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The linear magneto-optical absorption of a polaron is derived for the Faraday (active and inactive

mode) and the Voigt configurations. Our calculation is intended to be valid for arbitrary electron-

phonon coupling constant, temperature, and magnetic fields. &e start from the Kubo formula for
the frequency-dependent conductivity and show that the essential quantity which we have to calcu-
late is the electron density-density correlation function. This function is obtained by using the aniso-

tropic Feynman polaron model. At zero magnetic field our result reduces to the optical absorption

corresponding to the Feynman-Hellwarth-Iddings-Platzman approximation for a Frohlich polaron,
as derived by Devreese et al. [Phys. Rev. 8 5, 2367 (1972)]. For small electron-phonon coupling the

perturbation result is reobtained. Special attention is paid to the effect of the polaron instability

[F.M. Peeters and J. T. Devreese, Phys. Rev. B 25, 7302 (1982)] on the magneto-optical absorption

spectrum.

I. INTRODUCTION

The static properties of bulk polarons in a magnetic
field have been extensively studied. ' Especially the po-
laron ground-state energy and the effective mass at zero
temperature were the object of study. A limited number
of authors's'9 have discussed the temperature ( T} depen-
dence of these quantities. From these studies elementary
information can be obtained about the magneto-optical
absorption spectrum of the polaron, e.g., for weak mag-
netic fields the inverse of the polaron mass determines the
position of the cyclotron resonance line.

In the present paper me calculate the complete
magneto-optical absorption spectrum of the polaron. This
amounts to calculate a dynamical correlation function,
namely, the velocity-velocity correlation function. Our
approach relies on a generalization of the Feynman
description of the polaron'o and is applicable for all values
of the electron-phonon coupling strength, temperature and
magnetic field strength.

Most of the earher studies" on the magneto-optical
absorption spectrum are restricted to the limit of weak
electron-phonon coupling (ct }. These results rely on
second-order perturbation theory. A nonperturbative ap-
proach was introduced by Thornber, ' who constructed
a self-consistent theory for the response of a polaron in
combined electric and magnetic fields. This theory is
based on a double path-integral formalism in which, after
the exact elimination of the electron-phonon coordinates,
the exact polaron evolution is simulated by a general
quadratic action which has the same response as the ap-
proximate polaron response calculated in this may. The
latter condition gives the self-consistency. No numerical
solution of this self-consistent approach is known so far.
Recently Saitoh reobtained the results of Ref. 26 in the
hmit of vanishing external electric field by using a single
path-integral formalism. This was accomplished by start-
ing from the path-integral representation of the polaron
free energy, where a driving force was introduced into the

action. The response to this driving force then leads to
the magneto-optical absorption spectrum. Analytic re-
sults were given in Ref. 28 for limiting values of a, T, A
(magnetic field), and the frequency of the (vanishing} driv-
ing force. No numerical analysis was presented.

The present paper is organized as follows. In Sec. II
the magneto-optical absorption is expressed in terms of a
memory function. In order to do so we will use the
Mori-Zwanzig projection operator technique. This sec-
tion generalizes Ref. 30 in which the path-integral result
for the Feynman-Hellwarth-Iddings-Platzman (FHIP)
(Refs. 31—33) polaron impedance function was reobtained
by using operator techniques only. The memory function
is calculated in Sec. III. The basic quantity in the
memory function is the space Fourier transform of the
electron density-density correlation function which is cal-
culated within the anisotropic Feynman polaron model.
We show that our result for the magneto-optical absorp-
tion reduces to the optical absorption corresponding to the
FHIP approximation as obtained in Ref. 33 in the limit of
zero magnetic field. For weak electron-phonon coupling
the result of Refs. 21 and 25 is reobtained. In Sec. IV nu-
merical results are given for T=O, and different values of
a and to, icoLo (to, is the free-electron cyclotron resonance
frequency and coLo is the LO-phonon frequency). The
magneto-optical absorption spectrum is carefully studied
for the value of a and co, /toLo at which, for the Feynman
model in a magnetic field, a polaron instability was found
in Ref. 9. The possible polaron instability was interpreted
in Ref. 9 as a transition from a polaron state
(polaron =electron + phonon cloud) to a state in which, in
the direction perpendicular to the magnetic field, the pola-
ron has lost its vi.rtual phonon cloud. Our numerical re-
sults indicate that at the transition point the magneto-
optical absorption spectrum changes drastically. Limita-
tions of our approach are indicated and discussed. The
conclusions are presented in Sec. V. Appendix A contains
detailed formulas for the different memory functions
(Voigt and Faraday configurations). The corresponding
results for a ~~1 are listed in Appendix B. For conveni-
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ence we use units such that iii=toto ——m =1 (m is the
electron band mass).

