discuss the results
derived in the preceding section. However, we shall first
compare our formalism to that of Gaines, Mukherjee, and
Shi (hereafter referred to as GMS), who earlier theoreti-
cally investigated the NMR line shape of dilute ortho-Hz
and solid para-H2. They did not calculate T~ and they
neglected the off-diagonal terms leading to I „and I,z.
However, T& is not used in calculating the line shape and
I, &

and I,2 are unimportant in their regime where
aIp ))I i. GMS considered two cases: (a) where J~ is
characterized by the values + 1, 0, and —1, where J~ is
the projection of the rotational angular momentum on the
crystal axis. This case turns out to be the case that we
call axial symmetry In. their case (b) the states of J~ are
chosen to be

i
s) =(I/2'")(

i
1)+

i

—i)),
~

a ) =(1/2'")(
~

i ) —
~

—»), (19)

This turns out to be our case of no symmetry with
cosII)=0. Given the above restrictions, GMS's treatment
of the line-shape problem is correct if (Azp) =0. Howev-
er, their inclusion of low-temperature effects is incom-
plete. They include the thermal occupation of the mj
states in the weighting of the spectrum, but they do not
include the effects of a nonzero (Azp) on the modes
themselves.

Our results are the solution to the 6&6 matrix or two
3&&3 matrices contained in the Appendix. The general
solution to these equations cannot be expressed in a
simpler way. Further, usually one is interested in the line
shape averaged over all angles. Our approach will be to
present formulas and a discussion from the limiting cases.
The trend for a single angle can be fairly well understood
from the formulas. Then a number of figures will be
presented for the line shape averaged over all angles in the
regime between the limiting cases. In all of this we shall
assume that I",i ——I,z ——I „and in the figures a very
small I, is chosen. In fact, I, i and I, z may be rather
unimportant in most cases of interest. However, they
must be included to recover the exact results of Ref. 1 in
the case where I

&
is not much smaller than coo. Thus

there are two sets of three modes and their spectral weight
or relative contribution to the line shape. %e shall use the
notation of a complex frequency Q whose real part is the
real frequency as measured from the center of the line, pip,

and whose imaginary part is the decay rate of the mode.
We let U; denote the spectral weight of the mode Q;.

First, consider the case of axial symmetry where the re-
laxation rates I I are small compared to a& and a2. The
modes and their spectral weights are given approximately
by the equations

Qi ———,
'

cod(3z —1)e+ ', ia+ I z, —

Ui =a /3,
(20)

Qz z
————,aid(3z —1)e+aI,z+i —,

' (I I+ —, I za ),
2

U, , =a+/3,

O
clz

c

(c)

0
o 0x

I I I I

2
I I

0 ) 2
(6 /(Ud

0 t 2

FIG. 1. The line shapes in the case of axial symmetry with

very little relaxation. Case (a) corresponds to mj =0, while case
(b) corresponds to mj =+1. Case (c) is the composite that mould

be seen if all of the mj states were equally populated.

where, as discussed in the Appendix, there is a set of
modes with @=1 and a set with e= —1. In the limit
where the damping can be ignored, a hydrogen molecule
can be in states with mj ——0, +1 and the three different
frequencies correspond to nuclear-spin systems feeling
each of three different static fields. (The reason for the
two sets of three modes is that there are two distinct fre-
quencies corresponding to urn& ——+1. Equivalently, the
line shape consists of the spectrum of the operator 8„
and the modes correspond to the operator combinations
8»+eBz, .) The frequencies of the three modes are in-

dependent of temperature because a given Hz molecule is
restricted to a state of fixed mj. We note, however, that
the U; and decay rates are temperature dependent and re-
flect the fraction of the time spent in a state mj. Figure
1(a) is the angular averaged spectrum from Qi, while Fig.
1(b) is the spectrum from Qz or Q3. Figure 1(c) is the sum
of the spectra from Q, , Qz, and Q3 with equal weighting.
In Ref. 13 only the spectrum of Qi or Qz 3 alone is con-
sidered and, to our knowledge, no spectrum like that in
Fig. 1(b) or 1(c) has ever been observed. Figure 1(a), of
course, is the familiar Pake doublet.

