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Plasmon band structure in a lateral multiwire semiconductor superlattice
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The collective modes of a lateral multiwire superlattice made from two-dimensional strips of al-

ternating equilibrium electron densities are investigated in the semiclassical hydrodynamic approxi-
mation. Numerical results for the dispersion relation of the lowest three plasmon bands are given

explicitly and the optical absorption spectra |,'appropriate for far-infrared spectroscopic experiments)
for the system are obtained. Both bulk and edge plasmons are considered in the theory.

There has been a lot of recent interest' ' in the collec-
tive properties of low-dimensional electron gases as occur-
ring, for example, in inversion layers and multilayer semi-
conductor superlattices. Plasmon dispersion has been
studied both theoretically' " and experimentally' ' in
a single two-dimensional layer as well as in the periodic
multilayer system. Theoretical attention in the very re-
cent literature has focused on surface plasmons in super-
lattices, ' edge plasmons in two-dimensional layers, ' and
on one-dimensional plasmons in quantum wire struc-
tures. ' In this paper we consider the interesting system
of a periodic lateral superlattice consisting of finite two-
dimensional strips of alternating electron density (we refer
to such systems as multiwire superlattices). Such a modu-
lated two-dimensional electron system, where the electron
density changes periodically along one direction, has re-
cently been fabricated's " in sihcon inversion-layer struc-
tures. In addition to calculating plasmon dispersion in
these structures, we will also report calculated results on
far-infrared absorption spectra.

Our model for the lateral multiware superlattice as-
sumes a purely two-dimensional electron later in the x-y
plane, which has a periodic density modulation in the y
direction (with the density being uniform along the x
axis). The equilibrium electron density for the system is,
therefore, given by

no(r) =no(x,y)5(z),

nA for ld &y ~ a + ld,
nit for a + ld &y p (I + 1)d,no(x,y)= '

(2)

with l =0, +1, +2, ete. The model of Eqs. (1) and (2) de-
scribes a system containing alternate metal strips (of zero
thickness in the z direction) of widths a and b ( =d —a)
in the y direction (and infinitely long in the x direction)
with alternating two-dimensional electron densities nz
and n~, respectively. Thus the system has complete
translational invariance in the x direction and has period-
ic symmetry with period d =a +b along the superlattice
direction y. Our approximation of neglecting the thick-
ness of the layer is consistent with the experimental sys-
tems (e.g., modulated inversion layer), where the average
thickness of the confining wave function in the z direction
is much smaller than the typical length scales (e.g., d, b)a
in the x-y plane. %e treat the system as a strict two-

dimensional system in the x-y plane.
Before doing any calculation, one can guess that there

will be multiple branches of plasmon modes due to the
periodic density modulation in the y direction. In addi-
tion, the bulk (two-dimensional) plasmons and the edge
plasmons of various strips will interact to form plasmon
bands (with the bandwidths determined by the Coulomb
interaction between different strips). In principle, there
will be infinitely many branches of plasmon bands, even
though the spectral weight of each branch will diminish
as one goes up in energy. In this paper we will consider
the low-lying plasmon bands using a semiclassical hydro-
dynamical approach. ' In an earlier paper'o we had con-
sidered the extreme quantum case where only the lowest
plasmon band (which has quasi-one-dimensional plasmon
character) was investigated. Currently fabricated experi-
mental systems' '" cannot yet reach the extreme one-
dimensional quantum limit and results reported in this pa-
per are more appropriate for the currently existing experi-
mental systems.

Hydrodynamic theory for calculating plasmon disper-
sion in an electron gas is fairly standard' and we omit the
formal mathematical details. After linearizing the equa-
tion of continuity, the Euler's equation and the Poisson's
equation, we get the following for the self-consistent den-
sity fluctuation ni(y) of the system

ni(y)

cl z t)n 1 8+,p'(y) (y)+E~(y) n, (y) =0, (3)

where p is the electronic compressibility (which is also a
measure of nonlocal effects in the plasmon dispersion of
the electron gas). In Eq. (3) the density fluctuation is a
function only of y since we assume translational invari-
ance in the x direction and take

n i(r, t) = [n i(y)ee' '"']5(z),

with q as the conserved wave vector in the x direction.
The two-dimensional frequency to& in Eq. (3) depends on
whether one is located in strip A or 8 and is given ap-
proximately by
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to„with y E(ld, a +ld),
with y E (a + ld, ld +d),

