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Here we consider the analysis of the temperature and frequency dependences of the power spec-
tral density Sr(f, T) of excess low-frequency noise. Two limiting cases that arise naturally from a
superposition of thermally activated relaxation processes are investigated. The Lorentzian spectra
associated with various relaxation times ~=roe~ ~ are supposed to arise from either (i) a distribu-
tion D(E) of activation energies E (invoked in the Dutta-Horn madel), or (ii) a distribution H (~0) of
prefactors ~0 {as required for activated diffusion proc(uses). Much can be learned from the analysis
of noise spectra with distinctive spectral features or known temperature-dependent variance
(5Vi(T) ), as the analysis of noise from H+ diffusion in Nb films has illustrated. In the absence of
such distinguishing features or independent data, particularly with 1/f noise, we find that there is

generally insufficient information to distinguish even these limiting models, much less to determine
their parameters. %'e have analyzed the resistance fluctuations of small-metallic-film conductors.
We find that existing 1/f noise data from noble metals can be fit by either model with a wide range
of assumptions about the variance (5V (T) ). In contrast new 1/f noise data from Cr films are in-

consistent with either model unless strong ad hoe temperature-dependent variance is postulated.

In this paper we consider the analysis of noise spectra
arising from a superposition of thermally activated pro-
cesses. This general problem has been a central issue for
many years in the analysis of anelastic relaxation. + The
mathematics of our analysis is not new, but does aim to
resolve some active questions of interpretation of electri-
cal noise experiments. In particular, we examine the rela-
tionship between the temperature and frequency depen-
dences for the two limiting cases where the various relaxa-
tion times v =roe /" arise from (i) a distribution D(E}of
activation energies E, and (ii) a distribution H (ro) of pre-
factors ro. The first case is similar to the 1/f noise model
of Dutta, Dimon, and Horn, ' a generalization of an idea
first proposed by van der Zeil" and Du Pre. ' Predictions
for the two models are compared with the 1/f noise of Ag
films, ' hydrogen diffusion noise in Nb, and new Cr 1/f
noise data. Analysis of the noise from H+ in Nb is par-
ticularly interesting since the physical mechanism is un-
derstood. In this case we find that pronounced spectral
features and knowledge of the variance (5'(T)) allow
discrimination between the two models. Such discrimina-
tion is not possible with featureless 1/f noise. Further-
more, without independent knowledge of (5Vi(T)) the
large number of free paraineters makes it possible to fit
most any "(1/f)-like" Sv(f, T) with either model.

In the next section we introduce the necessary notation,
define what is meant by a superposition of thermally ac-
tivated processes, and with appropriate limiting assump-
tions, derive relationships between the scaling of the noise
with frequency and with temperature. Noise from dif-
fusion processes is discussed in Sec. III. In Sec IV we.
compare the scaling relationships arith the observed excess
noise of various metal films. Finally, in the last section
the results are discussed and summarized.

I. INTRODUCTION

Low-frequency conductance fluctuations in a variety of
systems are thought to be associated with thermally ac-
tivated processes. The temperature delwndence of spectral
features in the low-frequency excess noise of silicon on
sapphire, ' Bi films, 2 Si inversion layers, ' thick-film resis-
tors, and metal-insulator-metal tunnel junctions provide
direct evidence for such a claim. Measured symmetry
properties of the local conductivity fluctuations of Bi
films suggest a microscopic model connecting their 1/f
noise to mobihty fluctuations associated with "Snoek-
like" internal friction mechanisms. ' Less direct evidence
supports the claim that the featureless 1/f noise spectra
Sy(f, T) of metal films arises from a superposition of
thermally activated Lorcntzian spectra. In this case the
only evidence available is qualitative agreement of
the observed relationship between ( T/S)8$/AT and
(f/$)M/t) fwith that predicted by such a model.