II. FORMULATION OF THE PROBLEM
IN TERMS OF MEMORY FUNCTIONS

and the memory function

X(z}= QLA, QLA X (7)

A polaron in a magnetic field is described by the
Frohlich Hamiltonian

where P (Q—:1 P)—is the projection operator on the
operator variable A

PB =A (A, B)X (8)

H = p+ —A + giriaii, (a~i, + —, }
e 1

2m e

(1)
k

where we used the standard notations. The magnetic field
(A ) will be chosen along the z axis and the vector poten-
tial is expressed in the symmetrical Coulomb gauge
A=P'/2 ( —y, x,O). The frequency-dependent magneto-
optical absorption is given by

with 8 another variable. The new Liouville operator
W=QLQ describes the time evolution in the Hiibert
space of operators which is orthogonal to A.

For the above three situations we have the following.
(i} A =z gives us

X= 1/m, Q=O,

X~(z)=—g kg
~

Vi,
~

[41+, +(z)+$1, (z)
m

p(c0) =Re 1

with the inverse of the impedance function

1 =ie lim 4(a)+ie)
Z tg I~+0

and the relaxation function (z =co+ie, e) 0)

(2)

(3)

with

(z)= bi,++
Z—

(z) = bi,
+- = t 1

Z—

bg

(z)+iI}g +(z)],

(10a)

( lob)

(z) = —[4+1+(—z')]',
41, +(z) = —[4+1, ( —z')]',

(10c)

(10d)
i f —dte'" f dA, (A (t ik)A—(0)),

where b~ ——a~e'"',
(ii) A =x+iy gives us

1=2/m, A=co, ,

X+(z) =X(z)——,X~(z),

X(z)= gk
~

Vi,
~

[41+, +(z)+41, (z)
1

+@k (z)+@1,+(z)] . (12)

(111) A =x —iy gives us

x =2/m, 0= —co, ,

(z) = —X+( —z)
(13)

III. CALCULATION OF THE MEMORY FUNCTION
USING THE ANISOTROPIC

FEYNMAN POLARON MODEL
(z) = —[4+(—z*)]'= —4+( —z) .

where p is the velocity operator, p=j/ktiT, L is the
l.iouville operator with L/j = [H, A], A (t) =e' '& (0), and

( . ) js a thermal average. Three independent configu-
rations are of interest.

(j} g =z, whjch is called the Voigt configuration The.
corresponding relaxation function is denoted by @ (z)
and give the linmr response to an oscillating electric field
parallel to the magnetic field.

(jj) g =x+iy gives the 'Faraday configuration for the
cyclotron resonance actlue mode. The relaxation function
in this case —,

' 4+(z) describes the response to circular po-
larized ljght along the z axis (which leads to an oscillating
electric field perpendicular to the M field).

(iii) g =x iy leads to t—he 'Faraday configuration for
the cyclotron inactive mode. In this case the relaxation
function is given by '

Using the Mori-Zwanzig projection operator techniques
one can write Eq. (4) as

4(z) = x
z —0—X(z)

with the static correlation functions

X=(A,&),
Q=(A, LA)X

The basic quantities in the memory functions X~(z),
X(z) are the relaxation functions 41, +(z) and ipi+, (z) [see
Eqs. (10a)—(10d)]. Therefore we consider

41+, +(z)= i f dt e—"'(b (t)1,b (01)), (14)

which, after a partial integration, can be reduced to

C++(z)= —' f dt(1 —e )([b„(t},b„(0)]) .
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A similar calculation for cI))+ (z) shows that the memory
functions can be written as

2 — 2 2 3
du =(u)i —

w)) )/2ui)

dj =(sJ )u—i )/2sj [3sj +2( —1)jcu,sj —u) ]

X (z)=—g k,
~

Vi, ~ F),(z),

X(z)=—gk
~

Vk
~

F),(z),
Pl

(16a)

(16b}

forg=1, 2,3. s0 ——
U~~ and s~ &s2 (s3 are given by the posi-

tive roots of the equation

s. (s —ui ) —co (s —tu) ) =0 .2 2 22 2 2 22=
J J C J

with

F),(z) = ——f dt(1 —e'~)lm([b), (t),b), (0)]
z

+[b),(t},b), (0)]) .

In an earlier publication we showed, in the case of
zero magnetic field, how to approximate the correlation
functions (e.g., (bi, (t)bi, (0) ) ) in order to obtain the FHIP
result. ' Here we will proceed in the same way as in Ref.
30 and replace W by t.uh+I. F, with t.„h the Liouville
operator for free phonons and I.F the Liouville operator
for the anisotropic two-particle Feynman polaron model,
respectively. VA'th this approximation we obtain

X (z)= — dt(1 —e'")ImG (t),
z 0

X(z)=—f dt(1 —e'")ImG(t),
0

(21a)

(21b)

with

The parameters for the anisotropic Fey nman model
u)~, iu)), ui, u)) have been determined in Ref. 9 on the basis
of Feynman's conjecture that the variational principle for
path integrals for the polaron free energy remains valid in
the presence of a magnetic field. Recently Larsen has
questioned the variational character of the free energy of a
polaron in a magnetic field as calculated in Ref. 9 for the
case of a polaron in two dimensions.

