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The first fully relativistic calculations that also include spin polarization are presented for the

single-site t matrix for Ce and Pu. The pattern of resonant energies for Ce are compared to recent

atomic eigenvalue results for the Ce3+ ion. The Ce band states are also determined along the (100)
and (111)directions in the Brillouin zone by solving the Dirac equation with an internal magnetic

field constructed from scalar relativistic linear muffin-tin orbital (LMTO) spin-polarized calcula-

tions. In the relativistic case the coupling between spin-orbit and spin-polarization interactions des-

troys rotational symmetry, unlike in the nonrelativistic spin-polarized formalism, and hence leads to
completely nondegenerate f and d states in these systems (similar to the Zeeman effect). To see this

we also give results for an applied magnetic field that only couples to the spins and hence resembles

an effective internal spin-polarized field.

I, INTRODUCTION

The electronic structure of rare earth and actinide sys-
tems has become the subject of increasing scientific in-
terest in recent years. In particular, the heavy-fermion
systems have brought new excitement to this field of
research, especially on the experimental side. The theoret-
ical side, however, has been less satisfactory. Even if we
ignore many-body effects, current theory usually neglects
the problem that rare-earth and actinide systems require a
fully relativistic treatment, yet often have strong tenden-
cies towards local magnetism. Typically, self-consistent
electronic structure calculations have emphasized one as-
pect or the other: They have either been fully relativistic
with no account for spin-polarization effects or have been
carried out in a spin-polarized mode using the Pauli-
Schrodinger —like equation with spin-orbit coupling ex-
cluded. In the last few years the formal theory of spin-
polarization in Dirac theory' has progressed, and the gap
between the two approaches bridged by the methods of
Strange et a/. , Feder et al. , and Cortona et al. Since
experience has shown that relativistic effects are impor-
tant even for 4d-electron systems (e.g., see Ref. 2), this is
an important theoretical achievement. As was sho~n by
Strange et al. , for 5d-electron systems the effects of
spin-polarization for relativistic single-site scattering are
large. In particular, spin-polarized relativistic scattering
seems to be important %henever sharp resonances in the
vicinity of the Fermi energy characterize the electronic
structure. As might be expected, large spin-polarization

effects for 4f electrons were also found by Cortona et al.
for isolated rare-earth ions.

In the present paper the method of Strange et al. is
applied to the fully relativistic single-site scattering t ma-
trix for cerium and plutonium. For Ce these single-site t
matrices are then used to calculate relativistic spin-
polarized energy bands along the (100) and (111)direc-
tions. The main effect is for the spin-polarization to re-
move any remaining degeneracy in the fully relativistic
states.

For completeness the theoretical concepts are briefly
summarized in Sec. II (for more details the reader is re-
ferred to Strange et al. ). In addition we also give new
results for the formulation of the relativistic spin-
polarized Korringa-Kohn-Rostoker (KKR) Green's func-
tion in terms of the single-site scattering operator. Com-
putational details are presented in Sec. III. In Sec. IV the
results are given and conclusions discussed in Sec. V.

II. THEORETICAL CONCEPTS

Strange et al. z have recently shown that the radial am-
phtudes of the I.ippman-Schwinger equation for a Kohn-
Sham-Dirac Hamiltonian in the presence of an effective
magnetic field B,tt(r), with both the effective potential
V,tr(r) and Q,tt(r) spherically symmetric and the z direc-
tion in spin space to be taken along 8, can be determined
by the following coupled set of radial differential equa-
tions:

8 (a' —1)+ firn (r,E)+[Vert(r) E+1]gtltI(r, E)+Beff(r—) g G (rt",rt, ls)g&-& (r E)=0,
K
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8 (s'+ 1)+ ggg (r,E)+[V«f(r) E——I]fgg (r,E) B—«t(r) g G( —a", —x, p)fg g (r,E)=0,
II

5E„,[n, m]
B«t(r) = — B,„,+2mc '" 5m(r }

Q =(vp) .

