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Ground-state energy of charged quantum fluids in two dimensions
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The ground state of a two-dimensional charged quantum system is studied using the method of
correlated-basis functions. For particles obeying the Bose-Einstein statistics we compute the
ground-state energy variationally for all particle densities using the Bijl-Dingle-Jastrow trial wave
function. The Bose ground-state energy and wave function so determined are used next to study the
Fermi system. We compute the Fermi ground-state energy using a cluster expansion approach,
which is again valid for all particle densities, and find that the ground state is paramagnetic. While
these calculations provide variational upper bounds to the ground-state energies, we also establish
independent lower bounds to the ground-state energies.

I. INTRODUCTION

Recent discoveries of the quantized Hall effect, ' espe-
cially of the fractional quantization, indicate that a two-
dimensional (2D) electron gas in a strong magnetic field
behaves as a many-body quantum system. To achieve a
truly first-principles understanding of the quantized Hall
effect, therefore, it is important to consider the electron
gas as a many-body quantum system by taking the
Coulomb interactions into consideration. As a first step
toward achieving this goal, we consider in this paper the
ground state of a 2D charged quantum system which can
satisfy either the Fermi-Dirac (FD) or Bose-Einstein (BE)
statistics, and in the absence of an external magnetic field.
Indeed, the problem of a 2D electron gas has been of in-
creasing recent interest. Its ground-state properties have
been studied under the ring-diagram approximation, '

and under the random phase, Hubbard, and the self-
consistent approximations. More recently, the problem
of a 2D quantum electron gas has been studied under an
effective-potential expansion and under the ladder ap-
proximation. Substantial differences appear to exist be-
tween these numerical results to warrant a further study
of the problem. In this paper we study the ground-state
energy of 2D charged Bose and Fermi systems using a
variational correlated-basis-function (CBF) approach.

The CBF approach to the study of quantum-
mechanical many-particle systems is a first-principles for-
mulation which, when used with a complete set of basis
functions, does not involve uncontrolled approximations.
The first step of the CBF approach is the use of a varia-
tional wave function (upon which a complete set of basis
functions can be built). In this paper we carry out this
variational calculation, and compare our results with prior
results and a prior Monte Carlo study' using similar vari-
ational 'wave functions. Our study is a natural extension
of applications of the variational CBF approach to three-
dimensional (3D) charged Bose" and Fermi' ' systems.
%'bile the variational approach provides an upper bound
to the ground-state energy, we also establish in this paper
an independent lower bound for the ground-state energy.

The organization of this paper is as follows. In Sec. II,

the quantum many-body problem at hand is defined and
formulated, and a lower bound for the ground-state ener-

gy is obtained. In Sec. III, we use a variational wave
function to evaluate the ground-state energy for the Bose
system. The Bose ground-state energy and wave function
so determined are used in Sec. IV to compute the ground-
state energy of the Fermi system, and the results are com-
pared with those previously obtained.

II. LOWER BOUND FOR THE GROUND-STATE
ENERGY

Consider a system of N charged particles, each possess-
ing mass m and charge —e, confined to a uniform neu-

tralizing background of area A. We shall consider the
limit of N~ oo, A ~ ao, while holding the particle densi-

ty o =N/A constant. The Hamiltonian of the system is
given by

H=T+V, (2.1)

where

g2 N

T = gV', —
2m, .

and

1V N
V= —,

' g g u(rj) ——,o f f u(r, 2)dridr2
i =1 j=1

(j ~i)

(2.2)

(2.3)

are, respectively, the kinetic- and potential-energy opera-
tors. Here, u(r)=e !r is the Coulomb interaction be-
tween two particles at a distance r apart. The last term in
(2.3) represents the interaction energy due to the presence
of the uniform charge background. The particles obey ei-
ther the Fermi-Dirac or the Bose-Einstein statistics.

