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We calculate the transient motion of a well-localized charge carrier injected into a narrow-band
molecular insulator. The carrier can often move with a mobility comparable to 1 cm?/V sec for a
considerable time before equilibrating to form a small polaron. Thus, time-of-flight measurements
on thin films may measure this mobility rather than the low, thermally activated mobility charac-
teristic of steady-state small-polaron hopping motion.

I. INTRODUCTION

It is well known that steady-state small-polaron hop-
ping motion at sufficiently high temperatures is charac-
terized by a low thermally activated mobility.""> Namely,
the steady-state mobility is then given by the semiclassical
formula

p=(ga*v/kyT)Pexp(—E 4 /kyT) , (1

where g is the carrier’s charge, a is the distance traversed
in a hop, v is the characteristic atomic vibrational fre-
quency, kpT is the thermal energy and E, is the activa-
tion energy. The mobility activation energy is the
minimum strain energy required to bring the electronic
energy of an equilibrated self-trapped carrier into coin-
cidence with the electronic energy level of an adjacent site
to which it will hop. The factor P of Eq. (1) is the proba-
bility that a carrier will be able to transfer to an adjacent
site within the duration of a coincidence event. For very
small values of the electronic transfer energy J, hopping is
“nonadiabatic” and

P=27J2/hW4E skgT /m)\/? . )

For larger values of J [such that P in Eq. (2) exceeds uni-
ty], the hopping is “adiabatic” and P should be replaced
by unity in Eq. (1).

If we were to somehow eliminate the need to strain the
system to form a coincidence, the small-polaron mobility
would be given by the preexponential factor of Eq. (1). At
temperatures comparable to room temperature (with
P =1) this yields a mobility comparable to 1 cm?/V sec.

Transient experiments, such as time-of-flight measure-
ments, are often employed to determine the carrier mobili-
ty in situations in which small-polaron hopping is
suspected. However, the transient mobility of a small po-
laron has not been previously calculated. Rather, it has
been implicitly assumed that once an injected carrier is
well localized it will move with the low thermally activat-
ed mobility characteristic of steady-state small-polaron
hopping motion. Here the transient motion of a well-
localized injected carrier (such as is characteristic of an
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electron injected in a narrow-band molecular solid) is ex-
plicitly calculated. It is shown that (except for very small
values of J) immediately after injection, a well-localized
carrier will typically hop to another site in a time ~1/v.
This gives rise to a transient mobility comparable to 1
cm?/V sec. Furthermore, with reasonable estimates of the
vibrational dispersion, this type of rapid, activationless,
small-polaron hopping can persist for a long time
(>>10~° sec in molecular solids).

Prior to describing our calculations, we outline the
physics of the situation we envision. Upon injection, a
well-localized carrier in a narrow-band molecular solid
will find itself confined to a single molecule with atoms
that experience only thermal displacements from their
carrier-free equilibrium positions. As illustrated in Fig. 1,
the addition of the carrier causes the equilibrium positions
of the atoms to shift to those consistent with the presence
of the carrier. For atoms adjacent to the added charge,
the carrier-induced atomic displacements associated with
small-polaron formation are generally very much larger
than the amplitudes of their thermal vibrations. As a re-
sult, the addition of the charge carrier will induce atomic
vibrations whose amplitudes are comparable to the ampli-
tudes of the shifts of their equilibrium positions. The am-
plitudes of such athermal vibrations are generally suffi-
cient to generate a coincidence event. Figure 1(b) shows a
coincidence event occurring after the carrier has remained
at a molecular site for about a vibrational period. This
will permit the carrier to hop to another site. It is only
after these athermal vibrations relax sufficiently, dissipat-
ing vibrational energy to the surrounding atoms, that the
carrier will truly be self-trapped [as depicted in Fig. 1(c)]
and require thermal activation to move to another site.
Since the amount of vibrational relaxation that can occur
within a vibrational period is small, the probability of
making an immediate hop can be very large (~1). Hence,
an injected carrier may make many hops before the atoms
surrounding it can equilibrate. In other terms, we may
view the preequilibrated carrier as a *“hot” small polaron.
The equilibrium positions of the atoms are commensurate
with the carrier’s presence, but the amplitudes of vibra-
tions about these equilibrium positions are athermal.
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FIG. 1. A schematic representation of the configurational
and energetic relaxations which follow the placing of a carrier
on the central molecule of a row of three equivalent molecules at
t =0. The left-hand side depicts the displacements of a configu-
rational coordinate of each of the three molecules from their
carrier-free equilibrium positions. The right-hand side depicts
the electronic energy levels associated with each of the three
molecules in the presence of an electric field of strength E.
With the carrier’s charge being ¢ and the intermolecular separa-
tion being a, the potential energy difference between adjacent
molecules is gEa. For simplicity, thermal fluctuations of the
molecular distortions and the concomitant energy levels are ig-
nored. (a) illustrates the situation at ¢ =0. When the carrier ar-
rives at the central molecule, the molecule is at its carrier-free
equilibrium configuration. However, upon arrival of the carrier
the equilibrium value of the configurational coordinate of the
occupied molecule is displaced to the new value shown by the
dashed line. (b) depicts the situation after about one vibrational
period, ¢ =1/v. The configurational coordinate of the occupied
molecule has begun to relax toward its equilibrium value. Con-
comitantly, its electronic energy falls. Here the electronic ener-
gy level at t=1/v is shown to be in coincidence (degenerate)
with that of a neighboring molecule. Hence the carrier has an
opportunity to make an activationless transfer to that molecule.
(c) shows the fully relaxed (equilibrium) situation. The occupied
molecule is displaced to the equilibrium configuration consistent
with the presence of the carrier while its electronic energy is re-
duced by 2E,, a value twice the small-polaron binding energy
E,. The dashed energy level in (c) shows the unrelaxed electron-
ic energy level.

More generally, this phenomenon is a manifestation of
the fact that, even in the steady state, the hopping motion
of a small polaron is often “correlated.”>~® That is, hav-
ing made one hop, the probability of another hop before
the lattice has relaxed is often very great, ~1. Thus,
often one should view small-polaron motion as occurring
in flurries. Namely, periods of rapid small-polaron
motion involving many hops are followed by dormant
periods in which the carrier remains static. In equilibri-
um, these periods compensate one another to give rise to
the average mobility described by Eq. (1). However, an
injected carrier initially finds itself in a configuration suit-
able for rapid motton. Hence, the mobility of injected
carriers is initially well above that of steady-state hopping
motion. With time, as an increasing fraction of the inject-
ed carriers equilibrates, the number of injected carriers
which move rapidly decreases. Thus, in a time-of-flight
experiment the current of injected carriers will fall with
time as the injected carriers equilibrate.