For a polaron one has co),——cuLo,
~

Vk
~

=2v 2mcc/k V
(with V the volume of the crystal) and, with the above ap-
proximations, we obtain for the memory functions

( b), (t)b), (0) ) = {a),(t)a), (0) ) (e'"'"'"e '"'" ') (l8) a 1 v'D(t)+VH(t)
ln

4v 2m H(t) v'D(t) vH(t)—

( a), (t)ak (0) ) =[1+n (cui, )]e

with

n (cu), ) =1/(e —1)

the number of phonons with frequency cu), and

2
V D(t)H(t)

G( )
ct F(t)

4v2m v'D(t)DH(t)
'

where

(22a)

(22b)

( ei)c r(t)e ik r{0))— S. e(

where S(k, t) is the space Fourier transform of the elec-
tron density-density correlation function. S(k, t} for an
electron described by the anisotropic Feynman polaron
model has been calculated in Ref. 9 and is given by

(19)

with kq ——k„+ky',

H(t) =D(t) DH(t), —

F(t)=( I+X)e'"'+Pe
(23a)

(23b)

and N =n (cuLo) is the number of LO phonons.
In Ref. 9 we showed that in the limit of zero magnetic

field DH(t)~D(t) and correspondingly G(t)~ ,'G (t)—
This implies

X+(z)~X (z)= dt Im
ct ~ 1 —e'" F(t)

3 2n o z [D (t)]~~i

D(t) = 1

2&i )

—it+— which is the result u of FHIP.

IV. NUMERICAL ANALYSIS
lsOf S0t

+do 1 —e +4n(so)sin
2

(20a)

3

DH(t)= g d,' 1 —e '

r

SJ-t
+4n (s )sinJ

where M)) ——
(u)~ /cu~) ) is the mass of the Feynman polaron

model along the magnetic field,

In order to obtain numerical results for the polaron
magneto-optical absorption spectrum [see Eqs. (3) and (5)]
we compute the memory functions [(21a) and (21b)]. The
integrand of the integrals of Eqs. (21a) and (21b) consist
of a factor which decreases slowly when t~ oo (i.e., t
with 5& 1 for t~ oo ) superimposed on a rapidly oscillat-
ing component. As a consequence this representation for
the memory functions X(z) and X~(z) is not suitable for
numerical programming. Furthermore X(z) and X~(z)
shows some divergences, which are not directly apparent
from Eqs. (21a) and (21b). In order to circumvent these
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(25)

at which Eq. (24) becomes a 5 function. For co «coLo Eq.
(25) has only one solution co=co,' which determines the
position of the cyclotron resonance peak. It is standard
practice to define a cyclotron mass

difficulties we present in Appendix A another representa-
tion of Eqs. (2la) and (21b) which, although it results in

more intricate expressions, it is more suitable for numeri-
cal work. The divergent behavior of X(z) and X~(z) for
certain co values (z =co+i e), can be subtracted in the rep-
resentation of Appendix A explicitly.

In Appendix 8 it is shown that in the small coupling
limit our results reduce to the results of Ref. 25. A signi-
ficant simphfication is obtained within the present formu-
lation: in Ref. 25 the memory function was represented as
a fivefold series while in Appendix 8 we were able to
reduce this expression to a twofold series. We refer to
Refs. 21, 23, and 25 for numerical results in the limit
a «1 (the numerical results of Ref. 25 correspond to the
case of InSb which has a =0.02}.

The magneto-optical absorption spectrum in the Fara-
day (acriue mode) -configuration (this is the configuration
in which the cyclotron resonance experiments are per-
formed) is given by

1 ImX+(co)
(24)

2 [co—co, —ReX+(co)] +[ImX+(co)]
For co, =0, Eq. (24) reduces to the expression (1 la) of Ref.
33. The expressions for the real and imaginary part of the
memory function X+(co)=X(co)——,'X~(co) are given in

Appendix A. A numerical analysis of expression (24)
leads to the results shown in Fig. 1 for a =1 and in Fig. 2
for a=3. In these figures the magneto-optical absorption
is plotted as a function of the frequency of the incident
radiation for different values of the magnetic field. When

co&coLo the imaginary part of the memory function is
zero and therefore the magneto-optical absorption will

also be zero except for these frequencies for which

co —co, —ReX+(co)=0,

—0.380

0.5—
0.636

O
I I i i

0 1

(dc/(dLO = 1

(b)

0,719

which is magnetic field dependent. Figure 3 gives the
magnetic field dependence of the polaron cyclotron mass
for different values of a which are in the range of values

typical for most common ionic crystals. In the zero mag-
netic field limit the definition (26} for the polaron cyclo-
tron mass 1eads to a mass which is identical to ihe polaron
mass as calculated by Feynman' if co,

'
in Eq. (26} is given

by the zero of Eq. (25), m =co,*.
From Fig. 3 it is apparent that the polaron mass in-

creases with increasing magnetic field and that the inass
increase is larger for larger electron-phonon coupling. In
a recent paper we compared different theories for the
calculation of the polaron cyclotron mass and found that
calculations which are based on second-order perturbation
theory [e.g., improved Wigner Brillouin perturbation
theory (IWBPT)] can give accurate values for the cyclo-
tron mass (within 10%) for a &0.1. For larger values of
a I%'BPT appreriably underestimates the polaron correc-
tion to the cyclotron mass.