(3)

(4)

In Eq. (3) 5E„,[n, m]/5m(r) is the internal magnetic field as given by the local density functional, B,„, is an external
field that only couples to the spins, and n and m are the charge and magnetization densities. The dominant coupling in
Eqs. (1) and (2) is for values of Ir belonging to the same value of l [j= l + —,

' (a =—l —1),j= l ——,
' (~=1)]. In this case

the coefficients G (a,a', p ) reduce to the following simple product of Clebsch-Gordan coefficients:

G(~,a'', p) = C(lj z, p —s, s)C(lj'-,'; p —s, s) C(jl—,'; p, +—s,—s)C(lj' —, ; p, +s, —s),
—j&p&j .

Rather than solving a coupled set of Volterra like equa-
tions, the general solutions for r &R, (R, is the muffin-
tin radius) are obtained through a matching at r =R,
with the solutions of Eqs. (1) and {2) for
V«t(r)=B,tt(r)=0. The matching can be formulated in
terms of a single-site t matrix whose elements are given as
follows:2

6"'jt (pR, )— S„jT (pR, )
1

' Po+&
t„,q „,~(E)= —.

P 6"'ht+(pR, ) PS„—hr+(pR, )
1 go+ f } 1

j t, (pR, ) ipt „,„„„(E—)ht+, (pR, )

F,"g„„,{E,R, )+P, g„,„,,(E,R, )

( I,P(ni), 0,0), v= 1

K}P4yV& v K)PqV&Ff K~~V& v K2+qV (0,0, 1,PiK2)), v=2,

x;+S(x, )
P(~; )=

2Z/c

S (Ir; )= [~,'—(2Z/c)2]'~2

(15)

For the ~culation of t.~,.p md t.~,.~ the sup scrip
(1) in Eqs. (9)—(11)are replaced by superscript (2), i.e., the
case v=2 in Eq. (14) applies.

From the single-site t matrix tgg (E) the partial scatter-
ing amplitudes fgg (E) and the single-site S matrix
Sgg (E) are obtained

fgg (E)= —v Etgg (E),

(8) Sgg (E}=5gg 2ifgg (E—) . (18)

FI"if„,„i(E,R, )+F2"if„„2(E,R, )
(1)

P"Ig„„,( E, R, ) +P',"g„,„,( E, R, )
'

The single-site t matrix has the structure shown in Fig. 1.

S, h+ {pR.} a&,2ht+ (pR. }—
(1) ~~ gp

if„& ~(E,R, } a„&2g„& i(—E,R, )

(10)

-1-1-1 '} 1-1 1 &-2-3-2-1-2 1-2 3 2-3 2-1 2 1 2 3-3-5-3-3-3-1 3 l-3 3-3 5

-t1 k,

S„hT+ (pR, ) a„&,ht+ (pR, }—
(1)I'2 ———sp

if„~ i(E,Rg) a„~ ig„~ 2(E,R—, ) Qn

if„„„{E,R, )

g„„„(E,R, )

po=E, E'=p'+1, S„=~/~~~ . (13)

Qa

In Eqs. (9)—(12} the f„z „(E,r) and g„„„(E,r) are elements
of a 4 vector of radial solutions of Eqs. (1) and (2) with
the following boundary conditions at the origin: FIG. 1. Matrix structure of t„„„„{E).
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For a particular value of l and p, the t matrix can be
described in terms of at most three partial scattering am-
plitudes. For B,tt=0 and for resonant angular momen-
turn channels, the scattering amplitudes change counter-
clockwise along the unitary circle. At the resonant ener-

gy, the energy at which the phase shift passes through
m/2, the scattering amplitude passes the imaginary axis.
For B,tt&0 the scattering amplitude in general no longer
moves along the unitary circle. The scattering in a partic-
ular channel is said to be absorptive (emissive} if the
scattering amplitude is inside (outside) the unitary circle.
In the case of absorptive scattering one still can talk rath-
er safely about a "predominant" resonant energy if the
scattering amplitude crosses the imaginary axis well above
0.5. Of course, one can also diagonalize the single-site S
matrix and define two corresponding complex phase shifts
(see also the discussion by Strange et al. }. In the follow-
ing section resonant energies for a particular scattering
channel Q =(ttp. } shall be defined by the energy at which
the diagonal scattering amphtude f~(E) crosses the
imaginary axis above 0.5.

