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Solution of a new nonlinear equation for the distribution of charge carriers in a semiconductor
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The solution of a recently obtained nonlinear differential equation for the distribution function of
charge carriers in a semiconductor in an electric field is derived. It is given by
fsL(x)={1+4+B[s/(x +5)Te*} ~!. This solution represents the symmetric part of the total distribu-
tion function. The nondimensional energy and applied electric field are x and Vi, respectively, and
B is a constant determined by normalization. The total distribution is given by the above and its
derivative and is found to be rotationally symmetric about the electric field. This distribution
reduces to the shifted Fermi-Dirac distribution for small s and to the Druyvesteyn distribution in
the classical limit. An analytic expression for electrical conductivity is derived together with an ap-
proximate expression for the chemical potential in the small-electric-field limit. A generalized cri-
terion for the classical versus quantum domains is discussed relevant to the present study. It is
found that otherwise quantum domains become classical for sufficiently large applied electric fields.
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I. INTRODUCTION

In a recent work by the authors' the kinetic theory of
transport of charge carriers in a semiconductor in the
presence of an electric field was addressed based on the
Uehling-Uhlenbeck quasiclassical generalized Boltzmann
equation.? The kinetic analysis was performed incor-
porating charge-carrier scattering with optical and acous-
tic phonons through strain and polar interactions.>™> A
closed kinetic equation for the distribution of charge car-
riers was obtained. In steady state and passing to the clas-
sical limit, it was found that the acoustic-strain interac-
tion dominates over remaining terms. Further assuming
small phonon to charge-carrier momentum resulted in an
equation which includes quantum exclusion effects and is
a generalization of that found previously by Yamashita
and Watanabe.®

In the present work this nonlinear equation is studied
and it is found possible to separate the equation into two
components. These components contain, respectively,
quantum and electric field effects. The relation so written
permits a first integral of the equation to be obtained.
This integration reduces our equation to a first-order non-
linear equation which is readily reduced to quadrature.

Numerical integration is used to normalize the resulting
distribution so that it represents the mean number of car-
riers in a single-particle state. The distribution so ob-
tained is found to be consistent with the exclusion princi-
ple and in this regard is more appropriate to quasiclassical
transport than the previously employed Druyvesteyn dis-
tribution.’

Passing to various limits, the distribution function
reduces to well-known forms. Thus, for example, the lim-
it of small electric field gives the displaced Fermi-Dirac
distribution,® whereas the classical limit yields the
Druyvesteyn distribution.’

Application is made to the construction of an expres-
sion for the conductivity of charge carriers in a semicon-
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ductor. Numerical integration of this expression returns
the well-known properties that conductivity is constant at
low field and falls off as E ~!/2 for high electric field. An
approximate expression is obtained for the chemical po-
tential in the limit of small electric field.

A complete analysis of our starting differential equa-
tion is included which indicates that the general solution
is a function of three arbitrary constants.

II. THE DISTRIBUTION AND ITS PROPERTIES

A. Starting equation
The distribution function obtained in Ref. 1 is given by
S (k)= folk)+(cosO)f (k) (1)
and satisfies the coupled equations
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In these equations E is electric field, e is charge, #k is

momentum, and the collision time 7 is given by

f1=Jf0),

ml
= (1a)
where [ is mean free path.3 The angle between E and k is
denoted by 6. The collision integral has been written
Tifo).
Passing to steady state and employing expressions for
J( fo) given in Ref. 1, we obtain

(x +5)f5 + 2+—jc—+x(1—2afo) fo+2fo(l—af)=0,
b))
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where

k> (eEl?
2mkpT’ ~ 6mukyT ’

x (2a)

m is effective mass, T is crystal temperature, and u
represents constant acoustic-phonon velocity, which is as-
sumed to obey the inequality

kBT 172

u << (2b)

The parameter a represents exclusion effects and takes the
value 1 in the quantum domain. As will be shown below;
in the classical domain this term may be neglected. Set-
ting @ =0 in (2) returns the linear equation of Yamashita
and Watanabe.®

The distribution (1) has the normalization

V
(2m)?

Vo= 2
fdkf(k)z—k—g— Jo oV dx=N G

or, equivalently,

[ fox)Vx dx =‘—/2_1’—A , (3a)
A=nA) . (3b)
The parameter
2m#
A=
a=_ kyT (3c)

is the thermal deBroglie wavelength.
In writing the normalization (3) we have taken note of
the fact that substitution of (1) into the left-hand side of
(3) eliminates the cos@ term in (1).
Note that f(k) given by (1) has the alternative form
172

A
A (cosB)—Q-
ox
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3s

Slk)= Solx) . (4)

The normalization (3) implies that f(k) represents the
mean single-particle occupation number per k state.