We have recently reported the temperature and frequen-
cy dependence of the excess noise of Nb films;9 there is
considerable evidence that the noise arises from conduc-
tance fluctuations associated with scattering from hydro-
gen impurities. The fluctuation dynamics are that of
one-dimensional diffusion with temperature dependence
due to a diffusion coefficient &(T)=&tte /" . As
such, the excess noise spectrum S&(f,T) may be written
as a superposition of thermally activated Lorentzian spec-
tra, analogous to the Dutta-Horn representation for 1/f
noise, but with the various relaxation times w=~~
arising from a distribution of prefactors ~o (&Ok )——
determined by the spatial Fourier transform of the speci-
men geometry, Q(k}.
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II. SUPERPOSITION OF THERMALLY
ACTIVATED PROCESSES

Random fluctuations 5x (1) in a quantity x that relaxes
to equilibrium with a single relaxation time ~ have an au-
tocorrelation

G, (r) = &5x(0)5x(t})= &5x')e- ~' ~',
where &5x ) is the variance. The corresponding power
spectrum $, ( p)1, obtained using the Wiener-Kintchine
theorem, has the Debye-Lorentzian form

S„(co)= J dte'"'G„(t)=&5x )2r/(1+pl r ) . (1)

The linear superposition X(t)= g,.xj(t) of independent

fluctuators xj has a power spectrum

S (pl)= g&5x,')2r;/(I+co r ),
J

where &5xj ) is the variance and r& is the relaxation time
of the jth fluctuator.

Temperature dependence enters Sz(co, T} through both
the &5xj(T)) and the w&(T). Recent discussion has
focused on the temperature dependence due to the

E /kT
thermally activated relaxation processes rJ(T) =rp/e '
To display that part of the problem, we assume that

&5x (T)&=&5X1(T)&&5s )

so that the temperature dependence of the noise magni-
tude may be factored out of the summation. ' The nor-
rnalized spectrum

$(p1, T)=Sx(pl, T)i&5X (T))

= g &5s,'&2r, (T)/[1+~'r,'(T)] (3)
J

depends on T only through the rj.( T). Defining a
temperature-dependent distribution of relaxation times

F(r, T)= g &5 . )5(r—r (T)),
J

(2)

$(co,T)= f drF(r, T)2ri(1+co r ) . (4)

To present the issues, we need consider only two hmit-

ing cases for F(r, T) where r(T) is attributed to (i) a dis-
tribution of activation energies ' or (ii) a distribution of
prefactors. For case (i), a distribution of energies

D(Z) = g &5s,'&5(E —Z, )

F(r, T)=rpH(rp)/r,

where again Eq. (6) applies.
Before proceeding it is appropriate to comment on

Eq. (4). By definition, F(r))0 and drF(r)=1 at
0

all T. Clearly, S(—co) =$(co)„$(pl))0, and —2
&(co/$)dS(co)Idio &0 (for pl )0}. Any analytic function
$(pl) satisfying these conditions is uniquely represented
by a distribution F(r) obtained by inverting Eq. (4), where

F(r)= —1/(nr )Im[$(i/r)]
(Ref. 15). In general, a numerical inversion of Eq. (4) is a
nontrivial practical problem which lies outside the scope
of this paper. However, for the relevant case of 1/f noise,
S(f) ccf ~ (a=1); therefore, rF(r)=const and Eq. (4)
simplifies approximately to

fS(f,T) =rF(r,F), (8)

where r=(2rrf) ' and $(f, T)=2[S(pl, T)]„zf is the
one-sided spectrum f)0. The approximation introduces
no more than 50% error (2 dB} whenever fS(f) does not
vary by more than 50% over a decade in frequency. For
sharper structure a more sophisticated inversion technique
must be employed. ' No matter how F(r) is obtained, it
is ultimately tested by comparing the spectrum it gen-
erates via the exact Eq. (4) with the measured S(f) it is
supposed to represent.

Given an activation-energy distribution D (E}and a sin-

gle prefactor rp for case (i), or alternatively H(rp) and a
single activation energy E for case (ii), the distribution of
relaxation times F(r, T) may be calculated for any tem-
perature T using Eqs. (6) and (5) [or Eq. (7)]. The integral
in Eq. (4} is readily performed numerically to obtain
$(pl, T), which, when combined with a given variance
&5X (T)), gives Sx(pi, T).