As already pointed out by Strange et al. and Feder
et al. ' the single-site t matrix can be used for relativistic
spin-polarized multiple scattering. From the scattering
path operator (cf. the discussion by Staunton et al. s and
Weinberger et al. ) the nonsite diagonal scattering path
operator corresponding to the sites R; and R& for simple
lattices is given by

H~(E)= f [t-'(E)—g(E,k)] 'e
~sz

In terms of the scattering path operator the relativistic
Green's function is given by

6(E,r, r') =g [ Z/q(E, rg )r iq(E)Zt q(E, rj )

l,p

5J—Z/„(E, rg )J t„(E,rq)] .

In Eq. (22) Z/„(E, r; ), J i „(E,r; ), and r i „(E) are 2 &( 2
matrices:

zlZ'~(E"'}= Z'"='(E r ) Z' "='(E r

r~It,y( &rl }—Ji,v=2(E ) Ji v=2(E

~~„,„„(E) &~„,g„(E)

(23)

where the
~
xp, ) are the spin spherical harmonics, while

the functions

g „'„"(E,rt)
~ leap)

J'„'q(E, r; }=
if „'„"(E,r;)

~

—ap, }

The functions Z„'&(E,r, ) are normahzed according to Eq.
(2.11)of Strange et al. :2

gg~(E, rt)
~
Kp }

(26)

f r(E,k)e' ' ' dk
Qaz

(19) are normalized such that at the muffin-tin radius (r; =R, )

det[~(E, k) ']=det[t —'(E)—G(E,k)] =0 . (20)

Energies at which Eq. (20) is fulfilled along a particular
ray in the Brillouin zone constitute the spin-polarized rel-
ativistic energy bands.

According to Roses the relativistic Green's function is
written as a 2)& 2 matrix in spin space

where t(E) is the single-site t matrix Eqs. (7) and (8) and
g(E,k) are the relativistic KKR-structure constants. The
poles of r(E,k) correspond to energies for which the
determinant of the KKR matrix vanishes:

[J„'q(E,r; ),J„'q(E,r; )]

ipS„
Jt («; ), Jt (Er; ),0,0, v= 1' 'p'o+&

EPS„
0,0jt(«;), "

J't,(Er;), v=2.
So+&

The indices ~ and ~' have the following two values:

(28)

(29}

6)i(E,r, r') Gii(E, r, r')
G( Eq qrr)= 6 (E g) 6 (E I} (21) In terms of the site-diagonal Green's function the first-

order density matrix is given as

n {E,r) = n'Im Tr 6 (E—,r., r)

= —m 'm~ [Z'„'„"(E,r; )~„"„g„(E)Z„""„(E,r; ) Z„'g(E, r; )J'„"„(E,r,—)],
5,p +=1,2 x= —l —1, I x'=I, —I —1

(30)

where Tr denotes the trace over the spinors. The density of states is therefore given by

ii (E)= f„ri (E,r)dr= —m
' Im g g y R '" (E)pi (E)

I,p v=1,2 x= —I —1, 1
(31)
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R„'g„„(E)=f Z„'„"(E,r; )Z„'"„(E,r;)dr;,

and 0; denotes the volume of the unit cell.

III. COMPUTATIONAL DETAILS

This first attempt to include spin-polarization in a fully
relativistic treatment for the t matrices and band states
was performed by a non-self-consistent procedure. Since
Eqs. (1) and (2) require as input a V,tt and B,tt, and since
the calculations are to be performed for a solid, a V,ff aild

B,tt that was constructed from a solid-state calculation
seemed preferable to using atomic potentials. With that
in mind, self-consistent scalar relativistic spin-polarized
linear muffin-tin orbital (I.MTO) calculations were per-
formed for Ce and Pu at lattice spacings corresponding to
Wigner-Seitz radii of 3.82 and 3.42, respectively (both sys-
tems are spin-polarized at these spacings). From these
calculations, B,tt (8,„,=0) was constructed by taking the
difference of the muffin-tin spin-up and spin-down densi-
ties and the paramagnetic effective potential V,tt by
averaging the corresponding spin-up and spin-down po-
tentials. The value of V,tt(r) at the muffin-tin radius is
considered to be the constant potential outside the
muffin-tin. Because the main purpose of the present cal-
culations is to illustrate the effects of the coupling be-
tween spin-orbit and spin-polarization and is not self-
consistent, this rather crude procedure seemed reasonable.
The single-site results are obtained by solving Eqs. (7) and
(8) using Eqs. (9)—(16). The energy-band results are ob-
tained by solving Eq. (20) which uses Eqs. (21)—(28) for
the above potential.