Extrinsic traps can alter this situation somewhat.
Namely, traps can serve as centers at which a carrier is
confined for a sufficiently long period to allow vibrational
relaxation. Thus, we view an injected carrier as moving a
mobility ~1 cm?/Vsec until it encounters a trap. It
remains at the trap long enough for vibrational relaxation
to occur. Subsequent release from the trap to a well-
localized neighboring state is essentially a hop upwards in
energy. Namely, the highest probability release event is
associated with the lowest-energy coincidence event be-
tween the trap site and an adjacent host site. This is illus-
trated in Fig. 2. Here the released carrier finds itself on a
site which is substantially displaced from its carrier-free
configuration. Hence, after release the carrier moves as
an equilibrated small polaron.

The bulk of this paper begins, in Sec. II, with a brief
description of the molecular-crystal model. Then, in Sec.
II1, the (time-dependent) jump rate for subsequent hops of
a carrier placed on an essentially undeformed molecule is
discussed. From this expression we determine, in Sec. IV,
the vibrational relaxation time associated with the motion
of an injected carrier in our narrow-band molecular crys-
tal. Section V contains a calculation of the probabilities
of hops before and after vibrational relaxation has oc-
curred. In Sec. VI these probabilities are utilized to calcu-
late the transient drift current in a constant applied elec-
tric field. An estimate of the time characterizing the
duration of the transient drift current is contained in Sec.
VII. Section VIII contains a description of how carrier-
induced changes of the lattice stiffness slow vibrational
relaxation and extend the duration of the high-mobility
transient drift current. In Sec. IX the role of extrinsic
traps is considered. It is argued that, with very long times
required for the intrinsic relaxation of the transient
current, traps play a major role in confining the carrier
for a sufficient period of time to permit vibrational relax-
ation. Section X provides a qualitative discussion of the
transient motion of charge carriers in materials with elec-
tronic bands sufficiently wide to provide the “barrier for
self-trapping.” The essential results are then summarized
in Sec. XI.
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FIG. 2. A schematic illustration of the dominant process for
the semiclassical release of a charge carrier from a trap which
has equilibrated after capture. The left-hand side of the figure
depicts the configurational coordinates of the trap molecule (the
central unit of the figure parts) and two molecules of the host
solid which are adjacent to it. The right-hand side of the figure
shows the electronic energy levels of the trap molecule and its
neighboring host molecules for three molecular configurations
which sequentially illustrate the semiclassical release process.
Our illustration corresponds to a simple model in which the
electron-lattice coupling strengths and local stiffnesses of the
trap molecule and the host molecules are equal to one another.
(a) depicts the equilibrium situation with the carrier in the trap.
The presence of the carrier induces an alteration of the equilibri-
um configuration of the occupied trap. Associated with this po-
laronic deformation, the electronic energy of the trapped carrier
is reduced from its deformation-free value, —A, to —(A+2E,),
where E, is the small-polaron binding energy. (b) depicts the
dominant (lowest energy) coincidence event via which the carrier
can be semiclassically released from the trap. Here the configu-
rational coordinate of the trap molecule is reduced, thereby rais-
ing the electronic energy level of the trap. In addition, the con-
figurational coordinate of a host molecule is expanded, thereby
lowering the electronic energy level of the host molecule. In our
model the magnitudes of the distortions of the trap and host
molecules equal one another and the electronic energy of the
coincidence event is —(E, +A/2). (c) shows the situation after
the carrier has left the trap and equilibrated at an adjacent mol-
ecule. The trap molecule returns to its distortion-free configura-
tion with an electronic energy level at —A. The carrier forms a
small polaron at a host molecule. That host molecule is de-
formed and the carrier’s electronic energy is reduced by —2E,.
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II. THE MOLECULAR CRYSTAL MODEL

For definiteness, we consider Holstein’s molecular-
crystal model.” Using this model we envision an electron
added to a regular array of harmonically vibrating mole-
cules. Each molecule is associated with a single configu-
rational coordinate. Namely, the molecule at the gth site
is associated with the deformation coordinate x,. The en-
ergy of the carrier-free molecular crystal is

E=J3[Mx2/24+Mwpx}/2+ Mowyxg >Xg n] 3)
g h

where M and w, are, respectively, the reduced mass and
the angular frequency associated with the vibrations of a
molecule. The final term provides coupling between the
motions of adjacent molecules. As such, it gives rise to
dispersion of the vibrational frequencies of the molecular
solid. For the narrow band of optical-vibration frequen-
cies considered in this paper, w, <<, the eigenfrequen-
cies associated with the kth vibrational model are

wx=wo+(wy/2) S cos(k-h) ,
h

where —m<k-h<7.

In a molecular solid the narrow dispersion of the
optical-vibrational bands arises because of the relatively
weak interaction between the atoms of adjacent molecules.
In a simple (nonmolecular) diatomic lattice, weak vibra-
tional dispersion of the optical modes results from a large
asymmetry of the atomic masses, Mg and Mype,yy.
Here, the relative dispersion Aw/wqpicai becomes
M jight /2m heavy for Miight <<Mhpeavy-

The energy of an electron localized on one of the mole-
cules is taken to be a linear function of the configurational
coordinate of that molecule: Eg———Eg—Axg. Here 4 is
the electron-lattice coupling constant. The presence of an
electron on a molecule produces a displacement of the
equilibrium value of that molecule’s configurational coor-
dinate to ~ A /Ma?}.

At sufficiently high temperatures the hopping motion
of a small polaron can be described semiclassically. Then
a hop is always associated with a momentary equality of
the electronic energies associated with adjacent sites, i.e., a
coincidence event. For each such coincidence there is a fi-
nite probability of a hop between the involved sites. In
Holstein’s nonadiabatic theory, the probability that a car-
rier avails itself of the opportunity to hop when there is a
coincidence between sites g and g+h is

Pygin=2mJ%/fid |vggin| 4

where vy ..y is the relative configurational velocity
Xy —X g p evaluated at the coincidence event.

III. CONDITIONAL HOPPING RATE

We envision an electron injected into a narrow-band
molecular crystal and residing on a particular site at ¢ =0.
We then compute the nonadiabatic rate characterizing a
hop to an adjacent site at some later time ¢. In carrying
this out in the Appendix, we follow the occurrence proba-
bility technique described in earlier work.*>
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A carrier which arrives at a molecular site which
possesses a configurational coordinate equal to x( at t =0
can then hop to an adjacent site. The rate characterizing
a subsequent hop at a time ¢ later is

R(xq,t)=vP[1—G1)/2]~'/?
—[4E+A+(Axy—4E )G(1)])?
16E kg T[1—G(1)/2]

X exp , (5)

where

G(l)=N“Z[1——cos(q-h)]cos(wqt) . (6)
q

Here N is the number of molecules of the molecular crys-
tal. A is the distortion-independent difference of the elec-
tronic energy between initial and final sites. For a hop
from site g to site g+h, A=Eg+h—Eg. In a regular
crystal, in the absence of an applied electric field, A=0.
In our subsequent discussion, we consider a carrier of
charge g hopping between sites of a regular crystal
separated by the distance a under the influence of an elec-
tric field (| A| =qEa). We also consider the capture and
release of carriers from traps, As£0.