We are interested in the inverse problem, to test wheth-
er observed noise spectra Sx(co, T/} at temperatures Tj
arise from a single limiting distribution D(E) or H(rp),
and if so, to determine that distribution. The temperature
dependence of the noise magnitude & 5X ( TJ ) ) is supposed
to be independently determined. Equation (4) is inverted
for each S(rp, T~) to obtain corresponding F(r, TJ ). Next,
Eqs. (5}—(7) are used to postulate a D (E}or an H(rp) for
each TJ, using any assumed prefactor rp (or activation en-

ergy E). Of course, a finite frequency range fl &f&fl
defines a finite energy range

—kTJln(2mfzrp) &E & kTJln(2mflrp), —
or a finite range of prefactors

—E/kTJ —E/kT
(2m fl ) e ' & rp & (2mf, ) e

yields the distribution of relaxation times

F(r, T)=kTD(E)/r,

where the T, E, r, and rp satisfy

For case (ii) we define a distribution of prefactors

H(rp)= g &5sj )5(rp r()~)—
J

(6)

The observed frequency and temperature derivatives
BS/Bm and BS/BT may be compared to cheek for con-
sistency. Using the approximate inversion equation (8) to
obtain F(r) from S(co), it has been shown that, for a dis-
tribution of activation energies,

a(co, T)=1—[(T/S)BS/dT —1]/ln(perp), (9)

where a(co, T) = —(co/$)BS/Bco. Without approxima-
tion, a distribution of prefactors implies a relationship

whlcli yields tlM dlstrlblltloii of lelaxatloll tllnes a(co, T) =1+(kT/E)(T/S)BS/BT . (10}
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TABLE I. Comparison of the assumptions and predictions of the Dutta-Hom and thermally activat-
ed scatterer diffusion models for noise spectra.

S(pt(), T)=Sp{co,T)/(5p2(T) }
S(u, T}= d~F(v, T}(2r}/(1+m )

fS(f,T)=rF(r, T)
~—1 (2~f)

—1 r+ Elkr

Dutta-Horn Diffusion

vI'(w, T}
Parameter

—{co/S}BS/Bco

p /N,
kTD(E}

To

=1—[(T/S)as/a T —1]/ln(~rp)

Po/&o
rpH (rp)

= 1+(kT/E}( T/S}BS/8 T

The assumptions and predictions of the two models are
summarized in Table I.

III. DIFFUSION NOISE

A. Definition of the problem

is then

Sz(co) =g f dk(2ir)
~

Q(k}
~

c„(k,r0),

Q(k)= f dxe '"'"Q(x),

(13)

Number fluctuations associated with diffusion have
been calculated for a variety of geometries and boundary
conditions. ' Case (ii) applies with the prefactor distribu-
tion H (rp) determined by the diffusion geometry for dif-
fusion with a single activation energy Eo. To proceed, a
measured property of some subvolume (Qo) of the system,
in this case the resistivity (p), is assumed to be linearly
coupled to the number (N) of diffusion "particles" con-
tained in that subvolume. It is convenient to describe Qp
with a spatial weighting function Q(x) =1 for x&Qp and
Q(x) =0 otherwise, so that

6p(t) 666)(t) =xt f =dtx)(Mx( 6xt),x(11)
where $=8p/BN and n (x, t) is the local number density
of diffusing particles. The two-time correlation function

X =X2—X),

c„(k,co)= f dt e'"' f dxe '"'"c„(x,t) .

Systems that have rotation and translation invariance
are particularly simple to deal with since

c„(x,t)= (5N2 ) /Q (4ir&t) e

where d=1,2,3 is the dimensionality of the system and
(5N ) is the variance of the number fluctuations in the
subvolume Qp. In this case the kernel c„(k,ro} is simply a
Debye-Lorentzian spectrum

c„(k,a)) =((5N )/Qo)(2')/(1+co Hj, ), (14)

where rk—= (&k )
' is the relaxation time for density

fluctuations of wave vector k. Substituting Eq. (14) into
Eq. (13},we find

Gq(t2, &i ) = (5p(ti )5p(&2) )

is completely determined by the space-time correlation
function of the density fluctuations Sp(~)=((5p )/QQ)

y, f dk(2n)
i
Q(k)

i (2')/(1+a) ri,),
(15)

where (5p ):g(5N ) is t—he variance. Equation (15) de-
scribes Sz(co) as a superposition of I.orentzian spectra
with the weighting of the various relaxation times ~q
determined by the Fourier transform Q(k. ) of the speci-
men geometry.

c„(xi,ti,'x2, t2) = (5n (xi, ti )5n(xz, tz) ) .

