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Solution of a new nonlinear equation for the distribution of charge carriers in a semiconductor
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The solution of a recently obtained nonlinear differential equation for the distribution function of
charge carriers in a semiconductor in an electric field is derived. It is given by

fsi.(x)= I1+8[s/(x+s)]*e") '. This solution represents the symmetric part of the total distribu-
tion function. The nondimensional energy and applied electric fie1d are x and V s, respectively, and
8 is a constant determined by normalization. The total distribution is given by the above and its
derivative and is found to be rotationally symmetric about the electric field. This distribution
reduces to the shifted Fermi-Dirac distribution for small s and to the Druyvesteyn distribution in
the classical limit. An analytic expression for electrical conductivity is derived together with an ap-
proximate expression for the chemical potential in the small-electric-field limit. A generalized cri-
terion for the classical versus quantum domains is discussed relevant to the present study. It is
found that otherwise quantum domains become classical for sufficiently large applied electric fields.

I. INTRODUCTION

In a recent work by the authors' the kinetic theory of
transport of charge carriers in a semiconductor in the
presence of an electric field was addressed based on the
Uehhng-Uhlenbeck quasiclassical generalized Boltzmann
equation. The kinetic analysis was performed incor-
porating charge-carrier scattering with optical and acous-
tic phonons through strain and polar interactions. A
closed kinetic equation for the distribution of charge car-
riers was obtained. In steady state and passing to the clas-
sical limit, it was found that the acoustic-strain interac-
tion dominates over remaining terms. Further assuming
small phonon to charge-carrier momentum resulted in an
equation which includes quantum exclusion effects and is
a generalization of that found previously by Yamashita
and %atanabe.

In the present work this nonlinear equation is studied
and it is found possible to separate the equation into two
components. These components contain, respectively,
quantum and electric field effects. The relation so written
permits a first integral of the equation to be obtained.
This integration reduces our equation to a first-order non-
linear equation which is readily reduced to quadrature.

Numerical integration is used to normalize the resulting
distribution so that it represents the mean number of car-
riers in a single-particle state. The distribution so ob-
tained is found to be consistent with the exclusion princi-
ple and in this regard is more appropriate to quasiclassical
transport than the previously employed Druyvesteyn dis-
tribution.

Passing to various limits, the distribution function
reduces to well-known forms. Thus, for example, the lim-
it of small electric field gives the displaced Fermi-Dirac
distribution, whereas the classical limit yields the
Druyvesteyn distribution.

Application is made to the construction of an expres-
sion for the conductivity of charge carriers in a semicon-

ductor. Numerical integration of this expression returns
the well-known properties that conductivity is constant at
low field and falls off as E '/ for high electric field. An
approximate expression is obtainai for the chemical po-
tential in the limit of small electric field.

A complete analysis of our starting differential equa-
tion is included which indicates that the general solution
is a function of three arbitrary constants.

II. THE DISTRIBUTION AND ITS PROPERTIES

A. Starting equation

The distribution function obtained in Ref. 1 is given by

f ( k) =fo(k)+(cose)fi (k)

and satisfies the coupled equations
T

dfo es a 2
at

+ v, ak+ k
f'="f"

eE dfo fi
a~'+X ak=

In these equations E is electric field, e is charge, i)tk is
momentum, and the collision time ~ is given by

(la)

where l is mean free path. The angle between E and k is
denoted by 8. The collision integral has been written

J(fp).
Passing to steady state and employing expressions for

J(fp ) given in Ref. 1, we obtain

(x +s)fo'+ 2+ —+x (1—2afp) fo+2fo(1 —afo) =0,
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V. CONCLUSIONS
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With (24), still at constant s,

o/oo~A .

(30b)

(30c}

These limiting properties are exhibited in Fig. 4. Note, in
particular, that with s =0 and (30a), we obtain the classi-
cal result

(x)= ~ f e *x'"dx= —', , (31)

which from Fig. 4(b} we see to be the value for A =s =0.
Concerning the quantum domain, it is important to

note the following. Since there is an electric field present
in the medium, charge carrier energy is modified by the
field. In this event, in place of the thermal deBrog1ie
wavelength (3c), we define

' 1/2
1TfP ( ) i /2g

m( )
(32)

the distribution (11). Together with the normalization (3),
at constant s, in the classical domain this distribution im-

plies

(30a)
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APPENDIX A: GENERAL SOLUTION

Dropping the subscript on fo, (9) becomes

f'+ f(1 of)=-
x+s x (x+s)

With the identifications

(Al)

The problem of finding the distribution of charge car-
riers in a semiconductor in the presence of an electric field
was addressed. A closed solution was derived for a previ-
ously obtained nonhnear second-order differential equa-
tion. This equation is a generalization to the degenerate
domain of that found previously by Yamashita and
Watanabe. The technique of solution involved rewriting
the equation in terms of differential functionals. This
transformation allowed reduction of the equation to a per-
fect differential form, which, in turn, was integrated to
yield a first-order equation. The solution was then ob-
tained through integration of this reduced form.