G (1) is called a “relaxation function.” For a symmetric
system it is independent of the nearest-neighbor position
vector h. The relaxation function is unity at =0 and
vanishes as t— . At long times, t— oo, where G (1)
vanishes, Eq. (5) reduces to the semiclassical small-
polaron jump rate. Thus, regardless of the initial condi-
tion (the x value), at sufficiently long times the standard
jump-rate expression emerges.

The activation energy of Eq. (5) is readily interpretable
at t=0, where G(z =0)=1. Namely, at ¢t =0, the activa-
tion energy of Eq. (6) is (4xo+A)?/8E,. Noting that
E,~A%/4Mw} and utilizing the definition of A this ac-
tivation energy is rewritten as

(Mw§/2)[(Eg n—Eg)/A+x0]* .

This is the energy which is required to strain site g+h so
as to form a coincidence with site g when site g has a dis-
placement of x,. To see this, we note that if site g+h
were undistorted at ¢ =0, the difference between its elec-
tronic energy and that of site g is Eg_,_h—(Eg_Axo).
Thus, to establish coincidence at ¢t =0, site g+h must be
distorted by an amount [ESH, ~(Eg —Axy)]/A.

Our concern is with the transient motion of a charge
carrier after its injection or creation in a narrow-band
(12J < hv) molecular solid. In particular, we consider a

J
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carrier moving between molecules on a time scale which is
short compared to that required for significant atomic re-
laxation (w; '). In this situation, a carrier will generally
arrive on a site which experiences only thermal deviations
from its carrier-free equilibrium configuration. Thus, it is
appropriate to average the rate of Eq. (5) over a
Boltzmann distribution of carrier-free initial configura-
tions to obtain

[ dxoexp(—Maodx3/2ks TIR (xo,1)

R(t)=
f_w dxgexp(—Mawix§/2kgT)

=vPexp(—{4E[1—G()]+A}*/16E 4kgT) . ()

Here we first note that in the long-time limit, where
G (t) vanishes, Eq. (7) reduces to the standard expression
for the semiclassical small-polaron jump rate. To discuss
the short-time regime, first consider the situation when
A=0. Here the transient hopping activation energy of
Eq. (7) is E4[1—G(1)]* At very short times, 1—0,G (1)
approaches unity and the activation energy vanishes. This
is because a carrier placed on a site which has not yet
equilibrated (with the occupied site relaxing about a sub-
stantially displaced configurational coordinate) will readi-
ly establish a coincidence with a neighboring site which
also has not undergone displacement. With As£0, the sit-
uation changes somewhat. The activation energy vanishes
when G(t)=1+A/4E,. Thus, the activation energy is
never zero for a hop to a state of higher electronic energy,
A >0. However, for a hop to a state with lower electronic
energy A <0, the activation energy will vanish for > 0.
This reflects the propensity of the carrier to hop to a site
of lower energy. Indeed, as will be discussed in the follow-
ing section, as the lattice relaxes there may be numerous
zero-activation-energy changes for a carrier to hop down-
ward in energy.

Finally, we note that if one presumes that the molecule
upon which the carrier is placed is in the equilibrium as-
sociated with the carrier’s presence, then the rate averaged
over initial configurations, R (f), must be the time-
independent equilibrated rate. We confirm that this is so.
Namely, in this circumstance, the configurational coordi-
nate of the occupied site is distributed about its displaced
value, A/Mo}. Then, averaging over the equilibrium dis-
tribution appropriate to an equilibrated occupied site
yields the (time-independent) rate previously obtained for
an equilibrated system:

R(1)
J = dxqexpl —Mwd(xo— A /Mawy)/2ksT]

IV. VIBRATIONAL RELAXATION TIMES

It is evident from the discussion of Eq. (7) that the
jump rates for the hopping motion of an injected particle
fall with time to those of a small-polaron in an equilibrat-
ed system. It is the purpose of this section to determine

f_wmdxo exp[ —Mo}(xo— A /Mwy)?/2kg T1R (x,1)

=vPexp[ —(4E 4 +A)*/16E 4kpT] . (8)

the characteristic times associated with these relaxations.
The time dependence of R (t) of Eq. (7) arises from the
time dependence of the relaxation function G(z). Thus,
determination of the relaxation times requires knowledge
of the temporal dependence of G(z). Fortunately, this
function has been analyzed previously. It is simply the re-
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laxation function associated with a return hop [Eq. (33) of
Ref. 4] in the limit of weak vibrational dispersion. Here,
we recall the essential features of this function.

The relaxation function G (¢) for the molecular-crystal
model can generally be written as

G (t)=A(wpt)cos[wgt —Plwpt)] . 9

This function is governed by two distinct time scales.
Namely, G (t) oscillates with a frequency w, while its am-
plitude and phase vary on the time scale 1/w,. Since
o >>wy, the amplitude and phase of the oscillations of
G (t) change slowly on the scale of the oscillations them-
selves. The time dependence of the relaxation function
amplitude, 4 (wpt), is of prime interest in our present dis-
cussion. Explicit expressions for A(w,t) are presented
and plotted in Ref. (5). In essence, with increasing time
A (wpt) falls from unity to zero while undergoing oscilla-
tions of diminishing amplitude. The rapidity of the decay
increases with the dimensionality of the system.
Explicitly, for a vibrational system of dimensionality d,

Alwpt)= | Jolwpt) |2~ [J5wpt) +THwpt)] 7?2, (10)

where Jy(wyt) and J(wyt) are Bessel functions. Direct-
ing our attention to the short-time limit, 0, << 1, where

Jolwpt)=1—(wpt/2)?, (11
and

Ji(wpt)=(wpt /2) , (12)
we have

Alwpt)=1—[2(d —1)+1)(wp1)*/8 . (13)

Thus, at short times, w,t <<1, A(wpt)=1—(w,t)*/8 for
d=1, and A4(wyt)=1—5(w,t)?/8 for d =3. The phase
factor ¢(wyt) is independent of dimensionality:

dlwpt)=cos ™ HJo(wpt) /[T wpt)+I3(0pt)]V2) . (14)

At short times, wyt << 1, dwpt) =(wpt /2).

To determine the relaxation times, we direct our atten-
tion to the transient jump rate, Eq. (7). The temporal
dependence enters through the activation energy. In par-
ticular, the activation energy for a hop is given by

€4(t)={4E,[1—G(1)]+A}*/16E, .