Our goal is to compute the ground-state energy for the
Hamiltonian (2.1). This means that, for particles of a
given density and statistics, we seek for the lowest eigen-
value of H in the subspace of wave functions obeying the
associated symmetry. Thus, the ground-state solutions of
the Schrodinger equations
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H BIO ——Eo %0 (BE statistics),

H+0 E——e 40 (FD statistics), (2.5)

and Vo is given by the classical bound'

Vo —— N(1.960—5)e Mo, (2.9)

which can be more conveniently expressed in units of
rydberg= 1 Ry= me /2iri . Introducing a dimensionless
quantity r, defined by

2 2
lTCl8 ~s 0

where oii —iii /rrie is the Bohr radius, one finds that

(2.10)

with respective symmetric and antisymmetric eigenfunc-
tions, give rise to the ground-state energies EO,EO and
wave functions 'P0, %'0.

We first obtain a lower bound for the ground-state ener-

gy. For the Bose system we evaluate the expectation value
of H using Vo. This leads to the expression

Eo =&~o
I
T

I
~'o&+&~0

I
~ I'P'& . (2.6)

Now regarding %0 as a trial wave function for each of the
two terms on the right-hand side of (2.6), we obtain the in-
equality'

E() & To+ Vp, (2.7)

where To and Vo, are, respectively, the lowest eigenvalues
of T and V among the symmetric wave functions. Now

To~ =0 (2.8)

III. CHARGED BOSE GAS

We now use a variational approach to compute the
ground-state energy Eo for the charged Bose system. The
variational approach is based on the Bijl-Dingle-Jastrow-
(BDJ-) type wave function in the form

exp —,
' g g w(r;, )

8+o=

f dr, f dry exp g g w(r~)

1/2

(3.1)

where the function w(r) is to be varied. The expectation
value Eo of the Hamiltonian (2.1) computed using the
wave function (3.1) can be written as

Eo —— . . %08%0 r) ~ r~

= N(A' o/8m) f Vw(r) Vgz(r)dr

+ —,Roe g~r —1 r r, (3.2)

where the pair-distribution function is defined by

ga(r, i)=[N(N —1)/cr ] f f ('ko) dr& dr& .

(3.3)

e'~a=-, Ry. (2.11)
We now introduce the hypernetted-chain (HNC) approxi-
mation"

It follows from (2.7) that a lower bound for Eo, in units
of Ry, is given by

Eo & —N(2. 2122)/r, . (2.12)

w(r)=lngii(r) —,f e'"'[1—S(k)]'dlt/S(k),
(2ir) o

(3.4)

Repeating the same argument for the Fermi system and
noting that a system of N charged fermions has the same
lower bound (2.9) for its potential energy, we arrive at

E() & To + Vo, (2.13)

(2.14)

where E+ and X are the respective electron numbers.
A simple calculation of the energy of two filled Fermi cir-
cles (the ground state) leads to the following expression
for T, in units of Ry [cf. (4.8} and (4.11) below]:

To(x)=N(1+x )/r, . (2.15)

where To is the lowest eigenvalue of T among the an-
tisymmetric wave functions. Allowing the possibility that
the system may actually have different numbers of spin-
up and spin-down electrons, we write

S(k)=1+u(k}=1+of e'"'[gii(r) 1]dr—(3.5)

is the boson structure factor. The introduction of (3.4)
into (3.2) now permits us to regard Eo as a functional in

gii so that we may vary, instead of w, the function gii to
obtain a minimum for Eo. To this end we follow Lee"
by adopting the ansatz

gii( r ) = 1 —a exp( irao r )— (3.6)

and consider O~a ~ 1 as the varying parameter. It must
be emphasized at this point that while the variation of gii
appears to be a reasonable proposition, it should also be
remembered that the definition (3.3) imposes certain
necessary conditions on g~ that should be checked. One
example is the inequality'

Nae' f [gI, (r) —1]dr/r )2V~(), (3.7)

This leads to the following lower bound for the Fermi
ground-state energy:

Eo (x) & N [(1+x )/r, —2.2122/r, ] .

which is indeed satisfied by (3.6).
The boson structure factor corresponding to (3.6) is

S(k)=1—exp( —k /4irao. ) .

Substituting (3.4) into (3.2) leads to

(3.8)
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0.2 0.4 0.6 0.8 1.0 FIG. 2. Ground-state energy of the Bose system.em. Solid line:
present calculation; LB: lower bound (2.12).