The fluctuation-dissipation theorem gives the latter as the
Green's function for the equation governing the relaxation
of n (x, t} to equilibrium, namely, the diffusion equation
(subject to appropriate boundary conditions)

&V, — c„(xi,t&,x2, t2) = bn 5(xi —x2)5(t& i2), — —2

(12)
where & is the diffusion coefficient. The magnitude hn
is chosen to give the thermodynainic variance. Temporal-
and spatial-translation invariance imply that c„depends
only on the differences t:ti t, and x—=x2——x, . The
power spectral density

Sz(co)= f dt e'"'Gz(t)

8. Temperature dependence

Temperature dependence enters S~(co,T) on the right-
hand side of Eq. (15) through the coupling coefficient
g'(T) and the number variance (5N2(T)) in (5p (T)), and
through the diffusion coefficient &(T) in the relaxation
times rk, [&(T)k ] '. ——A change of integration vari-
ables in Eq. (15) shows that
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S(co,T)=Sz(co, T)l(5p ( T) )

is represented by a temperature-dependent distribution
F(~,T) of relaxation times ~=(&k )

' satisfying all of
the assumptions that led to Eq. (4). Further, for a dif-
fusion coefficient S'(T)=&~ ~", F(~,T) may be ex-
pressed in terms of a distribution H(vo) of prefactors
~0 ——(&Ok )

' through Eqs. (6) and (7).
Explicitly inserting temperature dependence into Eq.

(15) and multiplying both sides by co/(5p2(T)), we see
that

~S&(co,T)l(5p (T) )=8(8), (16)

where P is a function of the single variable
e(co, T) ~col&(T). Equation (16) shows that the fre-
quency and temperature dependences of coS(co, T) are not
independent, but instead enter through the combination
col&(T). This scaling holds for diffusion generally, in-

dependent of boundary conditions, dimensionality, and
geometry because & and r enter the diffusion equation
only as the product &t.

C. Noise magnitude

The temperature dependence of (5p (T)) depends on
the particular scattering mechanism. For instance,
enthalpy fluctuations couple to the resistivity through lat-
tice scattering to produce a variance

(5p'(T) )=y'(T)kT'/&„(T),

where y(T) =Bpr, /BT and C„ is the heat capacity of the
specimen volume Qo. These fluctuations are hardly ob-
servable in ordinary metals at room temperature. ' Fluc-
tuations in the equilibrium number of vacancies in the
conductor are expected to produce

(5p'(T) ) = (P'/X. ).—
where P=Bp/Bco is the resistivity increment per atomic
fraction of vacancies, N~ is the number of atoms in the
conductor, and Ef is the enthalpy for vacancy formation.
Ef is too large for equihbrium vacancy noise to be ob-
served at room temperature. '9 A third system that does
give measurable resistivity fiuctuations at room tempera-
ture is hydrogen impurities in Nb films. Here the surface
oxide prevents hydrogen from leaving the film, so that
fluctuations in the resistivity of a film segment have a
variance (5p )=P co/N„ independent of temperature.

For the above examples we have assumed Matthiessen's
rule to calculate the variance (5p ) for fluctuations in a
particular scattering mechanism, independent of the other
scattering mechanisms that might contribute to the resis-
tivity p(T). For the last two examples, vacancies and im-
purities, (5p ) may be written as

(5p (T))=pe(T)/No(T),

where No(T)=co(T)N, is the number of "noisy" scatter-
ers in the conductor and po(T) is their mean contribution
to the resistivity. If p(T) po(T), that is, if the noisy
scattering mechanism also dominates the resistivity, and if
co is independent of T, then (5p (T) ) ~p (T). Dutta, Di-
mon, and Horn have made the implicit assumption that

(5p (T)) ~p (T) in analyzing the temperature and fre-
quency dependence of the excess noise of noble-metal
films in terms of a distribution of energies D(E) and a
single prefactor ro .The resistivities of their films, in the
temperature range considered, mere dominated by lattice
scattering. These examples suggest that the assumption is
not justified unless the noise mechanism is also associated
vrith lattice scattering.