Incorporating the general expression for G(t), Eq. (9),
into the hopping activation energy yields

€4(t)=(4E 4 { 1 ~—A(wbt)cos[a)ot—¢(wbt)]} +A)2/16EA .
(15)

Over a time scale ~27/w, the time-dependent activa-
tion energy, €4(¢), will assume a wide range of values. In
each such time interval the activation energy has a
minimum at cos[wg? —@(wyt)]=1. This corresponds to a
sharp maximum of the jump rate. Thus, over a longer
time interval, ~27/w;, the activation energy has a series
of such minima corresponding to maxima of the jump
rate. The heights of these maxima of the jump rate tend
to fall with time. These maxima provide the dominant
contributions to the jump rate before the activation energy
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achieves its fully relaxed time-independent value
(4E,+A)*/16E,. Thus, after the placement of a carrier
on an unrelaxed site, the jump rate has a series of peaks at
intervals of ~27/wy. These peaks, corresponding to
minima of the time-dependent activation energy, diminish
with time as the atoms of the solid relax toward their
equilibrium configuration.

We define the relaxation time for a hop to be the time
at which the minimum value of the activation energy rises
to a value of kzT. Using our expression for €4(t), with
cos[wot —P(wyt)]=1, the relaxation time 7 is determined
by the relation

1— A(wy7)=[(16E 4kgT)'/*—A]/4E , . (16)

We direct our attention to the common situation defined
by E 4> |A| and E,>>kpT. In these instances, the
time-dependent activation energy €,(¢) can only achieve
values less than kpT at relatively short times, ~27/w,.
Therefore, we adopt the short-time expression for the re-
laxation amplitude A4(wg?) and write

Alwpt)=1—aXwpt) , (17)

where a?= 5 for a one-dimensional system and a*=< for
a three-dimensional system. The relaxation time is then
given by the relation

7(A)=(awy) kg T/E)'*
X[1—=A/(16E 4kgT)' 21172 . (18)

It should be noted that the relaxation time depends on A,
the electronic energy difference between sites in the ab-
sence of atomic displacements. Thus, for hops to states of
larger electronic energy, A >0, the relaxation time is re-
duced. Similarly, for hops to sites of lower electronic en-
ergy, A <0, the relaxation time is increased.

V. PROBABILITY OF AN IMMEDIATE HOP

After injection, a carrier will generally make a series of
hops involving coincidences for which the initial and final
molecules are both near their carrier-free equilibrium
values. The probability of making such a hop from site g
to site g+h involving the electronic energy difference Ay
before vibrational relaxation occurs is

Ay
P(Ay)= [ "dtS(R(Ay1) . (19)

Here R(Ay,?) is the time-dependent jump rate and S(z) is
the survival probability:

S(= [ d' SR(Ay 1) . (20)
Ay

By assuming that hops only occur to unoccupied mole-
cules adjacent to the carrier, the summation only includes
all potential near-neighbor hops of the carrier. In general,
these hops are to sites with different values of Ay,

To evaluate these formulas we adopt a simple model
which displays the essential physics. We represent the
jump rate as

(wo/2m)P=R, , fort<7(Ay)
R(Ap,0)=R fOl’tZT(Ah) .

(21a)

R(Ah,l)=
(21b)

0 ?
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For simplicity, we consider a one-dimensional molecu-
lar crystal with an applied electric field E in the easy
direction. Hops encouraged by the application of the elec-
tric field are said to be in the “forward” direction with
A= —qgEa <0. The relaxation time associated with for-
ward hops is  designated as 7,. Similarly, hops
discouraged by the application of the electric field are said
to be in the “backward” direction with A=gEa >0. The
relaxation time associated with such hops is designated as
7. Since more vibrational relaxation must occur to pre-
clude an “immediate” hop to a site of lower electronic en-
ergy than to preclude an immediate hop to a site of higher
electronic energy, 7, >7,. Thus, immediate hops in the
forward direction are favored.

Utilization of Egs. (19) and (20) along with the model
described in Egs. (21a) and (21b) and accompanying text,
straightforwardly yields expressions for the probabilities
of immediate backward and forward hops, P, and Py,
respectively:

Py=[1—exp(—2R,73)]/2, (22a)
Pp=[1—exp(—2Rqy7,)]/2
+[Ro/(Rg+R ) ]exp(—2Ro73)
X {1—exp[—(Ro+R  N1p—7p)]} . (22b)

In the limit of the applied electric field being small,
Tr—Tp, Eq. (22b) becomes

Pf=[l—exp( —2R07’b)]/2
+[Ro(rp—7p)]lexp(—2Rq7p) . (23)

We also utilize the general expression for 7, Eq. (18), to
find (the lowest-order nonvanishing) expressions for 7,
and 7y —7, in the limit of small electric fields, | A | —0:

7o =(aw,) (kg T/E )%, (24)
Tr—Tp=(4aw,) [ | A | /ME kg T)4] . (25)

We can now combine these results to write the total prob-
ability of an immediate hop, P;+P;, and the difference
between the probabilities of forward and backward hops,
Ps—Py:

=5

P+ Py=1—exp[ —2(wo/2m)(aw,) " 'P(kg T/E )%,
(26a)
P —Py=(wo/2m)P(4awy) " '[ | A| /4 E kg T)'"%]
X exp[ —2(wo/27)(aw,) " 'PlkgT/E )'/4] .
(26b)

Finally, we note that dimensionality and the associated
local coordination enter into our calculation in two ways.
First, vibrational relaxation depends on dimensionality
through the factor a, e.g., in a simple cubic lattice
a(3d)/a(1d)=V'5. Second, the coordination affects the
survival probability via the number of channels by which
a carrier can hop from a site. For example, the fact that a
site in a linear chain has two nearest neighbors accounts
for the first factor of 2 in the argument of the exponential
in Egs. (26a) and (26b). In a system with six nearest
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neighbors (e.g., a simple cubic arrangement of sites), this
factor will be multiplied by three. Thus, the numerical
factors in the exponential have only a weak dependence on
dimensionality. Namely, passing from a one-dimensional
model to a three-dimensional model only introduces a fac-
tor of 3/V5 in the exponential.

VI. TRANSIENT CURRENT

In this section we calculate the transient current associ-
ated with the hopping of injected carriers in a spatially
and temporally constant electric field. We consider car-
riers that are created in the bulk of the one-dimensional
molecular-crystal model at ¢t =0. There is relatively rapid
motion of carriers between molecules before the occupied
molecules relax to the equilibrium configurations com-
mensurate with their occupation. Once a carrier remains
on a molecule sufficiently long so that the molecule ad-
justs to its occupation, the intermolecular jump rate of the
carrier is greatly reduced. We regard such slow-moving
(equilibrated) carriers as essentially static. We ignore their
contribution to the transient current.