FIG. 1. Determination of a.

E =X f dr[Vg (r)] /gs(r)
Sm

+N f dkk [1—S(k)t /S(k)
321T PETO'

+ —,'Xoe gz r —1 r r. (3.9)

Now using (3.6) and (3.8), and after some reduction, (3.9
becomes, in units of Ry,

2 ce II a2 g 5Eo(a)=N

~n.r, =2a [[—a —ln(1 —a)]/a +2(n /6 —
4 ) J .

(3.11)

For fixed o', or r„we determine a from (3.11) and, subse-
quent y, 0 romtl E from (3.10). It turns out that it is most con-
venient using (3.11) to evaluate r, as a function of a. The
result of this calculation is shown in Fig. 1. Results o

Bnumerical evaluation of Eo are presented in ig.in Fi . 2 (and
also Table I below) where the classical bound (2.12) is also
shown for comparison. Note that in the low-density imit
( r, ~ ao ) we have

-~~r, n
l (3.12)

and

It is now a simple matter to minimize ' a) with
respect ta a, yielding

where the three terms on the right-hand side of (3.10
come from the evaluations of the corresponding integrals
in (3.9).

Eo =-N~n/r, , —

while in the high-density limit ( r, ~0) we find

(3.13)

cr (10' /cm )

TABLE I. Evaluation of Eo {x =0) (in units of rydbergs).

E()) /X E03/N

1.0
2.0
3.0
4.0
5.0
6.0
&.0

10.0
20.0

11.3671
2.8418
1.2630
0.7104
0.4547
0.3158
0.1776
0.1137
0.02842

0.6417
0.8527
0.9404
0.9759
0.9902
0.9960
0.9993
0.99989
0.999999

—1.1062
—0.6631
—0.4818
—0.3796
—0.3133
—0.2666
—0.2053
—0.166 85
—0.086024

1.000
0.2500
0.1111
0.0625
0.0400
0.0278
0.0156
0.0100
0.0025

—0.2576
—0.0859
—0.0417
—0.0242
—0.0157
—0.0109
—0.0062
—0.003 95
—0.000987

—0.0378
—0.0112
—0.0052
—0.0030
—0.0019
—0.0013
—0.00074
—0.000476
—0.000 119

—0.4016
—0.5102
—0.4176
—0.3443
—0.2909
—0.2510
—0.1966
—0.1613
—0.084 63
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3~mr, .

2(m —6)
=0.7786r, (3.14) (4.4)

E =- —l. 1730%r,

IV. CHARGED FERMI GAS

For a charged Fermi system we look for the ground-
state solution of (2.5) with a ground-state wave function
4'o antisymmetric in the 5-particle coordinates. Follow-

iny Wu and Feenberg' we choose the trial wave function
%o to be a product of two factors:

'po ='po(t'o . (4.1)

In (4.1) the factor %0 accounts for the correlation between
particles and is taken to be the ground-state wave function
of the corresponding boson system, namely, the solution
of (2.4).'q The factor (ito in (4.1) is the model function tak-
ing into account the statistics of particles; we choose (t(o to
be the N XN determinant consisting of the N plane-wave
orbitals

(t(0
——det

~

e "s (o„)~, (4.2)

where k are 2D wave vectors satisfying periodic boun-
dary conditions and s~((r„) are spin functions. Further-
more, for each up or down spin component, the wave vec-
tors are confmed to a Fermi circle with the Fermi
momentum

where the integrations extend over the X particle and spin
coordinates. Terms in (4.5) are given by

Eo(= g gk
spin n

E02 —— g g k(„u (k(„)5(„,
spin l, n

f2
E03 2 g g kq(S (kq()u (k(„)u (k~q )5q(

4PPl X spin q

(4.6)

where 5(„-—5K,(o(,o„), 5q(„——5q(5(„, k(„——
~
k( —k„~, and

S(k) and u(k) are given by (3.5) in terms of the pair-
distribution function gs(r). Substituting (3.6) into (3.5)
and (4.6), we obtain the following explicit expression for
the ground-state energy as a function of x:

Eo(cr,x) = E(3(cr)+ED(((r,x)+Eo2((r,x)

+E03(o,x)+ (4.7)

The expectation value 8 in 4'o can be evaluated using a
cluster expansion method. Following a standard pro-
cedure' ' and using (2.4), we obtain

E()(k(o(,'. . . ,k~, o~)= f ((I(())'H+() f ((P())'(P()

=Eo+Eoi+~o2+Eo3+ '8 F F F

(4.5)

kF —kp( 1+x)'/2, — (4.3)
I

where

Eoi(cr,x)=-8

1 2(1+&)3f [2cos—(y y(1 y2)l/2] 3& —2y ((+z)/ady
Z =+X

Eo((cr,x)=
3 f dk k + f dk k2 =—sF( 1+x2),

ger (riri k &kP k(kr 2

k =kg

(4.8)

(4.9)

NA—
k =k~

= —N(eF/2m. )[(1+x)I++(1 x) I ], — (4.10)

1I = dy, f dy f dy f d8 y(2I1 —exp[ —(1+x)y,2/2a]I &&exp[ —(1+x)(y(+y2+2y3)/2a]

)&Io[(1+x)a '(y (y 3+y 2y 3 +2y,y2y 3 cos8) ' ],

where Io is the modified Bessel function of the first kind.
The Fermi energy cF is given by

sF fi k~/2m ——=2lr, Ry . (4.12)

In obtaining expressions on the right-hand side of (4.9)
and (4.10), the following identities have been used:

f e"' d8=2nIo(x),
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TABLE II. Comparison of the ground-state energy with pri-
or results (in units of rydbergs).

QC

~~0 5

QC

1.0
2.0
4.0
8.0

10.0
16.0
20.0

Eo /X

—0.4016
—0.5102
—0.3443
—0.1966
—0.1613
—0.10454
—0.08463

Ref. 7

—0.4204
—0.5102
—0.3476
—0.1984

—0.10812

Ref. 8

—0.45
—0.53

Ref. 10

—0.422

—0.1670

—0.0916
LB {}(=i)~

rLB(X= o)

FIG. 3. Ground-state energy of the Fermi system. Solid
lines: present calculation; LB: lour bounds (2.16).

k (2 )dk2
1

=8rrkq I f(2ykF)[2cos 'y —y(1 —y )' 'jydy .

(4.13)

We have carried out numerical evaluations of E given
by (4.7)—(4.10) for both the paramagnetic (x =0) and fer-
romagnetic (x =1) states, and the results are shown in
Fig. 3 together with the lower bounds (2.16). It is seen
that the paramagnetic (x =0) state has a lower energy for
all densities, agreeing with a similar conclusion drawn on
the 3D system, ' but in contrast with Ceperley's finding'
that the ferromagnetic (x =1) state is preferred at low
densities. However, the difference of the two energies in
Ceperley's result is very small, and the finding reported by
him is based on the use of a correlation factor determined
under an (uncontrolled) random-phase approximation. It

appears that the present finding is more likely indicative
of the true nature of the ground state, and is certainly in
line with the conclusion of a noninteracting system.

Detailed numerical results of our calculation are sum-
marized in Table I. Our results show that the series (4.7)
converges rapidly, appearing to support the validity of the
cluster expansion procedure used in the present study.
Our results are also compared in Table II with those ob-
tained by Freeman, by Nagano, Singwi, and Ohnishi,
and by Ceperley, ' and it is seen that in most cases our en-

ergy values are slightly higher than the prior results. %e
remark however, that, the errors of the prior studies are
uncontrolled and, therefore, difficult to assess, while our
study provides an estimated upper bound to the true
ground-state energy. It should be noted in this connection
that one version of Ceperley's Monte Carlo study, which
uses a genuine overall variational approach in conjunction
with a Yukawa-type correlation factor w (r), also provides
an upper bound. Indeed, for the few density values re-
ported by Ceperley (cf. Table II), his Monte Carlo study
does provide slightly better upper bounds. This may very
well indicate that further improvement of our results can
be achieved by adopting an overall variational approach
for the Fermi system.
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