K=1

Lo -3

0.83']

FIG. 1. Polaron magneto-optical absorption in the Faraday
active-mode configuration for +=1, T=O, and five different
values of the magnetic field. The present approximation is not
valid where the magneto-optical absorption is represented by
points.
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FIG. 4. Position of the different peaks in the cyclotron reso-
nance spectrum for a=1 and T=O. (Solid curves are guides to
the eye. ) The dashed curves for co, /coLQ ~ 1.5 represent the en-

ergies ~, and ~I.Q+ nfl, , with n =0,1,2,3. For
co Icoi Q & 1.5 the dashed curves show ~, and coLQ+ n ~„with
n =0,1,2,3.

1 ImX (co}

2 [co+co,—ReX (co)] +[ImX (co)]
(28)

is shown in Fig. 6 for a= 1 and for three values of the
magnetic field, co, /cot. o——0.5,1,2. From Appendix A, Eq.
(A7), we know that X+(z)=X+(z}—X+( —z) which results

tron resonance peak if co, «coLo. In the high magnetic
field limit a peak occurs at co-co, together with a series
of peaks around ~—~LQ+6&c n =0, 1,2, . . . . For

/67LQ ) l .5 dashed straight lines are drawn in Figs. 4
and 5 corresponding to co =~, and cu =coLQ+ n m„
n =0, 1,2, . . . . Most of the oscillator strength is now
contained in the peak with frequency m, . For a~ 1 the
large magnetic field behavior of the side peaks is only
very roughly approximated by coLQ+nco, . A possible
reason is that the Landau levels become mixed with the
internal relaxed excited polaron states which compli-
cates the picture considerably.

In Figs. 1 and 2 the magneto-optical absorption be-
comes zero for certain values of the magnetic field. This
is due to an artefact of the present approximation as will
be discussed at the end of this section. The part of the
magneto-optical absorption spectrum drawn as a point
line in Figs. 1 and 2 corresponds with the region where
the present approximation is invalid.

The magneto-optical absorption in the Faraday
inactive mod-e configuration

resonance peak occurs at co, =(mb/m )co, &co, and a
series of peaks are found with frequency co„o+nco,",
where n =0, 1,2, . . . . The dashed lines for co, /coLo & 1.5
in Figs. 4 and 5 indicate the limiting behavior (i.e.,
co, ~0) of the position of these peaks. The peaks in the
continuum at ~ -~LQ+n~,' correspond to transition
from the ground-state Landau level to the nth Landau
level with, at the same time, emission of a LO phonon.
Most of the oscillator strength is contained in the cyclo-

ln

Q4 FARADAY (inactive mode)

VOIGT Ct LO

FIG. 5. Same as Fig. 4 but now for ~=3.

/(OLD

FIG. 6. Magneto-optical absorption spectrum for polarons:
{i) in the Faraday inactive-mode configuration (upper part of
figure) and (ii) in the Voigt configuration (lower part of figure)
for a = 1, T=O, and for three values of the magnetic field.
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ReX+{co)=ReX+(co)—ReX+( —co) = —ReX+( —co)

—ImX (co)

[co—ReX~(co)] + [ImX~(co)]
(30)

which for ct= 1 is plotted in the lower part of Fig. 6 «r
~, /~L~ ——0.5, 1, snd 2. Notice that the structure in the
magneto-optical absorption spectrum is less pronounced
in the Voigt configuration in comparison with the Fara-
day configuration. As co, =O, both Eqs. (28) and (30)
reduce to Eq. (1 la) of Ref. 33.