IU. RESUI.TS

A. Single-site scattering

In Figs. 2—5 we show the resonant energies as a func-
tion of the fictitious external magnetic field 8,„, for both
Ce and Pu. In a solid the resonant energies, defined as the
energies at which the diagonal scattering amplitude
f~(E) crosses the imaginary axis above 0.5, are the
closest analogy to energy eigenvalues in atoms. As such
they can be used to indicate the way that spin-orbit and
spin-polarization interactions couple and split the elec-
tronic states. The external field is fictitious in the sense
that it only couples to the spin degrees of freedom and not
to the orbital currents. It enters through Eq. (3) as an en-

ergy p&8,„, (where pii is a Bohr magneton represented by
eA'/2rnc); its value is given in Ry energy units. Also,
since the range of variation in Figs. 2—5 is typically at
least 3 orders of inagnitude larger than most laboratory
magnets can achieve, it is probably best to think of it as a
variation in the strength of the spin-polarization potential,
cf. Eq. (3).

In this paper vie have chosen 8,„, to be of opposite sign
from 5E„,/5m(r). When 8,„, is of the same order of
magnitude as the spin-polarization effective field, the two
contributions cancel each other (B,tt=0) and the present
theory reduces to the normal nonmagnetic Dirae fully rel-

ativistie theory. For the resonant energies this is seen
quite clearly in Fig. 2(b) for 8,„, near 0.02 Ry, where the
resonant energies cluster near the degenerate nonmagnetic
spin-orbit split (f ~ and f ~ ) resonant energies. Increas-
ing or decreasing 8,„, then is a way of examining how the
spin-orbit and spin-polarization effects couple and in-
teract with each other as the strength of the effective
spin-polarization is varied relative to the size of the spin-
orbit splitting. In Fig. 2(b) the pattern and size of the en-

ergy splitting is symmetrical above and below 0.02 Ry and
is equivalent to simply changing the sign of B,tt. This is
also shown by the way the pattern of p quantum numbers
invert relative to each other at either end of the figure,
when the effective spin-polarization term is largest. At
these extremes the pattern of resonant energies resembles
a normal spin-polarized calculation, with a cluster of 7
spin-up and 7 spin-down energies, which are then in turn
additionally split by the spin-orbit coupling into almost
Zeeman-type patterns. It is interesting to follow how one
of the resonant energies from the f level is pulled off to
achieve the 7+7 pattern as 8,„, is varied away from the
position when B,tt=0. These patterns were also seen in
the s in-polarized relativistic calculations of Strange
et al. for the Pt d resonant energies and by those of Cor-
tona et al. ~ for the rare-earth 4f atomic eigenvalues.

The qualitative pattern of the resonant energies holds
equally well for both d and f electrons. Quantitatively,
the relative size of the spin-orbit splitting and the effec-
tive spin-polarized potential will vary from system to sys-
tem and between d and f electrons for the same system.
In Ce, for example, the d resonance patterns overlap [Fig.
2(a)], whereas the f resonance patterns [Fig. 2(b)] are well

separated and easier to follow (as are also the Pt d reso-
nance patterns calculated by Strange et al. i and the Pu f
resonance energies in Fig. 4). Physically, the reason for
breaking the degeneracy of the resonant energies (or atom-
ic eigenvalues) is because the spin-orbit coupling breaks
the rotational symmetry in the presence of the spin-
polarization, unlike the nonrelativistic case where the spin
and orbital degrees of freedom are completely decoupled.