Next, consider the opposite limiting case of axial sym-
metry where the relaxation rates are large compared to a

&

and az. In this case all of the spectral weight is in one
mode with a frequency

(a) (b) (c)

O
O,

C P

UJ
Cl

CL

I

0 I 2
(e) (d/QJ

d

0
0 I 2 3 0 ) 2 3 4

cU /4)d

FIG. 2. Spectra for the case of axial symmetry with a = —
2 .

The values of I 2 jcoq are 0.01, 0.1, 1.0, 3.0, and 10.0 for panels

(a), (b), (c), (d), and (e), respectively.
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(Cl) (c) (b)

cA 0
2

I

(e)
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4)/4)d

O
i' 0
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LLI
C3

I
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0 I 2 5 4
{e) 40/4Ud

I, I i0
0 I 2 5 0 I 2 5 4
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FIG. 3. Spectra for the case of axial symmetry with a =0.
The values of I 2/m~ are 0.01, 0.1, 0.3, 1.0, and 3.0 for panels
(a), {b), (c), (d), and (e), respectively.

0 I I

0 I 2 3 0 I 2 5 4
4U /Q)d

FIG. 5. Spectra for the case of no symmetry with a =0. The
values of I ~/~q are 0.1, 0.3, 1.0, 3.0, and 10.0 for panels (a), (b),
(c), (d), and {e), respectively.

Q= —[—,'cod(3z —1)a@+i(—', cu, a+/I i)

+i ', cud(—3z —1) a a /I b] . (21)

The line shape is, of course, a simple Lorentzian. In this
case a given H2 molecule is flipping quite rapidly between
states of different m~ and thus the H2 nucleus sees an
average field which is temperature dependent because the
weighting of the different states is temperature dependent.
There is additional temperature dependence in the decay
rate (besides the temperature dependence of I, and I'2) for
the same reason.

The transition between the two limiting cases is shown
in Figs. 2—4 for three different values of a. As can be
seen, the two-peaked structure evolves into the Pake doub-
let. We wish to particularly note the apparent glitches in
some of the spectra at co=0.75'~ and a weaker one at
co=0.6cod. The first one occurs from the part of the an-
gular average near z =0 where a

&
is zero and where two

of the modes (Qz and Q&) become degenerate. The second
glitch comes from values of z where Q&-Q2 or Q3. An

Q, = —,
'

cud(3z —1)@+i ,
' I'qa+-,

u, =a' /3,
Q2 i ——[ ——,(3z —1)+(1—z )cosP]coze

+i , (1+—,a )I 2—,

2
u, , =a+/3 .

(22)

In the limit where the damping can be ignored, each of
these 0; gives the same Pake doublet when averaged over

analysis of the modes near these points shows that the two
modes stay degenerate to first order in z —zo near the
point of degeneracy, which is z=zo. This quadratic
dependence on z —zo causes the glitch. The width and
amplitude of the glitches are very dependent on I „
becoming much weaker as I, increases.

For the case of no symmetry we first consider the limit
where the relaxation rate I 2 is small compared to a

~
and

a2. The modes and spectral weight functions are given by
the equations

(c)
2

0
2 0 I 2 5 4

(e) QJ/Ct)d

v) 0
c 2 {c)

LL)
O

I-
CL

0 I 1 I I I I

0 I 2 5 0 I 2 5 4
QJ /cUd

3FIG. 4. Spectra for the case of axial symmetry with a = 4.
The values of I q/md are 0.01, 0.1, 0.3, 1.0, and 3.0 for panels

(a), {b), (c), (d), and (e), respectively.