D. More complicated diffusion spectra

The characteristic frequencies co, of the diffusion prob-
lem are generally determined by the specimen dimensions;
an open rectangular subvolume Qp =L ~L 2L3 has
coj-&/I.J, j=1,2,3. It is easy to imagine physical situa-
tions where boundary conditions introduce additional
length scales. For instance, dislocations and grain
boundaries, in addition to the specimen surface, may act
as sources and/or sinks for vacancies, interstitials, or im-
purities. Such defects, combined with inhomogeneities in
metal films, yield additional physical lengths ranging
from tens of angstroms to the largest grain size. We
therefore suggest that 1/f noise in metals might be
described by Eq. (13), where Q(k) represents the distribu-
tion of k vectors necessary to describe all of the iinportant
physical lengths of the diffusion problem.

IV. EXPEI.IMENTS

Below we analyze data from Nb, Ag, and Cr films to
determine whether their excess noise spectra may be
represented by a superposition of activated Lorentzians
arising from either a D(E) or an H(ro). The Ag data are
taken from the literature. 'i The Nb data9 and the Cr
data ' were measured in our laboratory.

Niobium and chromium specimens were rectangular
four-probe resistors (with fifth center-tap probe) of length
L and width ic subtractively patterned (following photo-
lithography) from metal films deposited onto single-
crystal sapphire substrates. Niobium films were deposited
onto room-temperature substrates at a rate of 12 A/s in a
magnetron sputter system (base pressure 3X10 ' Torr),
had a thickness h = 120+20 nm, resistivity p(300
K)=28+5 p, Q cm, and a residual resistivity ratio of p(300
K)/p(10 K)=2.0+0.1. The chromium was e-beam-
evaporated (base pressure =1X 10 Torr) onto substrates
held at 530'C at a rate of 40 A/s, had h =120+10 nm,
p(300 K)~25+2 pQ cm, and p(300 K)lp(10 K) =2.0+0.1

(significantly better than Cr films deposited at room tem-
perature). Excess voltage noise spectra S„(f), measured
using an ac technique, were reproducible to about 20%%uo

and accurately scaled ~ith the mean-square current i
excess noise spectra are conveniently represented by
resistance-fluctuation spectra S,(f) and resistivity-
fluctuation spectra S~(f) defined by

S„(f)/~'=S, (f)ip'=S„(f)/(i, r)',
where r and p are the specimen resistance and resistivity,
respectively. Details of the specimen preparation and
noise measurement are given elsewhere. ' For measure-
ment temperatures in the range —20 & T & 90'C the speci-
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mens were mounted in an evacuated copper cylinder and
placed in an ethylene glycol bath stable to +100 mK.
Lower temperatures were achieved using a scanning
Dewar capable of 4& T &300 K with better than 5-mK
stability. The absence of contact noise was verified
throughout the entire temperature range by changing the
ballast resistance.

We have measured the S&(f, 300 K) of 40 Nb speci-
mens for frequencies 300 p, Hz &f& 300 Hz. s The resis-
tivity p( TJ ) and excess noise of two specimens (N7-2 and
N6-1) were measured at five temperatures Tj
(j =1,2, . . . , 5), —20& TJ &90'C. The relative resis-
tivity-fluctuation spectra of the smallest of these (N7-2)
are graphed in Fig. 1; TJ (in K), p(T;) (in p, Q cm), and the
number of atoms, N„ in the conductor are given in the
figure. Each of the spectra were integrated numerically to
obtain (Sp (TJ)) and E(r, T~) calculated using the ap-
proximate inversion of Eq. (8). To test whether the
I'(v, TJ) may be expressed in terms of a distribution of
prefactors H (ro) through Eqs. (5) and (7), the value of the
activation energy E must be specified. Here we used E as
a fitting parameter, calculating and comparing the H(rc)
for a trial value of E from the five F(r, TJ. ). For most
values of E the five calculated H(ro) were distinctly dif-
ferent. Had this been the case for all values of E, we
would have concluded that the normalized spectra
S(f,TJ ) could not be expressed in terms of a distribution
of prefactors H(ro). As E approached the value Ez ——230
meV, however, the H(ro) began to agree; the resulting
five distributions H(ro) are plotted in Fig. 2(a). The five
spectra fit the same distribution of prefactors H(~o) as
expected since the ftf, (T) diffusion scaling of Eq. (15)
has already been demonstrated for this data. s A weak
temperature dependence is observed for the variance;
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FIG. 1. Relative resistivity-fluctuation spectra of Nb speci-
men N7-2 at Ave temperatures (T) between —20 and 90'C.
The lines are guides to the eye. Tabulated T and resistivities (p)
have the units of K and pQcm, respectively. The specimen di-

