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Effective dielectric and photoelastic tensors of superlattices in the long-wavelength regime
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The effective photoelastic constants of a superlattice made of thin alternating layers of
orthorhombic symmetry (with principal axes along the superlattice axis) are derived as a function of
dielectric, elastic, and photoelastic constants of the constituents. As a first step in this calculation

~e also obtain the effective dielectric constants of the superlattice for any symmetry of the constitu-

ents.

I. INTRODUCTION

A superlattice is composed of alternating layers of two
(or more) different materials of thickness d and d', a new

period D =d +d' is thus created in the direction perpen-
dicular to the layers. Light and acoustic waves can propa-
gate and interact in superlattices, like in any other medi-
um. ' This interaction can be schematized in the following
manner. The acoustic propagation excites periodic varia-
tions of strain which induce modifications of the dielec-
tric tensor, which in turn infiuence the propagation of
light waves. The dielectric tensor is related to the strain
through the photoelastic tensor. The photoelastic con-
stants are needed in order to calculate the intensity either
of the light diffused by phonons in a Brillouin scattering
experiment, or of the deflected and modulated laser beam

by ultrasound in an acousto-optical device. The purpose
of this study is to obtain the expressions of the photoelas-
tic constants in a superlattice, in the long-wavelength re-
gime, as a function of the dielectric, elastic, and photoe-
lastic properties of the individual layers. The general
method of writing the equations of propagation in the dif-
ferent media and using the boundary conditions at the in-
terfaces is rather complicated. However, in the case
where the light and acoustic wavelengths are large com-
pared to the thicknesses d and d' (long-wavelength re-
gime), the superlattice behaves like a homogeneous effec-
tive medium whose physical properties are characterized
by effective parameters obtained by taking some particu-
lar averages over the parameters of the constituents. The
effective elastic and dielectric constants have been of in-
terest for several years; the effective elastic constants cal-
culated many years ago by Rytov in the case of isotropic
layers have been recently generalized to cubic, ' hexago-
nal, and orthorhombic symmetries. Now me are dealing
with the effective photoelastic constants (Sec. III) but be-
fore it is necessary to determine the effective dielectric
constants (Sec. II).

In the following, all the properties are referred to ortho-
normal axes of reference, x& being normal to the layers.
The photoelastie constants are calculated for layers of

orthorhombic symmetry with the principal axes parallel
to x i, x2, xi and the notation x =d/D, 1 —x =d'/D will

be used.

II. THE EFFECTIVE DIELECTRIC CONSTANTS

Let us call E,E', and D,D' the electric and displace-
ment fields in the two constituents of the superlattice and
E' and D' the corresponding fields in the effective medi-
um. We consider the limit of small d and d', where the
variations of the fields remain small over each layer (static
fields or propagating fields with wavelengths large com-
pared to d and d'}; then the boundary conditions on the
continuity of the tangential components of E and of the
normal component of D imply

E2=Ez =&a

D3 ——D3 ——D3 .

(2)

Di xDi+(1 x)Di,—— —

Dz xDi+( I x)D'2 . —— —

Equations (1)—(6) are the basic equations in the super-
lattice considered as an effective medium. The com-
ponents of the effective electric and displacement fields

On the other hand, the voltage variation across one period
of the superlattice results from the addition of the corre-
sponding variations across two adjacent layers. This sim-

ply gives

E3 ——xE3+(1 x)E3 . —

Finally by using the additivity of the electric moment, one
obtains for the polarization vector (electric moment per
unit volume) the relation

P'=xP+(1 —x}P' .

Combining this last equation with Eqs. (1) and (2), one ob-
tains
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are thus either identical to the corresponding components
in the different adjacent layers, or equal to their averages.
We express Eqs. (4)—(6) as a function only of Ei, E3, and
D3 using the other Eqs. ( 1)—(3} as well as the relations
between the displacement fields and the electric fields
through the dielectric tensors

D; =pe;jEJ, (j)
J

D =pe';JEJ',
J

++8 g8
J

Then, Eq. (4), for example, becomes

e

E1, —X
E'33 &33

t

+(1—x)
33

e
23

&33

&23 &23
x +(1—x)

&33

1
D3 e

&33

x 1 —x+
3

(10)

In order to satisfy Eq. (10) for all possible values of E&,
E2, and D3 one should have

e
x 1 —x+

E33 633

e

=x +(1—x)
F33 633

Ei i=1 or 2. (12)

It is worthwhile to point out that the effective constants

633 E 1 3 and @23 are obtained by building some particular
averages over the parameters of the two media, that is
averages over I/@33 'Ei3/633 and @33/@33, each layer hav-

ing a weight equal to its relative thickness.
A similar procedure applied to Eqs. (5) and (6} leads to

three new relations giving k»„@33,and ei3. These relations
can be summarized as

e e
«3&j3 =XIJ e

«3&j3

+(1—x) eIj—
I I

«3&]3
(13)

for ij =11, 22, or 12; they express that we have taken the
averages of the following three combinations of the dielec-
tric constants:

2

&22—

2
&23

and E12—
&13&23

III. THE PHOTQELASTIC TENSOR

Table I summarizes the six combinations of the elements
of the effective dielectric tensor which are the averages of
the corresponding combinations in the two constituents.
These relations enable us to obtain the six independent
components e,'j for all symmetries of the layers. Now if
the layers are orthorhombic with their principal axes
parallel to x„x3, x3, the effective medium is also
orthorhombic, the nondiagonal elements of the dielectric
tensors vanish, and the diagonal elements e,'; of the effec-
tive tensor are obtained by writing that F11, ez2, and 1/@33
are respectively equal to the averages of the corresponding
quantities.

BQk
5elJ ——~ll~JJ g ijkl (14)

Bxi

where the 5e;j give the variations of the dielectric tensor
in presence of gradients of the mechanical displacement
u. One can notice that the P,Jkl are symmetrical with
respect to the two indices i and j (P;Jkl PJ;kl), b——ut not
with respect to k and l, contrary to the generally admitted
definition, since Pockel, where the elements Ski of the de-
formation tensor were used in Eq. (14} instead of the dis-
placement gradients. Thus for orthorombic layers there
are 15 diffe«n«omponents Piiil, Pii33, Pii33 P33ii,

2222~ 2233~ 3311~ ~3322~ 3333~ 2323~ ~2332~ 3131~ ~3113~
Pizl2, and P&33&. Actually, the six last components (also
called transverse photoelastic components because they
are involved in the interaction of light with transverse
acoustic waves propagating along the principal axes) are
not independent, since

~ij kl ~ij lk
I

(5ik5jl 5il5jk ) ~

«i

Bxj

BQ.

BX3

Bxj BXJ
for j =1,2,

BQ BQ.
=x +(1—x)

BX3 Bx3

(16)

In particular, the components S;J,

BQ; Biij
2 Bxj Bxi

of the deformation tensors are related by

S,J ——S,j ——S,J for ij =11, 22, or 12,

SJ
——xSJ +(1—x)SJ for ij = 13, 23, or 33 .

(18)

(19)

Combining the last equations with those relating the ele-
ments T;J of the stress tensors

where 5,J is the Kroenecker symbol.
The displacement gradients Bu;/Bxj in the effective

mediuin and in the layers of the superlattice satisfy the
following equations (i =1, 2, or 3)

The components P Jkl of the photoelastic tensor are de-
fined as

TJ ——Tij ——Tij for ij =13, 23, or 33,

TJ xTiJ +(1 x)Tj for——ij = 11, 22, or—12,

(20}
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5e;; Cii
~ii 11 ~ii 33

Cz3+ ~ii22 —~ii33 C ~22
33

T33
+P;;ii (i =1,2, 3) . (22)

The nondiagonal elements 5e,
&

with ij =12, 13, 23, can be
obtained from (14) as a function of Bu;/Bxj and Buj/Bx;
which are not all invariant over the superlattice period.
Using Hooke's law and Eq. (15) we obtain

and using the Hooke's law, Grimsditch was able to find
the nine effective elastic constants of the superlattice.
Table I indicates the nine combinations of the effective
elastic constants which are averages of the corresponding
quantities in the two layers.

Let Us come back to the variations of the dielectric con-
stants 5e;J in presence of a general deformation [Eq. (4}],
and consider first the diagonal elements 5e;;. It is
worthwhile to express them as a function of S», S22, and

Tii, rather than S», S22, and Siz which appear in Eq.
(14), because the first quantities remain invariant over a
period of the superlattice according to (18) and (20). Thus
we obtain

5@23=x +(1—x)
E33 E33

(26)

Combination of (26) and (25) together with the invariance
of T2& over the superlattice period leads to

~22~2323 ~22~2323=x +(1—x)
C44

(27)

Likewise combining (24) and (12) we obtain that
«tiPi»i/C» is the average of the corresponding quanti-
ties in the two constituents. Once the expressions of PJ;J
(ij =13,23} are known, those of PJJ, result from the ana-
log of Eq. (15) for the effective medium.

The propagation along x2 of an acoustic wave polarized
alolig xi gives rise 'to 5ei2. According to (13)

5et2 ——x5ei2+ (1—x)5eii (28)

medium. We now consider particular elastic deformations
compatible with the orthorhombic symmetry and combine
these last equations with (11)—(13) in order to obtain the
effective photoelastic constants.