In the following part of this section we will concentrate
on the influence of the polaron instability as found in Ref.
9 on the magneto-optical absorption spectrum. As an ex-
ample we take a=5, T=O. In Ref. 9 it was found that
for this value of the electron-phonon coupling strength
the polaron state becomes unstable for co, /coLo ——2.77. At
this instability point it was predicted that the polsron
system makes a transition (as a function of increasing
magnetic field) from a polaron state (also called "dressed"
state) to an electron state (also called "stripped" state) in a
magnetic field. The transition dressed state~stripped
state occurs in the direction perpendicular to the magnetic
field. Parallel to the magnetic field no such transition
takes place. In Ref. 9 we found that for the physical pa-
rameters a=5, T=O, co, /coLo ——2.77 the parameters of
the anisotropic Feynman polsron in the dressed stste are
uz ——4.79, mz ——1.99, uI~

——4.27, m~I
——1.72, which gives the

eigenfrequencies si ——0.456, sz —3.88, and si ——6.19; while
for the stripped state one has ui ——11.89, wi =10.03,
Ut) =4.07» f8~I = 1.68, %'hlch results lQ SI = 1.95, $2 = 11.55,

ImX+(co) =ImX+(co)+ ImX+( —co) = ImX+( —co) .

When we combine these properties with Eq. (13) we find

ReX (co)= —ReX+( —co)=ReX+(co) =ReXi(co), (29a)

ImX (co }=ImX+( —co)=ImX+(co) =ImXi(co),

and as a result the real and imaginary part of the memory
function are the same in the Faraday active- and in the
Faraday inactive-mode configuration. The only differ-
ence is the sign in front of co, . If we compare the
magneto-optical absorption spectrum of Fig. 6 (Faraday
inactive-mode configuration} with the one in Fig. 1 we no-
tice the following differences: {i) the magneto-optical ab-
sorption is weaker in the Faraday inactive-mode configu-
ration, (ii) there is no absorption for co ~colo, and no cy-
clotron resonance peak is present in the Faraday inactive
mode, and (iii) in the Faraday inactive mode a peak occurs
at a frequency just above the LO-phonon frequency; its
position depends only weakly on the magnetic field
strength. For frequencies above threshold (i.e., co &coLo)
the magneto-optical absorption spectrum is very similar to
the magneto-optical absorption spectrum of the Faraday
active-mode configuration. This can easily be understood
because for sufficiently high frequencies the magneto-
optical absorption spectrum is given by ——,

'
ImXj (co)/co .

In the Voigt configuration the magnetic field is parallel
to the oscillating electric field and the magneto-optical ab-
sorption spectrum is given by

I

I
I
I

I

l
k

I
II

II
II (

II &I

II tl—
e3O~

2 4

I1
I II

I II

I II

I II
I I(
I II

g II
iI II

iI ('

II II

II I I

8ll Il

IIII &I)
II I I II)
IIII II)
II I I IIII
III I Illj
I I I IIII
I I I IIII
II I I I

I
II

III I 'III

III I '
III
III

I}I I I II

II} I I II

III I I III
II III I

CL = 5

T=0
Q/~ 2T/

I

I Ill r
I Ill I
I

II
II
II

II

8
(d /4)„

FIG. 7. Polaron magneto-optical absorption spectrum in the
Faraday configuration at T=O for the cyclotron resonance ac-
tive mode. The electron-phonon coupling constant is a=5 and
the magnetic field is 6) /ct)Lp=2. 77. The solid curve indicates
the magneto-optical absorption for the polaron in the stripped
state while the dashed curve is the corresponding absorption for
the dressed state. The cyclotron resonance peak is a delta func-
tion with weight 0.095 {0.103) when the polaron is in the dressed
(stripped) state.

and s3 —12.38.
A zeroth-order calculation of the position and relative

intensity (oscillator strength) of the first two peaks in the
magneto-optical absorption spectrum was presented in an
earlier publication. Here we give numerical results for
the complete spectrum using the more complete approach
outlined in preceding sections.

The magneto-optical absorption spectrum in the Fara-
day active-mode configuration for et =5 is plotted in Fig.
7 for the "dressed polaron state" (dashed curve) and for
the "stripped state" (full curve). A similar result for the
Faraday inactive-mode configuration is given in Fig. 8 for
the same physical quantities. The present approximation
is not valid close to the frequencies where the magneto-
optical absorption becomes zero. For reasons of clarity
me did not represent the absorption curve in this region by
s point curve as in Figs. 1 and 2. The zeros in the spectra
of Figs. 7 and 8 can be traced back to the divergent
behavior of the memory function Xi(co) for certain fre-
quencies (see Fig. 9). The frequencies at which ImX&(co)
and ReX&(co} are divergent can be obtained directly from
the representation of the memory function presented in
Appendix A. The expressions (A16) and (1.18) are diver-
gent when

co/coLo —1 —{noso+ nisi +n2$2+n3si )=0
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with Eo ———'

system,
os" the zero- oin-p int energy of this model

(31)

4
n„sI'= n sP

p=O

!

o./ —
I

503—
Lk

I (

g lf

~l ~ I'
I

X=XXXX
no ——On& ——On& ——On& ——0

The behavior of the density of states iyo ' ' 'g

h d i i (E
h 1 d

in n ) coincides exactl
ea an imaginary part of the memoremory

0

CL

I

II
II,

I(

I

eal and imaginary part of the mern

uration. Solid and dashed
a orption spectrum in thee Faraday config-

ron state as in Fig. 7.
n as ed curves corres onp d to the same pola-

FKs. 10. D. Density of states for the aniso
ron model. E is th

r e anisotropic Feynman pola-

gy o t ss model. Solid and
ave t e same meaning as in Fig. 7.