The derived solution reduces to the Druyvesteyn distri-
bution in the nondegenerate domain and the displaced
Fermi-Dirae distribution for small values of electric field.

A closed expression for electrical conductivity was ob-
tained. Numerical integration of this expression showed
saturation of conductivity at sufficiently large electric
field, and otherwise agro:ment with experimental values.

Plots of numerical results were also made of the distri-
bution function and its parameters. An approximate ex-
pression for the chemical potential was obtained for small
electric field, which was found to reduce to the correct
form at zero electric field.

It should be noted that the important topic of "hot"
electron transport' (i.e., high energy relative to crystal
temperature) in a semiconductor is described in the
present work by (x ) »1, since temperature as contained
in x [see (2a)] is crystal temperature. An equivalent cri-
terion is given by A/A « 1 [see (33) and Fig. 5].

The modified quantum parameter then becomes

A= in, '=( x) '~'nod,
( )3j2

The quantum domain is then given by

(33)

xP=- Q=— R=——aP,x+s' x(x+s) '

(Al) becomes

f'+I'f+Q+~f'=0

(A2)

(A3)
A&1. (34)

The separation of quantum and classical behavior accord-
ing to this rule is shown in Fig. S. Note, in particular,
that classical behavior at large A may still ensue, provided
that s is sufficiently large. Thus, for example, for A=10,
classical dynamics still occurs, provided that s & 10, since
for these values A & 1.

(lny)'

R

There results

(A4)

which we recognize to be the Riccati equation. ' ' This
equation may be reduced to linear form through the
transformation
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y"+ I' — y'+(QR)y =0,
R

I'—R' x —s
R x(x+s) '

Thus the general solution to (A5) may be written as a
hnear combination of two independent solutions. For the
case at hand, since the coefficient of y' has a simple pole
at the origin, and QR has, at most, a double pole at the
origin, we may conclude" that the general solution to
(A5) may be written as an arbitrary linear combination of
two Frobenius series about the origin.

Note, in particular, that with Ci, the solutions to (A6)
contain three arbitrary constants. %e may conclude that
the solutions to our starting equation, (2), are likewise
given in terms of three arbitrary constants.

For a =0, (2) is linear. In this event, (Al) is also linear
and yields only one additional constant of the motion.
With Ci this comprises a total of two constants of the
motion for the general solution to the starting equation (2)
in the classical domain.

APPENDIX 8: SOLUTION
TO THE REDUCED EQUATION

APPENDIX C: RELATION TO THE CLASSICAL
DRUYVESTEYN DISTRiBUTION

(Cl)
where c is charge-particle velocity. Defining the speed a
by

z M eE
3kBT m

permits the preceding to be written

(C2)

fD(c)=A exp — J dc
C +Q

%'ith o. constant, integration gives

S

fD(x) =A'e
S

(C4)

In this appendix we wish to relate the form (12) with
the common expression for the Druyvesteyn distribution'
relevant to charged particles of mass m moving through a
medium of neutral particles of mass M ~~m in the pres-
ence of an electric field. It is given by

C plcfD(c)=A exp — dc
kttT+Me E 1 l(3m c )

We recall (10) (and delete the subscript 0),

(x +s)f'+xf (1 af) =0 . —

Integrating, we obtain

f 1 " x
df 8x

f~"0~ 1 —a &o x +s

(81)

Itic pl 0!
2k T 2k T

Comparing (C4) with (12), and with reference to (2a), we
obtain the correspondence

which gives

X+X= —x+s ln —1nB,
5

(83)

This equation relates the phonon speed u with the thermal
velocity of the background medium, kttT/M. Note, in
particular, that with (C6) and (2b),

k k T
=Q

where 1n8 contains constants of integration. Taking the
exponential of (83) gives the desired result (11). which is consistent with the starting assumption M ~&m.
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