The propagation along x3 of an acoustic wave polarized
along x 2 (which means Bu 3/Bx 2 ——0; Bu 2/Bx 3
—2523 —Ti3 /C44 ) induces [Eq. (25)] a component 5ei3 of
the dielectric tensor in an orthorhomic medium; in the so-
perlattice (12) gives

BQi BQp
P12l2

~
+Pi221

~Bxi Bxi
(23} which combined with (23) gives

E11622P 1212 x 61ie22P1212+ ( 1 x }Bii622P 1212

The interchange of the indices 1 and 2 also gives

ei le22P 1221 x e11~22P1221 + ( x }~1le22P 1221

BQi

2lx i

el@ )
Bx2

5eig ~13
~1313 +

C55

1 1

(30)
T23

=~2323 + I l

&22

Equations similar to (22}—(25) hold for the second con-
stituent of the superlattice as well as for the effective

In order to calculate the components P;,Jz of the photoe-
lastic tensor, let us first consider a longitudinal wave
along xi which induces variations 5e;; (i =1,2, 3) through
(22), where S» ——Sz2 ——0 but T»&0. Writing these 5e;;

TABLE I. Effective constants of superlattices in the long-wavelength regime. The effective elastic,
dielectric, and photoelastic constants can be obtained by equating for each of the quantity A, its value
A in the effective medium with its average over the two constituents of the superlattice, i.e.,
A'=xA +(1—x)A', where x =d/D.

Dielectric tensor
(all symmetries)

Elastic constants Photoelastic tensor components
(orthorhombic layers with principal axes parallel to x&,x2 x3)

~11 ~13 /&33

E22 —223/F33

&I2 —&r A23/&33

1/C33

2

Clz —CI3C23/C33
1/C~

2
&11~1133/C33

~2zP2233 /C33

+11(~111&—+1133C13 /C33 )

~2&(P22i i
—P2233Ci3/C33 }

~3322 ~3333C23 /C33
~11(~I122 ~1133C23 /C33 )

2

ep2{Pi,22 P2233Cp3 /C33 )—
&»&ZZ&&ZlZ

&1 l &22~1221

&1 i~1313/C55
e»~»» /C +e /(e C

&22~2332/C44 +&22/( &33C44 )
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from Eqs. (11)and (13) we obtain

2 I Q r

=x +(1—x) (i =1,2),
C»

(31)

=x +(1—x)c»
These equations give the constants P;;33 %e now consid-
er the more general case of a sagittal wave polarized in the
x&xi plane (Sii and T33&0). It results that the follow-
ing quantities

33

for i =1 or 2

~3311 ~3333

are averages of the corresponding quantities in the two
layers. In the same way the consideration of a saggital
wave polarized in the x2x3 plane leads to a similar result
for the quantities

T

e' P z2
—P-i3C

33
for i =1 or 2

and

~3322 ~3333 C33

IV. CONCLUSIONS

In this paper it is shown that the components of the
dielectric, elastic and photoelastic tensors of a superlattice

Table I summarizes all the combinations of the elastic,
dielectric, and photoelastic constants which have to be
averaged in order to obtain the effective photoelastic con-
stants of the superlattice.

are involved into expressions which have to be averaged
over the constitutive layers. To each layer corresponds a
weight in the summation equal to its relative thickness.
Though one generally deals with superlattices composed
of two different media, this summation is obviously valid
irrespective of the number of layers contained in a period.

Besides, the results reported in Table I apply also to su-
perlattices with layers of higher symmetry. Hexagonal
622 (D6), 6mm (C6, ), 6rn2 (Dig), and 6/mmm (D6h),
tetragonal 422 (D4), 4mrn (C4„), 42m (Did), 4/mmm
(D4h), cubic and isotropic layers give the same expressions
as is Table I provided that minor changes in the tensors
components are carried out.

The intensity of the light scattered in a Brillouin line'
is proportional to the product n p /C; here C is the elas-
tic constant, n the refractive index (n =v e), and p the
photoelastic constant corresponding to the geometry of
the scattering process where a photon and a phonon are
involved. Besides, the intensity of a laser beam which is
deflected at Bragg incidence in an acousto-optical cell, is
proportional to the so-called "figure of merit"
Mi np——/pu (p is the density and U the acoustic veloci-
ty). In order to calculate M2 in a superlattice, one has to
use the effective values reported in Table I, in addition to
the obvious equation p'=xp+x'p .

The procedure shown in this paper to obtain the expres-
sions of the effective elastic, dielectric, and photoelastic
constants is quite general and can be extended to other
physical properties (piezoelectricity, ferroelectricity, con-
ductivity, etc.) in the limit where they undergo small vari-
ations in the scale of one superlattice period (the super-
periods range between 10 and 1000 A in usual microstruc-
tures).¹teadded. After the submission of this study, anoth-
er paper [M. Grimsditch and F. Nizzoli, Phys. Rev. B 33,
5891 (1986)] has appeared which gives a formal generali-
zation of the Grimsditch theory and enables the calcula-
tion of the effective elastic constants for any symmetry of
the layers in the superlattice. This result, together with
the fact that the dielectric tensor calculated in the present
paper, is valid for any symmetry of the layers, may make
it possible to also calculate (at least numerically) the Pjkt
for any symmetry.
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