In modeling this situation, we describe the transient
motion in terms of immediate hops. Immediate hops
occur sufficiently rapidly that a molecular site which be-
comes occupied is unable to relax significantly toward its
carrier-induced equilibrium configuration before the car-
rier hops to another site. There are three probabilities of
interest to us.

(1) Py is the probability that a carrier placed on an un-
deformed site immediately hops in the forward (energeti-
cally preferred) direction to an essentially undeformed
neighboring site of lower energy.

(2) Py is the probability that a carrier placed on an un-
deformed site immediately hops in the “backward” (ener-
getically unfavorable) direction to an essentially unde-
formed neighboring site of higher energy.

(3) The probability that a carrier placed on an unde-
formed site does not hop before the occupied molecule re-
laxes to its equilibrium configuration is 1 — Py — P,

We begin by noting that P;/(P;+ P,) is the fraction of
immediate hops which are in the forward direction. Simi-
larly, P,/(P;+P;) is the fraction of immediate hops
which are in the backward direction. Thus, the net aver-
age displacement after N successive immediate hops is

I=Na[(P;—Py)/(Pr+Py)], (27

where a is the intermolecular separation. We now write
the number of immediate hops N as the ratio of the time ¢
to the characteristic time for an immediate hop, tyop
(~vP)~ LN =t/tpep. Then the velocity associated with
immediate hopping motion, v =dl /dt, is given by

0 =(a/thop)[(Py—Py) /(Ps+Py)] . (28)

We note that the probability of making an immediate
hop is P;+P,. Thus (P;+P, )V is the probability of
making N successive immediate hops. Since there is a fi-
nite probability of an occupied site relaxing before the car-
rier can hop away, i.e., P+ P, <1, there is a vanishing
probability of making an infinite number of successive
immediate hops: limy_, ,(P;+Py)"—0. Reexpressing N
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in terms of time divided by the mean time between im-
mediate hops, N =1t /ty,,, we find that the number of car-
riers which are making immediate hops falls exponentially
with time, i.e., as exp[(t/tpop)In(Ps+Py)]. Thus, the
transient current (the product of the number of transient
carriers, their individual charge ¢, and their velocity) is
given by

I(t)=n (O)q(a/thop)[(Pf——Pb )/(Pf+Pb)]
X exp[(t/thop)In(Pr+Py)] , (29)

where n (0) is the initial density of charge carriers.

VII. NUMERICAL ESTIMATES:
LONG RELAXATION TIMES

At this point it is useful to estimate the characteristic
number of successive immediate hops which occur before
relaxation:

Nrdax=—-l/ln(Pf+Pb) . (30)

Inserting our expression for Py+P;, Eq. (26a), into Eq.
(30) we obtain

N elax = — 1 /In{ 1 —exp[ — 2woP /2maw, kg T /E 4)'*1} .
(31

A molecular solid with an extremely narrow electronic
bandwidth, P << 1, and a molecular solid with a wider
electronic energy band, P~ 1, represent two limits of Eq.
(31).

In the narrow-band case Eq. (31) reduces to

N rejax = — 1/In[ 2(woP /2w, kg T/E)V*] . (32)

Hence, as P—0, N,j.,—0. Thus, if the intermolecule
hopping motion is slow enough, a carrier will reside on a
molecule for a sufficient period of time for that molecule
to equilibrate about its carrier-induced deformed configu-
ration. That is, the carrier will make no immediate hops.
Writing the nonadiabaticity condition P << 1 in terms of
the electronic bandwidth parameter J [via Eq. (2) with
v=wy/2m], we see that this domain typically requires ex-
tremely narrow electronic bandwidths:

J << (#iwy/2m) "HAE kg T)'/* . (33)

For example, with #wy=kgT=2.5X10"2 eV and
E,=0.2 eV, the electronic bandwidth parameter J (55 of
the electronic bandwidth of a cubic material) must be
<<2.4%107%eV.

With a wide enough electronic bandwidth so that P~1,
the argument of the exponential factor of Eq. (31) is suffi-
ciently large that Eq. (31) may be rewritten as

Nrelaxzexp[(wop/ﬂawb WkgT/E, )1/4] . (34)

In these instances N, is generally much larger than un-
ity. For example, taking E,=0.2 eV, kgT=2.5x102
eV, P=1, recalling that a=1/V8 yields N gax
~explwg/2w,). With a narrow, yet physically reason-
able, optical bandwidth (6w, in a cubic lattice) for a
molecular solid of wy/10, we have N, ~10'3. In other
terms, with the characteristic time between immediate
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hops being ~1/v, this corresponds to a relaxation time
for the transient current of ~1 sec. Therefore, it is clear
that the time associated with the intrinsic relaxation of
the transient current in an ideal narrow-band molecular
solid can be comparable with experimental observation
times. Indeed, the long relaxation times estimated here
suggest that relaxation of a transient current on a time
scale comparable to observation times (10~'2—10~ sec)
can be a general feature of a much broader range of con-
densed matter where the vibrational dispersion is not so
small.

VIII. CARRIER-INDUCED VIBRATIONAL
LOCALIZATION INCREASES RELAXATION TIMES

To this point, our discussion has ignored another physi-
cal effect which acts to further increase the relaxation
time. Namely, the molecular-crystal model described in
Sec. II has a carrier inducing a shift of the equilibrium
configuration of an occupied model. In addition, the
presence of a carrier also generally alters the stiffness of
the occupied molecule. This effect corresponds to the
presence of a quadratic component of the electron-lattice
interaction.

The addition of a carrier to a molecule typically pro-
duces a shift of about 10% in the molecule’s vibrational
frequencies. Since this shift is comparable to, or greater
than, the vibrational dispersion in molecular solids, the
presence of the charge carrier can induce local vibrational
modes. In this circumstance the vibrations of the occu-
pied molecule tend to decouple from the remaining (unoc-
cupied) molecules. As a result, the lattice relaxation is
slowed further.

While it is not our intent to discuss this phenomenon in
depth, we do want to indicate its potential importance.
For this purpose, we cite the results of studying the classi-
cal dynamics of two coupled harmonic oscillators with
frequencies which differ by 8.

Consider displacing one of the oscillators. With time,
some fraction of the displacement is transferred to the
neighboring oscillator. The fraction of the initial dis-
placement which remains with the initially displaced os-
cillator depends upon the frequency mismatch relative to
the vibrational dispersion parameter, ®,. In particular,
the ratio of the minimum vibrational energy which
remains at the initially displaced site to the initial vibra-
tional energy of the site is 82/(8%+w}). As is well known,
with no frequency mismatch (§=0) the energy transfer is
complete; the above ratio is zero. However, with a sizable
energy mismatch, 82 >>w}, the vibrational energy tends to
remain at the initially displaced site; the ratio approaches
unity.