0
0 I 2 3 0 I 2 3 4

4) /Q)d

FIG. 6. Spectra for the case of no symmetry with a = —~.
The values of I 2/uq are 0.3, 1.0, 3.0, and 10.0 for panels (a), (b),

(c), and (d), respectively.
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2
[d)

4J
C)

CL

0 I I I I j I

0 I 2 3 0 I 2 5 0 I 2
4) /(Ud

FIG. 7. Spectra for the case of no symmetry with a = 4.
The vaIues of I 2/co~ are 0.1, 0.3, 1.0, 3.0, 10.0, and 30.0 for
panels (a), (b), (c},(d), (e), and (f), respectively.

all angles. Most of the discussion following Eqs. (20) is
also valid here.

Finally, we consider the case of no symmetry where the
relaxation rate I 2 is large compared to a1 and a2. In this
case all of the spectral weight is in one mode with a fre-
quency

APPENDIX

The nonzero elelnents of the matrix M 15 in Eq. (7) are

3 1/2
~14 ~41 3a 2 ~12

16 M61 3a2a+ —/2 M15 M51 1 —/21/2 1/2

M25 ——M52 ——3' a la /2,1/2

M36 —M63 ——3a2( 1 +2a )/2
(A 1)

1/2
M54 —M43 —3a la +a /2, M45 ™54= —, a la+

3f56
——M65+ 3 a1a+ /2,1/2

+~I 1a ~ ~22 Q7+l I 2a & ~33 =CO+1 P1 ~

W~=~+ir2, m» —~+iI-, , M« ——~+iI 2.

The operators p for the case of axial symmetry are given
by the equations

0= —,
' (3z —1}aa)ge.

+ —,ia+ [(—,
' }2(1—z2)2cos2$

+ —,(3z —1) a ]cog/I'2, (23)

Pl 1 1 ~ P2 ~ 1 1 '410 i P3 ~11~20/~

P4 ~21 ~ P5 ~21~ 10 ~ P6 ~21 ~ 20/~

A =[tr(320) j'i =a+a

(A2)

(A3)
and the discussion following Eq. (21) is valid here also.

The transition region between these two limiting cases
is shown in Figs. 5—7 for three different values of a.
Again there is an apparent glitch, this time at co=0. This
little spike is considerably weaker than in the case of axial
symmetry. One can obtain quasianalytic forms for this
glitch by expanding about the point z = —,

' and cosf=O.
Again, its width and amplitude depend critically on I,.

Although the equations in the paper have been derived
for an isolated H2 molecule, most aspects of our results do
not depend very heavily on this assumption. That is, the
relaxation rates and (320) are input for the calculations
'and they could have been determined by EQQ interac-
tions. Thus the glitch observed' ' in the line shape of
concentrated H2 could easily be related to the one dis-
cussed here.

Finally, we wish to note that the case of axial symmetry
gives Pake doublets with splittings of about 361& and
about 3~d/2 under a fairly wide variety of conditions.
The no-symmetry case does not include the doublet at
301d/2. Since this latter doublet does not appear to have
been observed, one must wonder if the conditions of axial
symmetry have ever been observed.

N1 1(e)=01+i I', +3ea2a, N22(6) =co+i I 1+3ea2/2,

N33(E) =01+i I 2 36a2( 1 +—a)/2
3 1/2

N12(6) =N21(e) = —, a la+,
N15(e) =n51(e) =3ea2a a /2'

N2&(e) =n &2(e) =3'i a la /2 .

These matrices solve the equation

N(J. (6)Qi(e}=0,
where

(A5)

Ql(&) =i21+&P4 Q2(6) =P2+6P5 Q3(6') =P5+~P6 .

The operators for the case of no symmetry are

Pl ~11 & I 2 ~11~60 ~ P3 ~11~20/~

F4=~21 t P5 =~21~&0 ~ F6=~21 420/~

if 1,1
——1,2

——I „then the 6X6 matrix M decomposes
into a direct product of two 3X3 matrices, N; (e), where
@=+1and
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