mensions are A=120+30 nm, m =0.7+0.3 pm, and I. =40+1
pm.

values of TJ (in K), N, (5p (T~)) [in (p, Qcm) ], and N,
are tabulated in the figure.

These same data have also been compared with predic-
tions for noise arising from a distribution of energies
D(E). Equations (5) and (6) were used to calculate
D(E)'s from the five F(r, T& ) for a trial value of ro. The
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FIG. 2. (a) Graph of the five prefactor distributions imphed by the noise spectra of Fig. 1 with E=230 meV (see text). (b) Graphs
of the five energy distributions implied by the same data with ~0——10 s (see text). Tabulated temperatures ( T} and variances
( N, (5p ) ) have the units of K and i@Oem), respectively. The 1ines are guides to the eye.
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best agreement was obtained for su=10 s; the resulting
five D(E) are plotted in Fig. 2(b). The previous agree-
ment with a diffusion model guarantees that the five
D(E) will peak at the same energy, Ez ——230 meV. Com-
parison of Figs. 2(a) and 2(b) leads us to conclude that the
data fit a distribution H(ru) slightly better than a distri-
bution D(E), but that the difference is not compelling.
Of course, noise from H+ diffusion in Nb is expected to
be described by an H (ru).

Eberhard and Horn have measured the excess noise of
noble-metal films for temperatures 80& T&600 K and
frequencies 200 mHz &f & 200 Hz. 's At all temperatures
they report ( I/f )-like spectra

N, Sp(f, T)=p, (T)/f ' '

with p, ( T) depending strongly, and a(T) depending weak-

ly, on temperature. The temperature dependences of p,
and a for one Ag film are shown in Fig. 3. Figure 3(a) is
a semilogarithmic plot of the relative noise level p, /p
versus T; the solid line is a guide to the eye. The data in
Fig. 3(b) are the measured frequency exponents a(T).
Dutta, Dimon, and Horn have analyzed these data in
terms of a superposition of thermally activated processes
arising from a single prefactor ro (=10 ' s) and a distri-
bution of activation energies D (E). By assuming

(5p (T)) ~p (T) and ignoring data below 175 K and
above 530 K, they find satisfactory agreement between
measured a(T) and those calculated from the temperature
dependence of p, (T)/p using Eq. (9).

Here the Ag data are reanalyzed to determine (i) if the
data may also be described by a distribution of prefactors

H(ru), and (ii) what justification there is for the assump-
tion that (5p (T) ) /p (T) is temperature independent. We
find that the data can be fitted equally by either an H(ro)
or a D(E). Further, both models work with a broad
range of assumptions for the fitting parameters. These
findings are illustrated in Fig. 3(b), where the measured a
are compared with those calculated from the temperature
dependence of p, (T)/p (T) for one set of assumptions
about (5p (T)). The solid lines are calculated assuming a
distribution H(ro), while the dotted lines are calculated
for a distribution D(E). The four pairs of lines in Fig.
3(b) were generated using Eqs. (9) and (10) along with the
arbitrary assumption (5p (T))/p (T) ~ T s, for 5= —2,
0, 2, and 4; ro and E were arbitrarily set to 10 ' s and
1.2 eV, respectively, Here it is impossible to rule out one
distribution in favor of the other by any optimization of
these parameters. Furthermore, the absence of spectral
features, the large uncertainties in the measured frequency
exponents a(T), and ignorance of the variance (5p (T))
invalidate such analysis.

