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Statistical properties of energy spectra in one-dimensional quasiperiodic systems are studied nu-

merically. %'e find three distinctive level distributions: the Poisson, inverse-power-law (IPL), and
cosine-band-like behaviors in the Harper model with an incommensurate potential. These depend
on whether the electronic state is localized, critical, or extended, respectively. Energy spectra of
electrons on the quasiperiodic Fibonacci lattice are also characterized by the IPL irrespective of the
strength of the modulation, indicating that the state is always critical.

Much attention has been focused on level distributions
of quantum systems in various fields' ranging from nu-

clear physics to condensed-matter physics. It is believed
that statistical properties of quantum spectra refiect sensi-

tively the underlying physics and are especially suited for
investigations of quantum chaos. By solving analytically
a special class of Schrodinger equation with an almost
periodic or incommensurate potential, Grempel et QI.

were able to show profound relationships between the An-

derson localization problem and the quantum chaos prob-
lem. For a one-dimensional Schrodinger operator with

random potentials or in the Anderson model where the
state is rigorously known to be localized, Molcanov
proves that the level distribution of the spectrum is of the
Poisson type with no level repulsion.

This work leads us to ask a natural question: What are
the statistical properties of spectra for another class of the
Schrodinger operators in the presence of incommensurate
potentials and with quasiperiodic modulations? These
problems belong to a class intermediate between complete-

ly random and periodic ones. The well-studied Harper
model is such a system: c„+i+„c,+A. V(n8)c„= cE„

where V(t) =cos(2srt) and 8 is irrational. The potential is

incommensurate with the underlying lattice. It is
known' ' that the case kg2 (A, ~2) corresponds to the
extended (localized) state and that the self-dual point
A. =2 gives the metal-insulator transition at which the
state is neither extended nor localized but critical. The
spectra of this system have also been investigated quite
thoroughly, ' being absolute continuous, singular con-
tinuous, or pure point, depending on whether A, g 2, A, =2,
or A, ~ 2, respectively.

Here we would like to present our numerical results on
the statistical properties of the energy spectra for the
Harper model. The distribution P(S) of the nearest-
neighbor level spacings is markedly different depending
upon A, , or upon whether the underlying state is localized,
critical, or extended. Namely, when k & 2 the distribution
is of Poisson type and at A. =2 we obtain a novel type of
distribution characterized by an inverse power law (IPL).

We also present the results for another class of
Schrodinger operators on a quasiperiodic lattice. '"
This is a one-dimensional version of the so-called quasi-
crystals. ' ' The models are described by the tight-
binding Hamiltonians in which (1) a set of the transfer in-

tegrals I t„j,consisting of two kinds tz and ttt, is given by
the Fibonacci sequence t„+ic„+i+ t„c„i Ec——„(Fibonac-
ci transfer model) and (2) a set of the site potentials I v„),
consisting of U and —U, is placed by the Fibonacci
sequence c„+i +c„i +U„e„=Ec„(Fibonacci on-site
model). We shall demonstrate that the IPL distribution
can be found irrespective of the values of tzlttt and U in
both models except for the periodic cases tq It& ——1 and
U =0.

The method of numerical calculation is as follows: In
the Harper model, approximating an irrational 0 by
Ft, /Ft, where the Fibonacci numbers Ft are defined by
FJ —FI ] +Ff 2 with Fo ——F

&

——1, we successively change
the system size X =Ft to effectively approach the irra-
tional I/r [note limt „(Ft i/Ft)=l/r where ~ is the
golden mean] and diagonalize the Hamiltonian matrices
up to X =1597 (1 =16) mainly under periodic boundary
conditions. In the Fibonacci model the system size is
varied according to the Fibonacci numbers. Thus the ra-
tio of the two kinds of the elements tends to r as l~ oo.
We examine the generation dependence on physical prop-
erties.

Figure 1 shows the value of the nth largest level spac-
ing G(n) (left-hand-side figures) and the histograms of
the level-spacing distribution P(S) (right-hand-side fig-
ures) for various values of A, in the Harper model. Note
that a pair of these figures is complementary to each other
because P(x) ~

~

dG(x)/dx
~

.
In the case A, = 1 [Fig. 1(a)] where the state is extended

G(n) consists of the three parts; in the larger-spacing re-

gion a straight line is seen, giving rise to a power-law
behavior (see later for details). The spacings around
G(n)=O(10 ) are characterized by a cosine function.
The levels in this region are paired with almost zero spac-
ing, forcing a large number of spacings to concentrate
around G (n ) =0 (10 ). This causes a very sharp peak at
the origin in the distribution P(S). These properties
resemble those of a regular system under periodic boun-
dary conditions.