B. Technique of solution
Consider the form
g=fo+foll—afy) . (5)

The general solution to the equation g =0 is the Fermi-
Dirac distribution (with a =1)

1
(x)= xX)=—"", (6)
Sfo(x)=fep(x P
where
Bozexp( ——I_I,o/kBT) ’ (6a)

and pu is equal to the chemical potential for s =0. The
constant By is determined through the normalization (3).
With (5) at hand, (2) may be rewritten

’ e f’
xg'+2g +s fo+7° =0, 7)

or, more concisely,

(x%g) +s(xfp)'=0. (8)
Integrating (8) gives

x2%g +sxfo=C; , 9

where C, is a constant. At x =0 we find C, =0, provid-
ed that f and f are finite at the origin. [For C%0, (9)

0.10f (a)

fox)

fsix)

FIG. 1. fs.(x) at varying values of s. (a) A=0.1, (b) A=1.0,
and (c) A=10.0.



may be reduced to the Riccati equation; see Appendix A.]
With this choice of C|, rewriting (9) in explicit form gives

(x +8)fo+xfoll—afy)=0. (10)

This equation may be reduced to quadrature and we ob-
tain (see Appendix B)
1
(x)=fsL(x)= , (11)
fo Ist a +Be*[s/(x +35)F

where B is a constant of integration and we have labeled
the solution to (2), fg (x), for comparison with the
Fermi-Dirac distribution, fgp(x), and the Druyvesteyn
distribution,’

fp(x)=B~le™* (12)

N

s
x+s}

where x =& /kpT, with & equal to the classical kinetic
energy (see Appendix C).

In Fig. 1 the function fg (x) is plotted for various
values of the quantum and electric field parameters A and
s. We attribute the flattening of fg; (x) at large s to the
gain in energy of charge carriers from the electric field.

C. Limiting forms of fg; (x)

From the normalization (3) we find that, for s —0,
2 © Vx
A=—= [ dx

a +Be* '
The property B(s =0)5£0 stems from the condition that
the integral in (13) remains tounded. Numerical integra-
tion at A=1 [see Fig. 2(a)] gives the approximate form,
fors <1,

B(s)~By+B;s%=0.70+1.3s%77 , (14)

(13)

which identifies the constants B, B, and d. Substituting
the resulting form for fg; (x) into (1) and keeping terms of
O (s'/?) returns the well-known shifted Fermi-Dirac dis-
tribution®
f(k)=

1—1;@(0050)56; Sfep(k) . (15)

Next, we observe that differentiation of fg; gives the
property

fe(x) <0, (16)

the equality occurring only when x =0. It follows from
(16) that

SsL(X)max=Ss(0) . 17

We rewrite (3) as
[ fatevx dx=§/\. (18)

In that the integrand of the preceding integral is positive,
we see that the classical limit,” A << 1, is obtained provid-
ed that fg(x)<<1. Since a is a fixed parameter in
fsL(x), in order to attain this limit it is necessary for the
B term in (11) to be large compared to a. Thus we find
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FIG. 2. (a) Bvssfor A=0.1, 1.0, and 10.0. (b) {x) vs s for
A=0.1, 1.0, and 10.0.

that in the classical limit

fsL(x)=fp(x), (19)

which further lends to the consistency of fg (x).

D. Approximate expression for chemical potential

In the domain s << 1 we assume that (6a) is still valid.
With (11) this gives the generalized chemical potential

s
S

—E _mn|B
(x)+s

kT

(20)

Here we have written {(x ), for a nondimensional single-
particle energy,

(x>=7_12§ [ fsxdx . 1)

Evaluation of this parameter at A=1 gives the form [for
s < 1; see Fig. 2(b)]

(x)=(x)o+bs"

(x)9~1.76, b~0.52, w=0.88 .

Expanding u as given by (20) about s =0 and dropping
terms smaller than O (s), we obtain

(22)
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B
p=po—kyT B—‘sd+s In(s /{x o) | . (23)
0

Note that this relation has the correct limiting value,
H~pgas s~0.