F. M. PEETERS AND J. T. DEVREESE

I')

l}
li

t

�I
I

@=5
T=O

~,l~« - 2.77

O

FIG. 11. Same as Fig. 7 but now for the Voigt configuration.

function Xi(co) (see Fig. 9).
In a snore complete theory one must take into account

the broadening of the Landau levels due to the interaction
between the electrons and the LO phonons or other
scattering mechanisms like, e.g., acoustical phonons, irn-

purities, etc. This mi11 mash out the divergencies in the
density of states which ultimately will result in the disap-

pearance of the divergencies in the memory function and

consequently in the disappearance of the spurious zeros in
the calculated absorption spectrum in the case of the
Faraday configuration.

The polaron magneto-optical absorption spectrum in

the Voigt configuration is shown in Fig. 11 for the same
physical parameters as in Fig. 7. In the Voigt configura-
tion the spectrum does not exhibit any spurious zeros as
in the case of the Faraday configuration. The reason is

that the corresponding memory function X (z)=X~~(z)
(see Fig. 12) does not have divergences like Xi(z} does;
this is because in the Voigt configuration no direct transi-

tion between the Landau levels is possible (the electric
field is dire:ted parallel to the magnetic field). Neverthe-

less, due to the spherical symmetrical nature of the
electron-LO phonon coupling the mechanism which leads
to the divergencies in Xi(z) is still weakly present and

leads to discontinuities in the derivative BX~~(co)/Boo.

Transitions between Landau levels are only possible with
the mediation of a LO phonon in this case.

Now we turn to the discussion of the physical interpre-
tation of Figs. 7, 8, and 11. It is remarkable that within
the numerical accuracy the position of the cyclotron reso-
nance peak (see Fig. 7} is the same in both polaron states;

'tO—

-10

0 2 6 8

/~LO

FIG. 12. Real and imaginary part of the memory function
for the magneto-optical absorption spectrum of the polaron in
the Voigt configuration. Solid and dashed curves correspond to
the same polaron state as in Fig. 7.

the intensity (i.e., the oscillator strength) is slightly dif-
ferent as is also apparent from our earlier estimate (Ref.
44). From the polaron cyclotron resonance frequency
ro,'/coLo ——0.309 we can deduce a cyclotron mass
rn '/rn =co, /co,'=8.96 which is different from the Feyn-
man polaron model mass Mj =(Ui/mi) =5.79, 1.41 in
the dressed and stripped state, respectively. The spectrum
for co &coLo (see Figs. 7, 8, and 11) on the other hand is

extremely sensitive to the state in which the polaron is. In
the dressed state the magneto-optical absorption spectrum
in the Faraday configuration (dashed curve in Figs. 7 and
8) consists of a broad peak (i.e., the "envelope" of the
maxima of the dashed curves) originating from a transi-
tion to an internal polaron state [which is the relaxed ex-
cited peak (RES} (Ref. 33)] with many sharp peaks super-
imposed. The latter refiect transitions to the different
higher Landau levels. The maximum of the broad RES
peak is located at co, /coio-5 for the Faraday active-
mode configuration and at co, /coLo-3 for the Faraday
inactive-mode configuration. In the stripped state the
magneto-optical absorption spectrum (solid curves in Figs.
7 and 8) shows a series of well-defined peaks which corre-
spond to transitions to higher Landau levels with the sub-
sequent emission of a LO phonon. With increasing fre-
quency the separation between the peaks decreases and the
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width of the peaks increases. This reflects the fact that
higher Landau states are more broadened due to the
electron-phonon interaction. In the Voigt configuration
(Fig. 11) one mainly observes the features of the internal
excited polaron states (RES). In the polaron state (dashixi
curve in Fig. 11) a sharp peak with a broad side band is
found which is similar to the absorption spectrum found
in the absence of a magnetic field. For the state in
which, perpendicular to the magnetic field, the polaron is
stripped from its phonon cloud, we observe four peaks
which probably reflect the different RES.

V. CONCLUSION

In the present paper we have obtained an expression for
the magneto-optical absorption spectrum of the Frohlich
polaron which is a natural generalization of the zero-
magnetic field expression of the optical-absorption spec-
trum corresponding to the FHIP approximation, 3' as ob-
tained in Ref. 33 by Devreese et al. The present expres-
sion is valid for all electron-phonon coupling strength,
temperature and magnetic field strength. The perturba-
tion result of Ref. 25 is reobtained in the limit a ~& l.