Thus, the carrier-induced localization of vibrational en-
ergy, due to the quadratic component of the electron-
lattice interaction, will significantly slow atomic relaxa-
tion at an occupied site. This will further prolong the
duration of relatively rapid immediate hopping motion as-
sociated with the creation of small polarons.

IX. EXTRINSIC TRAPPING AND EQUILIBRATION

We have seen that the current relaxation times for im-
mediate small-polaron hopping in an ideal molecular crys-
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tal can be very long. Thus, in such instances, the charge
carriers have ample opportunity to encounter traps of ex-
trinsic origin before undergoing intrinsic relaxation. For
example, using the standard formula for the trapping
time,

1/ttrap =47DR trapNtrap ’ (35)

and associating the transient (immediate) small-polaron
hopping motion with a diffusion constant of D=va?, we
have

1/t ap =47a*R 11apNirap (36)

where Ry, is the capture radius of the trap and Ny, is
the density of traps. Here a density of traps of 10'* cm—3
with a trapping radius equal to a (~ 10~ ¢cm) and a vibra-
tional frequency of 6 10'? sec™! yields a trapping time
~107% sec. This is far shorter than the intrinsic relaxa-
tion time of 1 sec calculated in Sec. VII for the transient
motion of small polarons in a molecular solid. Thus, we
see that since intrinsic relaxation is very slow, extrinsic
trapping may play an essential role in the equilibration of
injected carriers.

However, a trap can only be effective in the equilibra-
tion of an injected small polaron if (1) the carrier actually
enters the trap, and (2) the carrier is not rapidly ejected
from it. We now address these questions.

The initial amplitude of vibration of a molecule in-
duced by 2plac:;ing a carrier on an undeformed molecule is
~ A /My, where A is the electron-lattice coupling force.
Thus, the electronic energy level of the occupied molecule
samples a range of energies ~2A4(4/Mw})~8E, im-
mediately after the molecule is occupied. This is generally
a very wide energy range since typical values of E,, the
steady-state activation energy for small-polaron hopping,
lie between 0.1 and 1.0 eV. Thus, after occupying a mole-
cule adjacent to a trap level, one expects a coincidence
event between the occupied molecule and a trap level.
Given such a coincidence, it is reasonable to expect easy
capture.

With a carrier well localized on a trap, the equilibrium
positions of the atoms at and surrounding the trap will
adjust to the carrier’s presence. In direct analogy with our
considerations of vibrational relaxation on a newly occu-
pied molecule, occupation of a trap by a carrier initially
places the trap in a vibrationally agitated state. An im-
mediate escape from the trap will correspond to an im-
mediate small-polaron hop to a site of higher energy.
However, as shown by Eq. (18), the relaxation time for a
hop depends upon whether the hop is to a state of higher
or lower electronic energy (e.g., whether A is positive or
negative). Namely, the relaxation time for a hop, 7(A), is
reduced as the final-state energy is increased. As a result,
the probability of an immediate release diminishes as the
trap depth increases. For example, if the values of A asso-
ciated with hopping out of a trap are greater than
(16E okpT)'?, [c.f. Eq. (18)] the relaxation time for these
hops will vanish. Then, the probability of an immediate
release from the trap, as defined in our model (Sec. V),
vanishes.

Thus, these considerations imply that extrinsic trap
sites will play an essential role in the relaxation of the rel-
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atively rapid transient hopping motion of small polarons
in materials with narrow electronic energy bands. Name-
ly, an injected carrier will typically diffuse via a succes-
sion of immediate (nearly activationless) hops between ad-
jacent sites until it encounters a trap. Upon occupying the
site, the carrier will remain there long enough for lattice
relaxation to occur. As described in Sec. I surrounding
Fig. 2, release corresponds to a thermally activated hop to
a higher-energy electronic state. Here the carrier hops to
a deformed site rather than the basically undeformed site
characteristic of one from which an immediate hop is pos-
sible. Thus, the subsequent motion of the carrier will be
via thermally activated hopping. Its hopping may be
correlated, wherein hops will occur in flurries followed by
dormant periods. Nonetheless, on average the jump rate
of a carrier will be the thermally activated jump rate that
characterizes the hopping motion of an equilibrated small
polaron, Eq. (1).

X. DELAYED LOCALIZATION:
WIDE-BAND MATERIALS

In materials with sufficiently wide electronic energy
bands, a carrier which finds it energetically favorable to
self-trap to form a small polaron can exist metastably in a
delocalized state.®~!! Then, since extreme localization is
at the expense of increasing the carrier’s kinetic energy,
there is an ‘“energy barrier to self-trapping.” In particu-
lar, an adiabatic treatment of an excess electron in a three
dimensional deformable continuum yields a barrier height
proportional to J3/E3.!"° Thus, in wide-band materials
with self-trapping, an injected carrier will be delocalized
and move itinerantly until the barrier is negotiated. This
involves an appropriate confluence of atomic displace-
ments providing a suitable center at which to localize.
The time that characterizes the localization of the carrier
is called the “time delay for self-trapping.”!' Analogous-
ly, the severe localization of an itinerant charge carrier at
a point defect or impurity in a wide-band material is asso-
ciated with negotiating an energy barrier to trapping.
This provides a time delay for its capture.!®!2

For semiclassical capture or self-trapping in these in-
stances, the lattice must assume a deformed configuration
in order to create a “coincidence” configuration. The
slow relaxation of the lattice from this deformed configu-
ration can provide opportunities for a carrier to be “im-
mediately” released from the time-varying wells associat-
ed with either self-trapping or capture at an extrinsic trap.
Namely, following the coincidence associated with the
capture, there will be a series of residual coincidences or
near coincidences which provide opportunities for release.
Here immediate release is analogous to the immediate
hopping we have been addressing in this paper.

In particular, semiclassical self-trapping or trapping at
a deep (noncoulombic) center in a wide-band material can
be understood as proceeding via a series of steps. For de-
finiteness, we consider the self-trapping scenario. An in-
jected carrier will remain quasifree until there is a suffi-
cient deformation about some site so that the electronic
energy level associated with the concomitant localized
state is coincident with the electronic energy of the
itinerant carrier. Then, there is some probability (analo-
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gous to P) of the itinerant carrier transferring to the local-
ized state. Once such a transfer occurs, the atoms sur-
rounding the self-trapping site will relax toward the
equilibrium configuration consistent with the presence of
the self-trapped carrier. However, there is a tendency for
a coincidence event to repeat itself before full relaxation
occurs. These repeated coincidences (or near coin-
cidences) provide opportunities for the nonactivated im-
mediate escape of the carrier.