We have measured the room-temperature excess noise
of four Cr specimens (C3-1, -2, -3, and -4) for frequencies
1 mHz &f& 100 Hz. It is assumed that the specimens all
have the same thickness and resistivity since they were
fabricated from the same film. The excess noise and resis-
tivity of two of these (C3-1 and -2) have been measured
for temperatures 10& T&360 K. At all temperatures
resistivity-fluctuation spectra Sz(f, T) were inversely pro-

260 { j 360
l f l I

0 2
Q

Q t 0

10ot—

Q

0
—1

0'

200 600
1 (K)

FIG. 3. Temperature dependence of the low-frequency excess
noise of a Ag film (data taken from Ref. 10). (a) Semiloga-
rithmic plot of relative noise level p» /pi=[fN, S„(f, T) /
u (T)]f QQH versus temperature —T; the line is a guide to the
eye. (b) Comparison of measured frequency exponents a (sym-
bols) with those implied by p+/p, assuming a D(E) (dotted
lines) or an H(vo) (solid lines). Each of the four pairs of lines
corresponds to a different assumption for (Sp (T) ) (see text).

10 10 10 10 10 10

f (Hz)

FIG. 4. Relative resistivity-fluctuation spectra of Cr speci-
men C3-1 at ten temperatures ( T) between —13 and 83'C. The
temperature dependence of the resistivity (p) is plotted in the
figure inset using the same symbols. The lines are guides to
the eye. The specimen dimensions are A. = 120+20 nm,
m=4.2+0.3 pm, and L =160+2 pm.
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FIG. 5. Temperature dependence of the (a) resistivity p, (b)
noise level p~, and (c) frequency exponent o; for Cr film C3.
Data are reported for two specimens, C3-1 (circles and stars}
and C3-2 (triangles). The solid lines in (a) and (b) are guides to
the eye. The lines in (c) are calculated from p+(T)/p~(T) assum-
ing (5p~(T)) ~pi(T). The dotted lines correspond to a D(E)
for trial values vo ——10 ', 10, and 10 ~ s. The solid lines
correspond to an 0(~0) for trial values E= 1, 3, and 5 eV.

portional to the specimen area A —=Lw. This size depen-
dence was conveniently removed by multiplying Sp by the
number of atoms in the specimen (N, ). The relative
resistivity-fluctuation spectra of specimen C3-1 (L=160
)ttm, III=4.1+0.3 )Itm) are graphed in Fig. 4 for tempera-
tures —20& TJ & 100'C. Each temperature is represented
by a different syinbol (with error bars); the hnes are guides

to the eye. Notice the rapid increase in noise level with
decreasing temperature while a=—BlnS/Much hardly
changes from 1.0. The temperature dependence of the
resistivity p is shown in the figure inset using the same
symbols.

The full temperature dependence of the excess noise of
both Cr specimens is conveniently represented by p, (T)
and a(T), where

&,Sp(f, T) =p, (T)/f""' .

The temperature dependences of the resistivity p, noise
level p, (T), and frequency exponent a(T) are plotted in
Fig. 5. The triangle data were measured for specimen
C3-2 (L=320 pm, iII=8.0+0.3 IMm) in the scanning
Dewar seven months after the other data (circles and
stars) had been measured from specimen C3-1. The solid
lines in Figs. 5(a) and 5(b) are guides to the eye. The noise

level increases with decreasing temperature, reaching a
peak level p, (240 K) approximately 30 times its room-
temperature value p~(300 K}. Below 240 K the noise level

monotonically decreases with decreasing temperature.
To determine whether the data are consistent with ei-

ther a D(E) or an H(ro}, the variance (5p (T)} must be
shown. Unlike noise from hydrogen diffusion, the vari-

ance may not be determined by numerically integrating
the measured noise spectra. The data cannot be fitted by
either model with the Dutta-Horn assumptian that

(5p (T)) ~p (T). This is illustrated in Fig. 5(c), where
measured u (symbols) are compared with those calculated
from p, (T)/p (T) assuming a D(E) (dotted lines) or an

H(vo) (solid lines) using Eqs. (9) and (10), respectively.
The three dotted lines correspond to trial values

~0——10 'i, 10, and 10 s; the solid lines correspond
to trial values E= 1, 3, and 5 eV. Unreasonably small ro
or large E are required to make either model consistent
with the data.