In Fig. 2(a) are shown the d resonant energies for Ce.
At the left of the figure are the normal degenerate relativ-
istic d and d resonant energies, split by a spin-orbit
splitting of about 0.03 Ry. The pattern of resonant ener-

gies at fields of 0.01 and 0.02 Ry are nearly identical, but
with the p labels inverted with respect to each other.
Hence, the effective field 8,„, that is needed to compen-
sate the spin-polarized potential is of the order of 0.015
Ry. The spin-orbit splitting is approximately double this
value. The strong overlap in the pattern of resonant ener-

gies is very different from all the other calculations in the
paper [see Figs. 2(b) and 4] and the Pt d results of Strange
et al.

In Fig. 2(b) we show the corresponding Ce resonant en-

ergies for the f electrons. In this case the spin-orbit split-
ting (-0.02 Ry) is almost the same as the effective spin-
polarization field (note the pattern of energies for
8,„,-0.02 Ry). Here the classic pattern that we have dis-
cussed above emerges. One of the f states is split off
and added to the f5~2 cluster to form two clusters of 7
states. The center of gravity of the upper cluster moves to
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higher energies for larger 8,„, while the lower cluster

moves to lower energies. For very large B,„, the states

within each cluster remain split by about the same

amount while the separation between the center of gravity

of the two clusters increases proportional to 8,„,.
In Fig. 3 we plot each of the states more explicitly as a

function of 8,„,. All of the states, except for two, are

clearly symmetrical about 8,„, of 0.022 Ry. The @=—',
and ——, states are different because it is these states that
are pulled off from the j=—,

' states and added to the

j= —,
' states to even up the number of states of the lower

and upper clusters at 7 states each. At large B,„, the plots
seem approximately linear in 8,„, and equal for all p, .
The slope is probably a measure of the rate of separation
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FIG. 2. (a) Resonant energies for the diagonal d-type scattering amplitudes (x =x'= —3,2) in Ce. The quantum number p is
shown as 2p. (b) Resonant energies for the diagonal f-type scattering amplitudes (a=~'= —4, 3) in Ce. The quantum number p is
shown as 2p.
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FIG. 3. Variation of the resonant energies for the diagonal f type sc-attering amplitudes in Ce with respect to the external magnetic

field.

of the center of gravity of the clusters. Calculations for
much larger 8,„, are needed to test this quantitatively.

In Fig. 4 we show the f-electron resonant energies of Pu
as a function of 8,„,. The patterns are similar qualitative-

ly to those of Ce. In this case the spin-orbit splitting

(-0.1 Ry) is also about the same as the spin-polarization
field (-0.12 Ry), and both are about an order of magni-
tude larger than the corresponding quantities for Ce. In
Fig. 5 we again show explicitly how the p, =+7/2 states
are ptslled away from the f states to form the two clus-

0.9
E(R y) p[ Ut gnium

7/2
0.7 - f

-7

-7

-7
7

-7

5/2

0.6-
5

-5

-5

AOA-
FAQQAQt iC

0.02 0,04 0.06 0.08 Q.l 2

Is(SBext(&y)

PIG. 4. Resonant energies for the diagonal f-type scattering amplitudes (s.=a' = —4, 3) in Pu.



34 RELATIVISTIC SPIN-POLARIZED ELECTRONIC STRUCTURE. . .

P tutoniurn

0.8 .
-7/2

0.6
Q 0

A
CT

5/2

0.5

ters of 7 states. For Pu we have not shown the d reso-
nances. They are so weak that the nonmagnetic di~2 and
d ~ phase shifts never reach e l2 within the energy range
0—2 Ry.

In Fig. 6 the f-typ: scattering amplitudes for Ce corre-
sponding to p=+ —, are shown as a typical example at
zero external field scattering. In particular, Fig. 6 sug-
gests that the concept of resonant energies can at best pro-

I

0 2 / 6 8 1O ]2 )/ xt9
+a~exi«»

FIG. 5. 'Variation of the resonant energy for the p, = k z f-
type scattering amplitude in Pu with respect to the external
magnetic field.

vide only a somewhat qualitative picture of single-site
scattering. Using the diagonalized form of the S matrix
[Eq. (18)] as discussed by Strange et al. , however, the
corresponding resonant energies are only marginally dif-
ferent from the ones shown in Figs. 2 and 3.