III. CONDUCTIVITY COEFFICIENT

In this section we obtain an expression for the electrical
conductivity relevant to charged carriers in a semiconduc-
tor stemming from our solution (11). With the normaliza-
tion of f(k) given by (3), the current density J is written

#ik dk
J= —f(k)—— . (24)
e f m f (27_’_)3
Substituting (1) into (24) gives
#ik reE ()
T=e [ 1= T = (cost) - oo @

Since fy(k) is symmetric, the first term in (25) vanishes.
Recalling (1a), we write

jo —¢’El El fff cose)— Lk )de(cose)kzdk ‘

(2m)?

(26)
With E in the polar direction (§=0), and returning to x
dependence, we find that J lies in the E direction. There
results

2 eYE

T==3 Al

INCEE: fgL(x) : 27
Integrating by parts gives the conductivity coefficient

o=0 fow SsL(x)dx ,
2e?l

Ay

Note that o as given above is dependent on electric field

through the s dependence in fg; (x). A numerical plot of
o vs E is shown in Fig. 3. It has been previously noted'’

(28)

Op=

log {0 /0, )
N

FIG. 3. Conductivity o vs s at A=0.1, 1.0, and 10.0.
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that, for small s, c~const. This property is evident from
Fig. 3 to be valid for s <1. Furthermore, for s > 1, the
numerical evaluation of (28) gives

o< E%% (29)

which is the observed dependence of conductivity on elec-

tric field.> %!

IV. BEHAVIOR OF PARAMETERS

We wish at this point to return to the behavior of pa-
rameters in the classical and quantum domains relevant to
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FIG. 4. The parameters (a) B, (b) {x ), and (c) o /0q vs A.
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FIG. 5. Separation of classical and quantum domains in

terms of A.

the distribution (11). Together with the normalization (3),
at constant s, in the classical domain this distribution im-
plies

BaA™! (30a)
and

(x )=~const . (30b)
With (24), still at constant s,

o/ogx A . (30¢)

These limiting properties are exhibited in Fig. 4. Note, in
particular, that with s =0 and (30a), we obtain the classi-
cal result

(x)=%ﬂ_ fowe"‘xyzdx:-g—, (31)

which from Fig. 4(b) we see to be the value for A=s =0.

Concerning the quantum domain, it is important to
note the following. Since there is an electric field present
in the medium, charge carrier energy is modified by the
field. In this event, in place of the thermal deBroglie
wavelength (3c), we define

172

g 2'1Tﬁ2 —1/2

= Ag - 3

The modified quantum parameter then becomes

X33 (e V=3/2,33 A

A=nA"=(x)""*nA;= N (33)
The quantum domain is then given by

A>1. (34)

The separation of quantum and classical behavior accord-
ing to this rule is shown in Fig. 5. Note, in particular,
that classical behavior at large A may still ensue, provided
that s is sufficiently large. Thus, for example, for A~10?,
classical dynamics still occurs, provided that s > 103, since
for these values A < 1.

V. CONCLUSIONS

The problem of finding the distribution of charge car-
riers in a semiconductor in the presence of an electric field
was addressed. A closed solution was derived for a previ-
ously obtained nonlinear second-order differential equa-
tion. This equation is a generalization to the degenerate
domain of that found previously by Yamashita and
Watanabe.® The technique of solution involved rewriting
the equation in terms of differential functionals. This
transformation allowed reduction of the equation to a per-
fect differential form, which, in turn, was integrated to
yield a first-order equation. The solution was then ob-
tained through integration of this reduced form.

The derived solution reduces to the Druyvesteyn distri-
bution’ in the nondegenerate domain and the displaced
Fermi-Dirac distribution for small values of electric field.

A closed expression for electrical conductivity was ob-
tained. Numerical integration of this expression showed
saturation of conductivity at sufficiently large electric
field, and otherwise agreement with experimental values.

Plots of numerical results were also made of the distri-
bution function and its parameters. An approximate ex-
pression for the chemical potential was obtained for small
electric field, which was found to reduce to the correct
form at zero electric field.