Fleetwood et al. suggest writing (5p (T)}~ Ts with 5
chosen to give the best fit. 'zs This method will not im-

prove the agrtement between the data and the curves of
Fig. 5 since they do not differ by a simple translation.
The only way ta make either model work (with acceptable
values for the parameters ~o or E) is to let (5p (T) ) take
on most of the temperature dependence of p, (T). In the
absence of physical knowledge of a complicated ( 5p ( T) },
this approach leaves D (E) or ~OH (ro) undetermined.

V. DISCUSSION

Our analysis of the excess noise of Nb films containing
H+ demanstrates that one can experimentally distinguish
between a distribution of prefactors H(ro) and a distribu-
tion af activation energies D (E). The distinction between
the two models, in this case, is quite small since most of
the noise power is associated with a single activated relax-
ation time [r,(T) ~L /&(T)] consistent with either
model. The analysis was aided by (i) knowledge of the
variance (5p ( T) },and (ii) a pronounced knee in the noise
spectrum. Useful analysis may proceed even if only one
of these is available. Consider a log-log plot of

fSJ =fSp(f, T) )/( 5p'( TJ ) }
versus flf, (TJ), where (5p (TJ)} and f, (TJ) are not
known. Arbitrary adjustments of f, (T~) and (5p (TJ)}
produce, respectively, horizontal and vertical translations
of such a graph. If either the horizontal or vertical
translations are predetermined, say by aligning some spec-
tral feature or by scaling with a known (5p (T)}, the
remaining translation is not arbitrary. The distinction be-
tween horizontal and vertical translations, however, is lost
for featureless 1/f noise for which (5p (T) ) is not
known. Such is the case for A.g films where the excess
noise could be fitted by a wide range of ad hoc assump-
tlolls about (5p ( T) ) .

The temperature dependence of the resistivity of
chromium films might provide a valuable clue as to the
temperature dependence of (5p ( T) }.As was pointed out
in Sec. IIIC, there is reason to look for scaling of
(5p (T)) with some component po(T) of the resistivity
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p( T). It is customary to write the resistivity

p(T) =pd+pl (T), where the (nominally) temperature in-

dependent piece pd is due to defect, boundary, and impuri-

ty scattering, and pL (T) is the intrinsic resistivity due to
lattice scattering. Inspection of Fig. 5(a} suggests that the
chromium resistivity might be written as p( T)=pd
+pL(T)+pa(T), where po(T) is a third component with
temperature dependence similar to the noise level, p, (T).
The difference p(T) pL (T—) pq i—s not known with suff-
icien accuracy to allow extraction of po(T). The tempera-
ture range is suggestive of the antiferromagnetic transition
in Cr, in which case the noise might be associated with
carrier number of mobility fluctuations.

VI. SUMMARY AND CONCLUSIONS

We have considered resistivity fluctuations associated
with scattering of conduction electrons. For scattering
from diffusing defects we have found a scaling law: the
quantity AS&(ro, T)/(5p (T)) is a function of co and T
only through the diffusion-normalized frequency

f/& ( T). If Matthiessen's rule is followed and the
scatterers are independent, then (5p2) capo/No, ' this ex-
pression is independent of the scatterer-relaxation mecha-
nism. For the particular case of thermally activated dif-
fusion, we find that the S~(f„T) can be expressed as a su-

perposition of thermally activated processes with a set of
attempt frequencies fully determined by the diffusion pro-

cess; relationships have been derived between the frequen-
cy and temperature dependence of S~(f,T)/(5p (T) ).

Attempts to compare excess noise spectra from three
metal film examples with both the Dutta-Horn model
[with its distribution of activation energies D(E)] and
with thermally activated diffusion [with its distribution of
prefactors H(vo)] have led us to several disturbing con-
clusions: (i) Meaningful comparison of noise data with
theoretical models requires either independent informa-
tion about (5p ( T) ) of the observation of spectral
features; (ii) both limiting models are equally consistent
with the 1/f noise observed from noble metals, but neither
is convincingly established; (iii} our Cr 1/f noise data can-
not be represented by such models without the assumption
of a strong, ad hoc temperature dependence for (5p ).
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