In Fig. 7 the variation of the p= —', (for Ce) off-
diagonal f-type scattering amplitude (~=—4, a'= 3) with
respect to the external field is shown. For 8,„, of 0.022
Ry the scattering is completely elastic, i.e., the contour of
the off-diagonal scattering amplitude is reduced to a lim-
iting circle. As the external magnetic field becomes larger
than the internal magnetic field, the off-diagonal scatter-
ing amplitude starts growing again. The d-type scattering
amplitudes (ir=a'= —3,2) are almost elastic. The d-type
off-diagonal scattering amplitudes (x= —3, a'=2) are
shown in Fig. 8 for p= —', for 8,„, of 0.0, 0.01, 0.02, and
0.03 Ry.

Since scattering amplitudes are implicit functions of the
energy parameter E, for Pu the f-type scattering ampli-
tudes (~=~'= —4, 3) and the f-type off-diagonal scatter-
ing amplitudes are very similar in shape to the corre-
sponding amplitudes in Ce. Separate figures for the f-
type scattering in Pu are therefore not shown. As already
mentioned, however, in the case of Pu much bigger exter-
nal magnetic fields are needed in order to compensate the
internal splitting.

B. Relativistic spin-polarized energy bands for Ce

Using the single-site r matrices discussed in Sec. IVA
for Ce relativistic spin-polarized energy bands along (100)
and (111) of the fcc Brillouin zone are calculated in the

-.25 .25

.50 .25 .25 .50 -.50 ".25 .25 .50

)l ~ 5/2

1a-$
ls. & 3

-.25

Re

p= 5/2

1L 3
x'* 3

-.50 :25 .50 ;50 -.25 .25 .50

FIG. 6. Diagonal f type scattering amplitu-des in Ce for p, =+ 2 in the absence of an external magnetic field. The top row corre-

sponds to p = —2, the bottom rom to p =
2 . In the left (right) column a and x' are —4 (3).
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)i = 3/2, x = - 4, x' e 3, S~„I = 0.00

-2

:25

.25

-,25 .25

-.25

)i*3/2, x~-4, w'=3, 8 „&-0.02 plex not only because in the magnetic case the a. values be-
longing to one I mix, but also because for irreducible rep-
resentations other than I"+6 the irreducible representations
show combinations of different p values. The I s is the
most interesting case and has a very complex set of f-type
irreducible basis functions (Onodera and Okazaki, ' Dirl
er al. '3}. An assignment of the relativistic spin-polarized
bands with respect to the relativistic, nonmagnetic bands
is therefore in general not directly possible. Even for the

3/2, x e -4, x' e 3, 8 „&
* 0 0 1 3/2'"= 4'"'3" ae t*003

-.25

~ 4 2

'
~

-25

-.25

~;25
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u= 3(2
)E=-3
x= 2

-.25
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.25

Re

sex& = 000

'" -.25

FIG. 7. Variation of the p= z f-type off-diagonal scattering

amplitude (x= —4, z'=3) in Ce with respect to the applied
external magnetic field.

presence of only the internal spin-polarized field

(8,„,=0). These energy bands are shown on the right-
hand side of Figs. 9 and 10 together with their nonmag-
netic counterparts on the left-hand side. In both figures
one clearly can see the sd band penetrating the complex of
f-type bands (I states) from below. Along (100}also a

typical d-type band (I +) coming from above penetrates
the f bands. The dispersion of the "nonmagnetic" and the
"magnetic" bands is similar for all cases with similar

compatibility relations such as the sd band (starting at I +6

and ending at X6 or 1.6 in the nonmagnetic case) or the
d-type band starting at the bottom I 7 state. In the vicin-

ity of the f bands, however, different compatibility rela-

tions pertain in the magnetic case. In general, the spin
polarization removes all remaining degeneracy from the
fuHy relativistic bands.