The probability of a carrier availing itself of the oppor-
tunity to escape, P, is essentially equal to the probability
factor which enters into its capture. If it is sufficiently
large, capture will often be followed by release. That is,
self-trapping will be inefficient. Then an injected carrier
will suffer many such near—self-trapping events before
actual self-trapping occurs. The motion of such a carrier
will be itinerant modified by occasional brief “near-
capturing” events which last about 1/v. Thus, a transient
measurement at short enough times will find the carrier to
be itinerant.

If P is sufficiently small, the probability of a carrier
availing itself of the coincidence event and being captured
is relatively small. Concomitantly, the probability of im-
mediate release is small. That is, for a given rate of form-
ing coincidence configurations, capture and release are rel-
atively rare. Thus, this regime is analogous to the rapid-
relaxation regime P << 1 of our narrow-band results.

Thus, we see that the basic physical ingredients of our
treatment of the immediate hopping of a carrier injected
into a narrow-band molecular solid also apply to self-
trapping (and trapping by a defect or impurity) in a wide-
band solid. In these instances, rather than executing im-
mediate hops before relaxation, the carrier leaves its self-
trapping (or trapping) site and executes itinerant motion.
The fundamental mechanism for the immediate hopping
of a carrier in a narrow-band molecular solid is the same
as that for immediate release from a self-trapping (or
trapping) site. Namely, before relaxation is completed,
the coincidence configuration associated with the carrier’s
self-trapping (or trapping) tends to repeat. This provides
athermal opportunities for the release of the carrier from
the confining site. Thus, the physical phenomenon is a
general one which is only inoperative when the capture
and release probabilities are very small, P << 1, or the lat-
tice relaxation is rapid.

XI. SUMMARY

We have considered the transient motion of a charge
carrier injected into a narrow-band molecular solid in
which it is energetically favorable for the carrier to self-
trap to form a small polaron. Due to the solid’s narrow
electronic band, an injected carrier finds itself localized at
a particular molecular site. Associated with the carrier
being confined to a single molecule, the equilibrium posi-
tions of the atoms of the occupied molecule are altered.
The shifting of the equilibrium positions of a molecule’s
atoms with its occupation provides an impulse to the vi-
brations of the occupied molecule. That is, immediately
upon placement of a carrier upon it, the molecule is vibra-
tionally agitated. These carrier-induced athermal vibra-
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tions generate opportunities for immediate nonactivated
motion to adjacent molecules. With a jump time of the
order of a vibrational period, the mobility associated with
such motion is gva%/kgT, ~1 cm~?%/Vsec near room
temperature. However, once the carrier remains at a site
long enough for the vibrational motion of the occupied
molecule to equilibrate, the mobility will garner an addi-
tional thermally activated factor. This factor reflects the
necessity of the molecules involved in a hop accumulating
sufficient vibrational energy from the thermal bath of the
system’s vibrations so as to establish a coincidence event.

We determine the duration of the intrinsic nonactivated
transient motion in an ideal narrow-band molecular solid
with one intramolecular vibrational mode, Holstein’s
molecular crystal model. (The situation of multiple in-
tramolecular vibrational modes is to be addressed in
another paper.) We find that the initial relatively rapid
nonactivated hopping can persist for times which are even
longer than typical observational times. However, we ob-
serve that a carrier at a trap has a larger probability of
equilibrating than a carrier at an intrinsic site in a perfect
lattice. Thus, equilibration in real systems may frequently
be governed by capture at extrinsic centers.

Finally, we note that similar situations can occur in sys-
tems with wider electronic energy bands. Then, a carrier
which finds itself in the vibrationally excited environment
which characterizes self-trapping or capture by a deep
trap can be expelled from the localized center. This
occurs when the conditions associated with its localization
are essentially duplicated before vibrational relaxation
takes place. In other words, after encountering a trapping
center, a carrier has a high probability of escape before
lattice relaxation occurs. Thus, the transient motion of
injected charge carriers is characterized by the persistence
of the itinerant motion characteristic of injected carriers
which are neither trapped nor self-trapped.

The pivotal physical element of the phenomenon we
discuss is the slow relaxation of localized regions of vibra-
tionally excited atoms. In particular, we are concerned
with circumstances in which there is little dispersal of vi-
brational energy over times of the order of a vibrational
period. With the very weak vibrational dispersion charac-
teristic of their intramolecular vibrational modes, in-
tramolecular vibrational excitations in molecular solids
are the epitome of this circumstance.
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APPENDIX: OCCURRENCE
PROBABILITY CALCULATIONS

We envision an electron being placed on the gth mole-
cule of a narrow-band molecular crystal at t =0. We then
compute the nonadiabatic rate characterizing a hop to an
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adjacent molecule located at g+ h at some later time .

(1) To do this, we first compute the probability of a
coincidence between site g and an adjacent site, g+h,
occurring with a relative configurational coordinate velo-

1

P(Xo,UO;Ug'g_'_h,t)dI dvg,g+h dto dU():Z—lf T dxg' e

[ v,
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city between vg o and vg o p+dvg g between times ¢
and t+dt when the configurational coordinate of the gth
site assumes a value of x, with a configurational velocity
between vy and vy +dvg between times 0 and dt:

—E/kgT
'-er B

X8(xg(t)=xg n(t)+A/A) | Vg g1y | dl
X O(vg(t)—vg 1 (1) —vg o 1)dVg g1

X 8(x4(0)—xq) | vg | dtg8(vg(0) —vg)dvy . (A1)

Here A:Eg+h~Eg (the distortion-independent difference of the electronic energy between molecules at sites g and

g-+h); Z is the partition function

Z=f"'dxg"“f"'dvg""fe—E/kBT,

(A2)

and, as described in Sec. II, E is the energy of the system when the carrier is localized on site g with E g =0:

A\
E=E[Mvél/2+Mw(2,/2+Mw0wbxg/§,xg/+h]——Axg )
&

(A3)

It is useful to employ the Fourier-integral formula for the & functions:

8(z)=2m)~" [ * daexp(—iaz) .
Then

P(x0,0030g g 4= *Z " [0y gun| lvo| [~ daf” dB[” dy [~ ds[ ---dxg - [ dog-
x [ E 2 exp(—ifalxg(t)—xgin(t)+A/A]+Blog(D) —vg 4 n(D)—Vg gin)

+¥[x5(0)—xo]+8[v,(0)—vo]}) .