It should be noted that the important topic of “hot”
electron transport'? (i.e., high energy relative to crystal
temperature) in a semiconductor is described in the
present work by (x ) >>1, since temperature as contained
in x [see (2a)] is crystal temperature. An equivalent cri-
terion is given by A /A << 1 [see (33) and Fig. 5].
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APPENDIX A: GENERAL SOLUTION

Dropping the subscript on fj, (9) becomes

C,
S +—f(1—af BT (A1)
With the identifications
, 0= S Rr=_ap, (A2)
T x +s x(x +s)
(A1) becomes
' +Pf+Q+Rf*=0, (A3)

which we recognize to be the Riccati equation.!*!* This
equation may be reduced to linear form through the
transformation

(Iny)"

f= R (A4)

There results
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yi+ P—’; »'+(QR)y =0, (AS)
where
R’ x2—s Cia
P XS op-——2 A6
R~ x(x+s) (x +5)? (A46)

Thus the general solution to (AS) may be written as a
linear combination of two independent solutions. For the
case at hand, since the coefficient of y’ has a simple pole
at the origin, and QR has, at most, a double pole at the
origin, we may conclude'® that the general solution to
(AS5) may be written as an arbitrary linear combination of
two Frobenius series about the origin.

Note, in particular, that with C,, the solutions to (A6)
contain three arbitrary constants. We may conclude that
the solutions to our starting equation, (2), are likewise
given in terms of three arbitrary constants.

For a =0, (2) is linear. In this event, (A1) is also linear
and yields only one additional constant of the motion.
With C; this comprises a total of two constants of the
motion for the general solution to the starting equation (2)
in the classical domain.

APPENDIX B: SOLUTION
TO THE REDUCED EQUATION
We recall (10) (and delete the subscript 0),
(x +s)f'+xf(1—af)=0. (B1)

Integrating, we obtain

f 1 * X
—_— B2
ff(xo)dff(l__af) fxo x+sdx ’ (B2)
which gives
In f =—x+sln X +s —InB , (B3)
l—af s

where InB contains constants of integration. Taking the
exponential of (B3) gives the desired result (11).

APPENDIX C: RELATION TO THE CLASSICAL
DRUYVESTEYN DISTRIBUTION

In this appendix we wish to relate the form (12) with
the common expression for the Druyvesteyn distribution'®
relevant to charged particles of mass m moving through a
medium of neutral particles of mass M >>m in the pres-
ence of an electric field. It is given by

fplc)=Aexp

. fcdc mc
0 kyT +Me*E*?/(3m%c?) |’

(C1)
where c is charge-particle velocity. Defining the speed a
by
2

M eEl
2
= — C2
YT 3k,T | m (€2)
permits the preceding to be written
3
m 4
(c)=Aexp |— c (C3)
fD P kB T fO C2+a2
With a constant, integration gives
_F
fp(x)=A'e™™ ic_:-t_s_ , (C4)
where
mc? ma?
= , §= . C5
Y=, T ST 2T (€5

Comparing (C4) with (12), and with reference to (2a), we
obtain the correspondence

kpT
M

This equation relates the phonon speed u with the thermal
velocity of the background medium, k37T /M. Note, in
particular, that with (C6) and (2b),

2

kgT kpT
M SUERSY m 3

which is consistent with the starting assumption M >>m.

ul=

(Ce)

!G. K. Schenter and R. L. Liboff (unpublished).

2E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552 (1933).

3E. M. Conwell, High Field Transport in Semiconductors, Vol. 9
of Solid State Physics, Suppl., edited by F. Seitz, D. Turnbull,
and H. Ehrenreich (Academic, New York, 1967).

4B. R. Nag, Electron Transport in Compound Semiconductors
(Springer-Verlag, New York, 1980).

SK. Seeger, Semiconductor Physics, 3rd ed. (Springer-Verlag,
New York, 1985).

6J. Yamashita and M. Watanabe, Prog. Theor. Phys. 12, 443
(1954).

M. J. Druyvesteyn, Physica 10, 61 (1930).

8C. Kittel, Introduction to Solid State Physics, 3rd ed. (Wiley,
New York, 1968).

9R. L. Liboff, J. Appl. Phys. 56, 2530 (1984).

10K. S. Mendelson and R. Bray, Proc. Phys. Soc. London, Sect.
B 70, 899 (1957).

HE, J. Ryder, Phys. Rev. 90, 766 (1953).

12A. F. J. Levi, J. R. Hayes, P. M. Platzman, and W. Wieg-
mann, Phys. Rev. Lett. 55, 2071 (1985).

3E. L. Ince, Ordinary Differential Equations (Dover, New York,
1956).

14H. T. Davis, Introduction to Nonlinear Differential and In-
tegral Equations (Dover, New York, 1962).

IST. Myint-U, Ordinary Differential Equations (North-Holland,
New York, 1978).

16§, Chapman and T. G. Cowling, The Mathematical Theory of
Non-Uniform Gases, 3rd ed. (Cambridge University Press,
London, 1970).