A limitation of the present approach is due to the diver-

gent behavior of the memory function at several well-

defined frequencies. These divergences arise because a
zeroth-order model is used which exhibits divergent
behavior in the density of states and which, as a conse-

quence, has zeros in the magneto-optical absorption spec-
trum in the case of the Faraday configuration. For a ~~ 1

it has been shown that even with these spurious zeros it
was possible to obtain reasonable results for the position
and width of the cyclotron resonance peak which were in

good agreement with experiment.
The question arises how to remedy this deficiency in

the theory. One of the possibilities suggested by many au-
thors is to introduce a broadening parameter which is
treated as a phenomenological parameter and which re-
sults in a density of states which is finite for all energies.
In the present paper we did not apply this idea because we
do not know how to calculate the broadening parameters
from first principles. Using a self-consistent approach it
is possible to get rid of the zeros but up to now no numer-
ical results have been published.

An interesting result was obtained concerning the possi-
ble polaron instability predicted recently by the present
authors. This instability does affect the cyclotron reso-
nance peak only slightly. The dominant change occurs in
the magneto-optical absorption spectrum above the LO-
phonon threshold which reflects the complicated interac-
tion between the higher Landau levels and the energy lev-
els of the RES. In a recent study, based on fourth-order
perturbation theory, Larsen found that in the limit a~0
and for co, /curio&1. 9, the Feynman polaron theory, ap-
plied to the two-dimensional (2D) situation, cannot be
variational. Although Larsen's study was restricted to the
2D polaron it shows that we have to be very careful about
attaching too much physical significance to the 3D pola-
ron instability of Ref. 9.
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APPENDIX A

f
no, no ——0

In this appendix an alternative representation of the memory function, given in Sec. III, will be derived. This repre-
sentation clearly reveals the different microscopic scattering processes involved in the present approximation. The basic
idea is to perform the time integral analytically (rather than the k integral as done in Sec. III). Such an approach will
lead to an explicit separation of the real and imaginary part of the memory function.

The relaxation function calculated in Sec. III [Eqs. (15), (18), and (19)]can also be written as

(A 1)0
"

0

where we will expand the exponents so that the integrations ( r and A, integration) can be performed explicitly. One has
' I/2

k'D(~i &~~ p-
e

U)I 2%

II Il

(A2}

with

a, ~(p, n„n0)=

x, [d0(s0)] ',
no!

and similarly

a ~~(P) =dacoth(Psa/2},

Ida[l+n(s0)]I '
no

B (p, n, n')
J =& n. ,n-'=oJ* j=

+&.] ir(n —g')g.
x& ' je

(A4)
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aj (P)= g d; coth(Ps;/2),

8;(P,n;, n )= Id; [1+n(s;)]I '

n;!

, [d; n(s;)] ' .

We introduce the following shorthand notations:

XXXX
no ——0 n) ——0 n2 —0n3 —0

Inserting the series expansions (A2) and (A4) into the
relaxation function (A 1) and performing the time integrals
we can split up the memory functions [Eqs. (9) and (12)j
as follows:

)fan

3

n S = PSISI

(A6)

X(z)=X (z) —X ( —z),
X~(z)=X~(z) —X~( —z) .

For the imaginary part of the memory functions we ob-
tained

ImX~(co) = rt(—co) g 8 (P,n„,n&) f du E„„,([az(P-)/a ~~(P)]u )X,(u, co 1 —(n—„n„—) s&),

with
1/2

1 a U~~ P 1 sinh(Pco/2)
ri(a)) =——

4 wll m az~(p) sinh(p/2)

—(P/2)(n —n„' )s&8 (P,np„nq ) = A(P, n~, nq )e

3
1 n I. 2

n'
A (P,n„,n„') = g, Ih„'(P)[ 1+n( s„)]]",

,
[h„(P)n (s„)]",

P P !

ho(p)=do/a~~(p); h;(p)=d;la](p); i =1,2, 3

and the functions

p u a ii(P)Mii
X„(u,x) = u "e "exp ——

z + x
4a'„(~)

gNE(x)= f dt e ', x)0t+x

(A9)

(A10)

ImX (co) = ——,
'

rI(co) g 8(P,n„,n„')(n+n ')!f duX, ,(u, co —1 —(n„'n) s)I.—

The real part of the memory function is given by

ReX (co)=p(co) g A (P,n„,n„') f du E~+„,([a~(P)/a~~(P)]u )H. . .(u;co, I+(n„—n„')s"), (A12)

with
' 1/2

Uii p 1+n (coo)
p(co) =—

co 4m wii m a2ii(P)

H„(u;co,x) =u "e " ID((t/P/u)(u —~—x))—D((v P/u)(u —x))

—e ~"[D(—(~P/u)(u +co+x)) D( —(&P/u)(u +x))]I—,

D(x)=P f dt = —2vme " f dte'
f —x 0

is the Dawson integral (P stands for principal value) and

(A14)
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ReX (co)= ,'p—(co) g A (p, n„,n„')[(n+n ')!]I du H. . .(u;co, 1+(n„+n„')s") . (A15)

The summations in Eqs. (A8), (Al 1), (A12), and (A15) reflect the possible internal states which occur before ( g, )

and after ( g„" o ) the emission or absorption of the light quantum %co.