At this point we introduce the normal coordinates for
the vibrational motion via the transformation:

xg(1)=(2/N)""2 [ g + Qycoswyt + &) Jsin(k-g +7/4) ,
k

(A6)

where k is the phonon wave vector and the carrier-
induced displacement of the kth vibrational mode is

gy =2/N)" A /Mob)sin(k-g+7/4) . (A7)

In terms of the normal coordinates the system’s energy is
given by

(AS)

[

E=3MwiQ}/2—E, , (A8)
k

where the small-polaron binding energy is given by

E,=(1/N)3 A*/2Mw} , (A9)
k

and the phonon dispersion relation in the weak-dispersion
limit (0, <<wy) is (cf. Sec. II)

oy =wo+(wy /2) S coskh . (A10)
h

We then have

P(x0,0050g,g.+1n,t)=(2) 74| Vgg+h | |Vo| f_wwdafjwdﬁfjwdyfjwdSCXp[i( —aA/A+Puggin+VX0+800)]
o 27
X [I(MwiQy /ksT) [ 7 dQy exp(—Mw}Q} /2kp T)(27) ™! I, 4
k

X exp{ —ia[qi +Qrcos(wyt +8,)|GEEHD Jexp{ —iB[ — o, Qysin(wyt +8,) ]GEE+D }

Xexp{ —iy[gi +Qucos(8;)1(2/N)Zsin(k-g+7/4)}

X exp{ —i8[ —wyQysin(8;)](2/N)%sin(k-g +7/4)} ,

(A11)
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where the partition function has been explicitly calculated and
GEEth=(2/N)'?{sin(k-g+m/4) —sm[k (g+h)+m/4]} . (A12)

Noting that g is proportional to N ~!/2, we expand the exponentials keeping terms up to order 1/N. Higher-order
terms are inconsequential since they vanish in the limit of an infinite volume, N— . The integrals over the §,’s and
Qy’s are then elementary. Carrying out these integrations yields

P(XO’UO;Ug,g+h’ 1)=(2m)~ |Ug g+h | ool
[T daf” dp[” dy [ dsexp(—iac,—iyc,—a’c;—Bcs—ycs
—8%¢—aya —abdb+Byb—Bbc) , (A13)
T
where, a'fter some elementary manipulations of the trig- c=(kgT/NM)Y [1—cos(k-h)]cos(wy?) . (A22)
onometric functions, one has k
¢ =(1/N)3(4 /Moi)[1—cos(k-h)]=4E /4 , (A14) In the limit of weak vibrational dispersion these expres-
k sions can be simplified by replacing w; by w, in algebraic
factors while retaining wy in the tlme-dependent factors.
- 1
©2=2E,/4, (A1S) Then c\=c,=4E /A, a=c/wi=(kyT/Mw3)G(t) and
cy=(kgT/A)c,, (A16) =(kgT/Mwy)F(t), where
cs=kgT/M , (A17) G(t)=(1/N)3,[1—cos(k-h)]cos(wy?) , (A23)
k
cs=(kgT/24)c, , (A18)
and
=kgT/2M , (A19) .
co=r F()=(1/N)3[1—cos(k-h)Jsin(wyt) . (A24)
=(kgT/NM)J g *[1—cos(k-h)]cos(wt) , (A20) k
k

Evaluating the a, 3, v, and 8 integrals (which are all
b=(kzT /NM)Zwk_’[l—cos(k-h)]sin(a)kt), (A21) Gaussian integrals) and passing to the weak-dispersion
k limit, we obtain

J

P(X0,00;0g,g+1:1)= | Vg gin| | V0| (4m) *[c3cq(cs—a®/deys—b2/Acy)(ce—b2/dcy—c?/acy)] 2

X expf — vgg+h/4c4—(cl+A/A)2/4c3
—[alc, +A/A)2/2c3+bvg g n/2c4+(xg—c3)]*/4(cs—a®/4cy— b2 /4cy)
—[vo+blci+A/A)/2c;—cvg g n/2¢4) /4o —b?/4cy—c/4cy)) . (A25)

(2) We now compute the probability that the configurational coordinate of the molecular at site g, x,, assumes the
value xo with a configurational velocity between vy and vy +dv, between times 0 and dt:

Po(xo,vo)dvodto=Z =" [ <+ dxg -+ [+ dvg - [e T P 8(x,—x) | vo | diodlvg(0)—vg)dvy - (A26)
This calculation is simpler, yet completely analogous, to our previous occurrence probability calculation. We obtain
Po(x0,00)= | vo | (47) " esce) ™ 2exp[ —vd /4ce — (3 —x0)2/4cs] . (A27)

(3) Dividing P(x¢,v0;0,, g+ho! tidt dvg, 8+,,dt0dvo by Po(xg,v0)dvgdty, we obtain the probability of a coincidence between
sites g and g+h occurring between times ¢ and ¢+dt with relative configurational velocity between vg,.p and
Vg,g+h+dVg g n if Xxg=x0 and vg=vg at t =0:

P(xo,vo;vgyg+h,t)dt dvg gih=|Vgg+n | (47)~!
X [c3ca(1—a?/dcics—b%/dcycs)(1—b2 /4cyco—c? /acycg)] ™2
X exp{v§/4ce—vg gin/dcs—(ci+A/A)/Acs+(c;—x0)? /Acs
—[alc; +A/A)/2c3+bvg g /204 +(x0—c3)]*/4(cs—a?/4cys— b2 /4cy)
—[vo+blci+A/A4)/2c3—cvg g n/2c4] /4 ce—b?/4cs—c?/4cy)} . (A28)

(4) Since a carrier arriving on a molecule will encounter a thermal dxstrlbutlon of configurational velocities, we per-
form an average with a Boltzmann distribution of the initial velocities, exp( —Mv3/2k T). This yields the probability of
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a coincidence between sites g and g+h with a relative configurational velocity between vg . and vg g pn+dVggin
occurring between times ¢ and ¢ +dt given a value of x; =x¢ at t=0: P(x(;vg g4 n,t)dVg g, d2. Explicitly,

P(x0;0g g+hrt)= | Vg grn | (47) " (Mawo/kpT)(1—a®/4cycs—b%/4cqcs) ™'
X expl —v2 gin/4cs—(c)+A/A) /ey +(cy—x0)*/4cs
—[ale; +A/A4)/2c3+bvg g n/2cs+(xg—c3))*/4cs—a’ /ey —b? /4cy)) . (A29)

(5) Finally, we determine the rate characterizing a nonadiabatic hop from site g to g+h at time 7 given that the con-
figurational coordinate of the initially occupied site x, equals xq at 1=0: R(xq,t). To accomplish this, we multiply
P(xo;vg g +nst) by Pggip, the probability of making a nonadiabatic hop given a coincidence between electronic energy
levels at sites g and g+h [given by Eq. (4)], integrate over v, , 1, and divide by dt, yielding R(x,,?). After replacing

the coefficients (the ¢;’s and a, b, and ¢) by the physical quantities they represent [cf. Eqs. (A 14)—(A23) and surrounding
text], we obtain

R(x0,t)=(wo/2m)P[1—GXt) /2] exp{ —[(4E 4 + A)+(Axq —4E . )G(1))*/16E ;kg T[1 —G*(1)/2] . (A30)
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