At the bottom of the s band, at I, a very special case
can be discussed. Since I+6 only has s symmetry, i.e., the

i~reducible basis functions of I +6 are (a,p, )=(—1, ——,
'

)

and ( —1,——,
'

), and since the ( —1, ——, ) and ( —1, —,)

channels cannot mix [see also Eqs. (1) and (5)], the spht-
ting of 1"6+ into two magnetic states is completely analo-

gous to a nonrelativistic spin polarization. In Fig. 11 the
two states are shown as a function of the external field

B,„„i.e., are shown with decreasing internal field. As can
be seen in this figure the splitting due to B,rr(r) is com-
pletely symmetric. For vanishing B,rr(r) these two states
degenerate into I +6.

For other states at I the situation is much more com-

8 „)=002

x'= 2
' .25

T

-.25 .25

Re

-25

p= 3/2

~ .25

Bext =00~

-.25 .25

~ -.25

FIG. 8. Variation of the p= 2 d-type off-diagonal scattering

amplitude (x= —3, x'=2) in Ce with respect to the applied
external magnetic field.
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FIG. 9. Energy bands along (100) for Ce. The left-hand
side of the figure shove the nonmagnetic, relativistic bands, the
right-hand side the relativistic spin-polarized bands
(&,=0.0Xe4/2mc, Ry).

FIG. 10. Energy bands along (111) for Ce. The left-hand
side of the figure shams the nonmagnetic, relativistic bands, the
right-hand side the relativistic spin-polarized bands

(8,„,=0.0y, eA'/2m', Ry).
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FIG. 11. Spin-polarization effects for the bottom of the s
band in Ce.

FIG. 12. Spin-polarization effects for the I +& and the lower

I 8 state in Ce.
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relatively simple case of d-type states at I the situation is
somewhat complex. Figure 12 shows the splitting of the
I 7 and the lower I +8 state in Ce. Again one can see that
for vanishing B,tt(r) these states do degenerate into I 7 (2
states) and I+s (4 states); however, the collapse of the
splitting is not as straightforward as for I 6 (Fig. 11).

V. CONCLUSIONS

Whether resonant energies or the energy bands them-
selves are examined, the main effect of spin polarization
on the fully relativistic electronic states is to split all
remaining degeneracy. The coupling between all the dif-
ferent states is highly complex and the resulting pattern of
energies can be quite complicated and difficult ta under-
stand (for example, the Ce d overlapping resonant ener-

gies and the Ce 4f band structure results). In some cases,
such as the Ce and Pu f and Pu d resonant energies, the
resulting pattern of energies for large internal spin-
polarization fields resembles two sets of an equal number
of states that look like spin-up and spin-down states that
are in turn split by the spin-orbit effects. In terms of the
energy patterns of these states, one cannot distinguish any
qualitative differences between d and f electrons. The Ce
d case is unlike all the above in that the present calcula-
tions seem to indicate that the pattern of resonant energies

will averlap for values of 8,„, larger than the spin-

polarized splitting.
While the present results give one some feeling for what

to expect from these types of calculations, the next step is
to calculate the elo:tronic structure of systems like Ce and
Pu self-cansistently with respect to the charge densify and

the magnetization density. By using a fully relativistic
KKR-type approach based on complex energies this is not
an unsurmountable problem. In addition it should be not-
ed that within the framework of the CPA-KKR method
spin-polarized relativistic scattering can also be applied to
substitutionally disordered systems. For the time being,
the present paper quite clearly shows what kind of effects
can be expected in a full scale spin-polarized relativistic
calculation of the electronic structure of f-electron sys-
tems.

A final comment should be made about the symmetry
breaking created by the relativistic spin-polarized calcula-
tions as they have been developed here and by previous
workers. ' As has been shown, the coupling between the
spin orbit and spin polarization leads to the breaking of
rotational symmetry around a given site. For isolated
atoms or iona with unfilled shells one does not have spher-
ical symmetry, but the calculations are performed for the
configuration average in a spherical potential sa it is in-
teresting that no degeneracy is left. Whether or not an or-
bital contribution to the magnetization in the isolated ion
case would restore some of the degeneracy is unknown.
Also, how one would include such a contribution in the
solid state case is not clear.
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