The limit T=O is of particular interest. In this limit the foregoing expressions simplify considerably because the num-

ber of scattering processes is limited (no absorption processes are possible). In the zero-temperature limit Eq. (AS)
reduces to

lim ImX (co)= ——
p-+ Oo CO N

)(

(X) —R (~)C„(ts))

S(n ) ~C ( )
~

e E (2M[~ -zC ( )}e{C ( )}
n =0

3 g p,

S(n„)= ff
p, =O p'

C„(co)=co—1 n&—s",
where Ro=2M!~do ——(u~~

—(u~~)/u~~(u~~, R; =d;/a~, i=1,23, aj = g, , d; =limp „a[(P), and e(x)=0 (x&0),
1(x&0}. Similarly Eq. (Al 1) becomes

j ~ U~~ 1 ~
no —1/2 o n

lim ImX (co)= ———
2 g S(n&)(n!)

~
C„(co)

~

' e " e{C„(co)). (A17)

The real parts of the memory functions simplify to

lim ReX (co)=— g z J du u ' e
1 a M~~ S(nI ) 2( +1) „2

P-~ co~ 2 do =o Rzo
o

xE„[(a~/do)u ] 2
—P

u —R oC„(0)
1

u RoC—n„(co)
(A18)

a doM(~ S(n„)
lim ReX (co)=—

2 g 2
(n!) du u 'e

8~ao co 27r 2 ay on =
O

1 1

u —R oC„(0) u —R oC„(co)
P

(A19)

APPENDIX 8

Explicit analytic expressions will be given for the different memory functions in the limit of small electron-phonon
coupling strength. The results of perturbation theory as given in Refs. 21 and 25 are reobtained. But the present analyt-
ic expressions are simpler in the sense that we were able to perform explicitly a number of summations which appears in
the results of Refs. 21 and 25.

~e refer to the results of Appendix A and take the limit et~0 which amounts to u~! /(u~~ ~1, u~ /(u( ~1 and which re-
sults in so ——s( ——s2, s3~co„do ——d( ——12——0, 13~1/2co„a~~(p)~0, a f(p)~2co, tanh {pco,/2). This results in (the
same notations are used as in Appendix A)

lim —ImX (co)
a~O Q

—1 v p sinh(pco/2) " [2cosh(Pco, /2)]
co 2v m sinh(p/2) n!n

X dX E„+n
co, tanh(Pco, /2)

)& exp — [co—1 —(n —n')co, ] ——x
2x C

1 ~P sinh(Pco/2) Pco~
hm —ImX

C tan
a o cc co 2v m sin(P/2) ' 2

(n +n')!
h

pcs
, ( !)(n'()

—{n+n')

l(to( ,
' p

~

—co+1+(n —n')co,
~
), — (82)

with Ko(x) the Bessel function of imaginary argument of order zero,
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(.pn][.n —n ]~,
lim —ReX (co) =— [1+n (roo)]

e

a~O Q Co 2~v 1T o (n!)(n'!)[2cosh(Pro, /2)]" +"

X f du uE„+„(u'/[ro, tanh(pro, /2)])H, (u;ro, 1+(n —n')ro, ),

1 i/~p ro, tanh(pro, /2)
1'

0 a
'X (")

u 4 sinh(p/2)

(83)

(n +n')! „Pro,x 2 cosh
0 (n!)(n'!) 2

—(n+n')

X I
—Io( —,

'
p ~

1+(n n'—ko,
~

)+e~~ Io( —,
'
p

~

—to+ 1+ (n —n') ro ( )

Xe( co+—1+(n n')~—)+'~"~o( 'p
I

——~ —1+("—n')~.
I

)

X8( —ro —1+( n n') to—, )),
with Io(x) a 8essel function of imaginary argument.

In the limit of T=o the above expressions simplify to

ImX~(ro )
lim hm

P~co a~O
[co—(1+neo, )]' E„([ro—(1+nro, )]/ro, )e{ro—(1+neo, )),

n=o n!

(84)

ImX (co)
1un lcm

p-+ cN a-+0 CX

lim lim
P~ao n~O

co, e(ro —(1+neo, ))

2' „0[ro —(1+n ro)]'
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Q7 On ~

—(1+neo, )'~ 6„((1+neo,)/ to)+(1+n ,co—ro)'~

X 6„({1+neo,—ro)/to, )e(1+nro, —co) ),

(86)

where we defined the function

G„(x)=Pf dt

ReX (ro)
11ID 11ID
P~ oe a-+0 CO

Q7 Ixt e(1+neo, —co)

2' „0 (1+neo, )'~ (1+neo, —ro)'
(89)
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