In the case A, =3 [Fig. 1(c)] where the state is localized
G(n) is best described by an exponential curve on which
almost all data points sit (note the logarithmic scale). The
dent located around 10 tends to vanish on increasing
the system size. The same deviation in the larger-spacing
region as in the k= 1 case is seen. These features furnish
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FIG. 1. Level spacings 6 (n) arranged from the larger ones (left) and histograms of the distribution I'(S) (right) for the system size
1597; (a) 1=1.0 (extended case). Spacings consist of three groups: the inverse-power-law (IPL), the cosine-band-like, and the
almost-zero-spacing regions (see text). Thin line is a cosine curve fitted to the data. (b) X=2 (critical case). Straight line of G(n) in
this plat indicates that it obeys the IPL. P(S) is also characterized by the IPL. {c)A, =3 {localized case). G(n) is best described by an
exponential curve (the thin line). Deviation in the larger spacing region is a remnant of the IPL. The dent around G(n) ~10 ' tends
to vanish as the system size is increased. I'(S) expressed by a straight line in this plot means the Poisson distribution.
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convincing evidence that the distribution P(S) is of Pois-
son type. Indeed the right-hand-side figure in Fig. 1(c) ex-
hibits a Poisson distribution [P{x)~e "] which is the
case in the Anderson model. Therefore both localized
states in the present incommensurate potential and the
random potential models show the same level-spacing dis-
tribution.

In the case A, =2 [Fig. 1(b)] where the state is critical,
that is, intermediate between the extended and localized
states, G(n) exhibits an inverse-power-law behavior with
the power index d as is unambiguously shown as a
straight line in the logarithmic plot. It is evident that
P(S) is described by an inverse power law (IPL) distribu-
tion with the power index 2+1. Therefore we have ob-
tained here the three distinctive types of the level distribu-
tion, depending upon whether the underlying states are ex-
tended, critical, or localized.

We display the results of 6 (n) for the Fibonacci on-site
model in Fig. 2. Irrespective of the values of the on-site
potential U 6{n) is always characterized by IPL behavior
with the power index or fractal dimension d which de-
pends on U. Correspondingly, P(S) is of the IPL distribu-
tion with the power 1+1, namely P(x) ~1/x +' as
shown in Fig. 3. These results are also true for the Fi-
bonacci transfer model. It is interesting to note that the
IPL distribution implies level attraction contrary to the
level repulsion seen in the signer distribution ' observed
in quantum chaos systems. To our knowledge there is no
known example which has such an IPL distribution in the
energy spectra.

In order to understand the origin of the IPL distribu-
tion, we supplement our discussion by noting the follow-
ing: We have found the same branching rule for the
eigenvalues in the Harper model at the self-dual point
(A, =2) as in the Fibonacci model (see Ref. 13 for details).
Namely the eigenvalues for system size N =F~ are divided
into main three subbands (see Fig. 4), each band contain-
ing exactly FI 2, F~ 3, and F~ 2 levels according to
FI ——E) 2+I'I 3+I'I 2. Each subband is divided into

I
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FIG. 3. Level distribution P(S) for the on-site Fibonacci
model (U =1.8), indicating the inverse power law behavior.
(The system size is 1597.)

three groups according to the same rule, which continues
to hold for the sub-subbands and so on. [Note that in
Figs. 1(a) and 1(c) the straight lines of G(n) are reminis-
cence of this branching rule]. As pointed out previous-
ly, ' the band structure in both models, the Harper
model at A, =2 and the Fibonacci models, is self-similar.
These facts remind us of the fractal nature' of these sys-
tems in which the characteristic scale is absent and might
be responsible for the IPL distribution, suggesting that
self-similarity plays a crucial role similar to what transla-
tional symmetry does in ordinary crystals. The gross
band structures are depicted in Fig. 4 for the Harper
model. It is seen that the self-dual point A, =2 is a special
point in this model.

We show the band measure defined by
lim„M(n)=lim„„[2W—QI",

&
6(k)]/2W, where

2 W is the bandwidth for the Fibonacci on-site model in
Fig. S. It is readily seen that the band measure tends to
vanish according to an inverse power law, implying that
the band is a Cantor set which coincides with others. '

This fact holds for other values of U and also for the Fi-
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FIG. 2. Level spacing 6(n) in the on-site Fibonacci model
for U = 1.0, 1.4, and 1.8 (from the right to left) where the curves
are shifted for clarity. Note that the slopes of the straight lines
which are related to the power index d depend on U. (The sys-
tem size is 1597.}

E/W
FIG. 4. Energy spectra normalized by the band width 2 8' of

the Harper model for various potential strength A.. Gross band
structures clearly indicate that the case P =2 is special. (The
system size is 1597.)
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FIG. 5. M{n) defined in the text for the on-site Fibonacci
model (v =1.8). Large (small) dots correspond to the system
size 1597 (610). Indicates that M(n} tends to vanish according
to the inverse power law (straight line).

bonacci transfer model and for the Harper model ' with
A, =2.

In conclusion, we have found a distinctive change of
the level distribution in the Harper model with incom-
mensurate potentials, corresponding to the metal-insulator
transition at the self-dual point A. =2 where the band
structure is self-similar and the branching rule holds. In
the locahzed region A, & 2 the level distribution is of Pois-
son type while at the critical point A, =2 it is of inverse-
power-law type. We have also found the same level distri-
bution in the Fibonacci models with quasiperiodic modu-
lation. %'e suggest that the critical state intermediate be-
tween the localized and extended states is specified well by
this novel type of inverse-power-law distribution.

We challenge some clever experimentalists to observe
such a singular spectral distribution in the Fibonacci lat-
tice, for example, synthesized recently by molecular beam
epitaxy in GaAs-AlAs heterostructures' or quasicrys-
tals. '4
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