' 2&ng ge 2

COg g=
%Pl

( 2+k2)1/2 (S)

where ~~=mznia o. r mBmib are the allowed wave vec-
tors in the y direction (with mz, mB integers) and m', ~
are the effective mass and the static dielectric constant,
respectively. The self-consistent electric field E„(y) enter-
ing Eq. (3) is obtained by solving Poisson's equation:

Ey(y) = —2eq f dy'sgn(y —y')I(. , (q ~y —y'
~
)n, (y'),

where E,(x) is the modified Bessel function. When Eqs.
(4)—(6) are combined with Eq. (3) one gets a nontrivial
integro-differential equation as the condition for the self-
consistent plasma oscillation of the system. Instead of
working with the modified Bessel-function kernel of Eq.
(6), we use the relationship (8/Bx)EO(x}= —Ki(x) and
the approximate kernel suggested by Fetter by replacing
Ko(x) with (2n. )2 ~ exp( —2'~ x}.

The standard technique' for obtaining the plasma
dispersion relation is to apply boundary conditions involv-

ing the continuity of charge density and current density at
the boundary between alternating wires. We use the fol-
lowing ansatz for the density fluctuations with frequency

in the range cog )co )mg .

Ae " +Be " for yE(O, a),
BBS-

Ce +De for y C(a,b),

with

P~ =~~ (to to~—} q—

PB '=l3B '(~B ~')+q'
and the density fiuctuation at arbitrary y is obtained by
using the Bloch theorem associated with the periodicity in
the y direction:

n, (y) =n (y+Id)e'"+ .

Concentrating on the plasma oscillations in the range
t0B &co &toq we can now get a set of four equations for
the unknown amplitudes A, 8, C, and D by applying
Bloch's condition and the boundary conditions (continuity
of charge and current densities). This leads to the secular
equation

iPA a
e

e ikd

—ipA a
e

e ikd

—pea—e
—pgd

p&(a —d)—e

—pgd
(nB nq )E—q (a) (nB nq )EB—(a) (nB nq )Ec(a—) (nB n„)ED—(a)e

ipAa ipA a 2
—pea

iPqpz—e " +iPqpae " —PBPBe +PBPBe
—pgd

(nB n„)E—&(d) (nB nz )EB(d)—(nB —nz )Ec(d} (nB —nz )ED(d)e

2 ikd ~ 2 ikd 2 —pgd 2—iPgPg e +lPgPg e 13BPB�-e+�PB

(10)

The coefficients E„, EB, Ec, and ED depend on q, p„,
pB, co„, coB, k, and, of course, a and d. We do not show
them here for the sake of brevity. The wave vector k is
the plasmon-band wave vector arising from the y periodi-
city of the system as defined in Eq. (9).

We have solved the above secular equation [Eq. (10)]
numerically to obtain the low-lying plasma bands of the
system. The results are shown in Fig. 1. The lowest three
bands (m =0, 1,2) are shown as a function of qa, the
wave vector along the x direction. The band edges are at
kd =0 or m, where k is the wave vector along the super-
lattice direction. Parameters chosen for our numerical
calculation are nq inB ——0.3, bia =2, pz ——pB ——O. lcooa,
where F00 (2ne nz/~m'a)'~2 is——taken as the natural unit
of plasma energy in the problem. The bands are classified
by the integer m ( = m~ ——mB) which defines the "local"
plasmon modes (the higher-multipole' branches) in the
individual wires. Thus our plasmon band calculation is a
linear-combination-of-atomic-orbitals-(LCAO-} type band
calculation, in contrast to the work of Krasheninnikov
and Chaplik who used a nearly-free-electron-type pertur-

bative method to obtain the plasmon band gaps.
We would also like to point out that our approximation

of replacing the exact kernel Ei(x} in Eq. (6}with the ap-
proximate exponential kernel is a nonessential quantitative
approximation made only to facihtate our numerical
work. This does not in any way affect our qualitative re-
sults. We should emphasize that, unlike in Ref. S, we do
not solve the problem of a single finite strip, but using
translational invariance, directly solve the problem of an
infinite superlattice so that the difficulties associated with
fringing fields (in the nonlocal integral equation), as dis-
cussed in Ref. S, do not arise in our method. One addi-
tional approximation we make is the neglect of interband
mixing terms ("band hybridization" ) so that our plasmon
bands are allowed to cross. If interband interaction terms
are retained in the calculation, small gaps will open up in
Fig. 1 at wave numbers where two bands cross. Our re-
sults will remain unaffected for other wave numbers.

