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Hole subbands in semiconductor thin layers
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The hole subbands in an isolated thin layer are calculated by solving a 4X4 Luttinger-Kohn

Hamiltonian numerically. %'e found that ignoring the warping of the valence band could lead to
substantial error in the hole subbands and the related physical quantities, such as the effective

masses. The normalized wave functions are presented.

A general formalism for space quantization of the ener-

gy spectrum for the valence band in semiconductor films
has been proposed by Nedorezov. ' To study this problem,
he started from the Luttinger-Kohn Hamiltoniani in the
spin J= —, basis by assuming infinite spin-orbit interac-

tion, and imposed the zero boundary conditions that are
valid for describing free carriers confined to an infinitely
deep well. The subband structure of the valence band and
the corresponding effective mass of the hole were derived
analytically. ' R~ntly, Fasolino and Altarelli adopted
Nedorezov's formalism to study the subband structure
and Landau levels in heterostruetures by neglecting the
warping of the valence band. In the spirit of Ref. 3, and
neglecting the warping of the valence band, Chang stud-
ied the problem of the enhancement of optical nonlineari-

ty in p-type semiconductor quantum wells due to confine-
ment and stress.

The main purpose of this paper is to investigate numer-

ically the subband structure, the effective mass of the
hole, and the wave functions of the Luttinger-Kohn Ham-
iltonian for the valence band, including the contribution
of the warping by using Nedorezov's formalism. ' We
compare our results with those obtained without the
warping of the valence band. '

The 4)(4 Luttinger-Kohn Hamiltonian can be reduced
to two 2X2 matrices by using a unitary transformation,
as proposed by Broido and Sham and is written in atomic
units (a.u. ) as
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FIG. 1. Valence-band structure of the 100-A GaAs single
layer with yl ——6.85, y2 ——2. 1, and y3 ——2.9 (solid curves); and

y l
——6.85, y2 ——2.58, and y3 ——2.58 (dashed curves).
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FIG. 2. Normalized wave functions 8'1(z) and 8'2(z) for
typical k values.
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where

P =yi(k —t},)/2,

Q =y2(k +2t), )/2,
8 =

f 3k [y cos (28)+y sin (28)]/4I '

S =v 3y3k ( i t}—, ) .

(2)

Here, y„yz, and y3 are Luttinger parameters, k is the
wave vector parallel to the layer in the (x,y) plane, i.e.,
normal to the dirtx:tion z of the quantization of angular
momenta, 8 is the angle between k, x and k, and 3, is the
partial differential operator with respect to z. The zero
boundary conditions require that

8';(z =+2/2)=0, i =1,2, 3,4, (3)

where I. is the thickness of the layer.
By examining Eqs. (1) and (2), we see that

Wg(z)~ Wf(z) and W3(z)~ Wz(z); therefore, we need
only solve Eq. (1) for W, (z) and W2(z} with the boundary
conditions Eq. (3). For GaAs, we choose y~ ——6.85,
yq

——2. 1, and y3 ——2.9. The numerical solutions for the
eigenenergies E as a function of k in the [100] and [110]
directions are shown as sohd curves in Fig. 1 for I.=100
A. If we neglect the warping of the valence band as pro-
posed by Ref. 3 by letting y2 y3 y——an—d
y =(3y3+2y2)/5=2. 58, we have been able to reproduce
the energy spectrum obtained by Chang, and show these
results as the dashed curves in Fig. 1. The symbol HHn
(LHn) refers to the heavy hole (light hole) in the nth state.
Clearly, we see that by ignoring the warping of the
valence band, the subband structure may have a large er-
ror which can possibly lead to misleading conclusions for
the related physical quantities, such as effective masses.

With warping (without warping) of the valence band, the
effective masses are

m '(HH1) = —0.14057 ( —0. 12306),

m'(HH2) =0.00643 (0.2850),

m'(HH3) =0.16542 ( —0 71230),

m '(LH1) = —0.00603 ( —0.06896),

m '(LH2) = —0.06207 ( —0.06346},

m «(LH3) = —0.03018 (0.002936) .

The numerical solutions of the normalized wave functions
W&(z} and W2(z} for various k in the [100] direction with
n = 1 are shown in Fig. 2. In Fig. 2(a), we obtained exact-
ly W~ 2(z)=&2/L cos(rrz/1. ) and W2 l(z)=0 for k =0.
In this case, off-diagonal elements in Eq. (1) are zero, im-

plying that W~(z) and Wz(z} are decoupled. However,
when k&0, W&(z) and W2(z) are coupled because of the
presence of the off-diagonal elements. Results are shown
in Figs. 2(b) and 2(c) for k =0.01 and 0.02, respectively, a
normalization condition

z 8')z + 8'pz =1

having been employed. In these cases, we see that the spa-
tial distributions of the heavy hole and the light hole in
the layer are asymmetric.

In summary, we have investigated numerically
Nedorezov's formalism for the space quantization of the
energy spectrum for the valence band in a semiconductor
thin layer. We have found that neglecting the warping of
the valence band could 1ead to a large error in the subband
structure and the related physical quantities.
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