Our results for the calculated long-wavelength optical-
absorption spectrum for the system are shown in Fig. 2.
For optical absorption we use the following formula:



600

cL 200-

I.G—

0,0
1

0.2 0.4 I.G

qo

FIG. 1. Shows the calculated plasmon dis rsi
multiwire superi tt' fa ice as a function of the

n ispersion in a lateral

the stri . Three
the wave vector q along

ip. ree sets of plasmon bands (m =0 1 2
with the band edges be' k„— m wges ing at k„1=0and m w
the superlattice riod

k„— m where d =a+b is
ice peri and a, b are the widths of the alte

strips (coo,~q ~~ are de ed
'

be in in the text).
e a ternating

p tI'= —, Rerreff(co)
~
E,(lf 0 z 0) ~

'

where o,ir is the effective high-fre uencwher e ig - requency conductivity of
an „ is the electric

a m es, with the structure being very

2Q 5Q
QJ /~o

FIG. 2. Shoows the long wavelen th
lateral superlattice

g optical absorption by the
ice as a function of the frequency. Various

n e ects are identified.

0
I.O

The work is supported by the U.S. At e U.S. Army Research Of-

Science Foundatio W h
e . . ice o Naval Research, and t

a helpful discussion.

'
n. et ankProo essor John Quinn for

weak for m &2.
in conclusion, we have calculated the l

n op d- bsorption spectrum

ternating electr d
ra wo- imensional multiwire su

ron ensity nq and n ( er
uperlattice of al-

fined in alternat'erna ing strips of widths a and b res ec
'

W il i lhdodr ynanttc approach assuming
um con inement effects are not im

(which is a correct ass t'
no important

experimental systems}. Our
assumption or the currentl y existing

p asmon dispersion in a two-dimensional el
o the

e sio al electron gas with
u a c arge density.

S. Das Sarma and J. J. uinn Phm, . R . B25, 7603(1 8 }.
oss, Sohd State Commun. 44, 363 (1982).

3J. K. Jain and P. B. Allen, Ph s. R ven, ys. Rev. Lett. 54, 947 (1985); 54,

4C FG. F. Guiliani and J. J. quinn Ph
. E. Camley and D. L. Mills, Phys. Rev. 8 29, 1695

.L, , (1985).. L. Fetter, Phys. Rev. 8 32 7676
. %'u, P. Hawrlyak, and J. J. quinn

879 (1985).
n . . quinn, Phys. Rev. Lett. 55,

7S. Das SarmSarma, Phys. Rev. 8 29, 2334 (1984 .
ni, and J. J. Quinn, Phys. Rev. 8 33,

9M. V.. Krasheninnikov and A. V. Cha lik Faplik, Fiz. Tekh. Polupro-

an . .Lai, ).
. E. Prange, Phys. Rev.

. N. Theis, Surf. Sci. 98, 515 (198Q. N. ', . '. , Q), and references therein.
. %iegmann,

'4D. B. M~4D. . Mast, A. J. Dahm, and A. L. Fetter , Phys. Rev. Lett.

. Mackens, D. Heitmann, L. Pra er J.g, . P. Kotthaus, and %'.
ys. ev. Lett. 53, 1485 (1985).

R. Sooryakumar, A. Pinczuk, A. C. Gossard, and %'

(1985).
g-

E. Batke, D. Heitmann, J. P. Kotthaus, and Kthaus, and K. Ploog, Phys.

rsA. C. %'arrearren, D. A. Antoniadis, H. I.
*, ec. ev. Lett. 6, 294 (1985).

A. L. Fetter, Ann. Phys. (N.Y.) 88, 1 (1974 8
ys. ev. 8 14, 1347 (1976); S. Das Sarm

J. Quinn, ibid 20, 4872 (1979). .
2oS. j. Allen, D. C. Tsui, and R. A. Lo ann . . Logan, Phys. Rev. Lett. 38,


