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The excitation of two-dimensional (2D) plasmons in Al,Ga,_,As-GaAs heterostructures has been
investigated with far-infrared transmission spectroscopy. Grating couplers of high efficiency and
samples of high mobility (u ~ 1.8 X 10° cm?/V s) make it possible to study the 2D plasmon dispersion

up to plasmon wave vectors g >2X 10° cm™!

. Thus we can test the theoretically predicted second-

order g corrections to the dispersion due to nonlocal effects, finite thickness of the space-charge
layer, and correlations. In perpendicular magnetic fields, a strong nonlocal interaction of the 2D
magnetoplasmon resonance with harmonics of the cyclotron resonance nw. (n =2,3,4,...) is ob-
served. Excellent agreement is found with predictions of a classical nonlocal theory.

I. INTRODUCTION

In metal-oxide-semiconductor (MOS) and in hetero-
structure systems, electrons can be confined in very nar-
row one-dimensional potential wells.! The characteristic
dynamic intraband excitations in these quasi-two-
dimensional (2D) systems are plasmons and, with a mag-
netic field, cyclotron and magnetoplasmon resonances. Of
particular interest in this review are the collective longitu-
dinal intraband excitations, the 2D plasmons. 2D
plasmons have been studied both theoretically>* and ex-
perimentally, in particular for the Si MOS system,*~° and
are reviewed in several articles, e.g., Refs. 7—9. Recently
2D plasmon experiments in GaAs—heterolayers using Ra-
man,'® infrared emission,!! and transmission'? spectros-
copy have also been performed. This research has also
been extended to plasmon excitation in multiple-
quantum-well systems.

The plasmon frequency w; for an exactly 2D electron
gas in the long-wavelength limit (kr >>¢ >>/c) and in a
local approximation?? is given by

2 N,e’q
wp=—"T-—"-—. (1
2&(w,q)€gm,

Here N; is the surface charge density, ¢, the plasmon
wave vector, € w,q), the effective dielectric function, and
m,, the plasmon mass. In the random-phase approxima-
tion (RPA) the plasmon mass for an isotropic nonparabol-
ic system is equivalent to the effective 2D band-structure
mass. 413

With increasing g, corrections to the dispersion (1) be-
come important due to nonlocal effects,” correlations'®~!°
and the finite thickness of realizable 2D systems.!82%2!
So far, for the experimental conditions on the Si MOS sys-
tem®~71422 with the limited experimentally achievable
wave vectors, these corrections are small and could not be
extracted within the experimental accuracy. For GaAs,
however, at similar values of g, these corrections are more
pronounced, mainly because of the smaller effective mass
and the lower valley degeneracy.'?

We report here on extended far-infrared (FIR)

34

transmission spectroscopy studies on Al,Ga,_,As-GaAs
heterostructures. High-mobility samples and efficient
grating couplers allow us to investigate nonlocal and
finite-thickness corrections on the 2D plasmon dispersion
(Sec. VI). Related to the latter we also discuss briefly in-
tersubband resonance experiments in these samples (Sec.
V). For the magnetoplasmon dispersion we show extend-
ed results, in particular at large wave vectors, of the non-
local interaction'? with harmonics of the cyclotron reso-
nance (CR) (Sec. VII). Here we also gain important infor-
mation on the origin of the experimental plasmon
linewidth. In Sec. IV we discuss the experimental CR
linewidth and an anomalous excitation strength for the
CR amplitude in the near field of the grating coupler. We
precede these topics by briefly summarizing some theoret-
ical results on the plasmon dispersion (Sec. II) and by
describing the experimental techniques and the sample
characterization (Sec. III).

II. THEORETICAL REMARKS

The sample cross section is shown schematically in Fig.
1. The sample has a sandwich structure with a GaAs
buffer layer (dielectric function €g,) at the bottom fol-
lowed by an undoped Al,Ga,_,As spacer layer (dielectric
function €,;, thickness d;) a doped Al,Ga,_,As layer
(eandar), and a cap layer of GaAs (€g,d.). Periodic
stripes with periodicity a of highly conducting Ag serve
as a grating coupler to couple the normally transmitted
FIR radiation with plasmons of wave vector ¢ =27m /a
(m=1,2,3,...). If we assume that this grating screens
the plasmon electromagnetic fields perfectly and we
neglect the small difference for €,; and €g, in the region
d., then the effective dielectric function for the plasmon
frequency [Eq. (1)] is®

&w,q9)= 3 [€ga+€ascoth(gd)] , (2)

with d =d, +d A, +d;.

With increasing wave vector g several corrections be-
come important which change the dispersion relation in
Eq. (1). Four correction terms have been proposed
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FIG. 1. Sample configuration of a Al,Ga,_,As-GaAs het-

erostructure with grating coupler of periodicity a and strip
width ¢. The quasi-two-dimensional electron space-charge layer
is separated from the grating coupler by a distance
d =d,+ds+d;. d., da, and d; are the thicknesses of a GaAs
cap, doped Al,Ga,_,As layer, and undoped Al,Ga,_,As
spacer, respectively. €g, and €, characterize the dielectric func-
tions of GaAs and Al,Ga;_,As, respectively.

theoretically. The first corrects for the finite thickness of
the space-charge layer. The finite thickness affects the ef-
fective Coulomb interaction potential of the charged car-
riers in the channel, thus changing the effective dielectric
function from its exactly 2D result [Eq. (2)].1:!820.21,23
According to Ref. 23 the effective dielectric function for a
quasi-two-dimensional system with a screening gate is
€Ga

€q,0)= m , (3)

with
F(x)=(14x)"% | +(33+54x +44x2+18x>+3x*)

4 ZEGa
€Ga+€a; coth(gd)

In derivin (3) a space-charge layer wave function
W(z)~ze ~®/%, perpendxcular to the interface, has been as-
sumed. % (q /b) is a form factor, depending on the aver-
age extent 1/b of the wave function in the z direction.
The limit 1/b—0 recovers the 2D result [Eq. (2)]. For
1/b540 the plasmon frequency depends upon N, as well
as on the depletion charge Ngp, which is related to the
background doping level of the semiconductor. The finite
thickness reduces the plasmon frequency compared to the
2D result.

A further correction term lowering the local plasmon
frequency is related to the confined perpendicular motion
of the space-charge layer which for finite g is coupled to
the intraband plasmons. For the approximation of a sys-
tem of two confined states E, and E, and with subband
separation E, =E,—E, the correction has been calculat-
ed in Ref. 24 and reads, neglecting the so-called depolari-
zation shift!

ngoq U%IIZ(q_‘*O)Ns
Cl)p=a)L 1— e2 EZl . (4)
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v1112(g) is the matrix element of the Coulomb interac-
tion®> averaged over the extent of the space-charge layer
for both subbands.

Correlations also reduce the plasmon frequency. Elec-
tron correlations, influencing the plasmon frequency, have
been discussed theoretically by several authors.'~!° The
results depend slightly on the models. If we use the result
of Ref. 16 the plasmon frequency is modified as

1—1la

5
4 kp ©)

Cl)p =wy

where kr is the Fermi wave vector.
The fourth correction term to which we will refer as the
“nonlocal” correction 1s ositive and leads to an increase
in plasmon frequency.?1%17:19=21 Ip the long-wavelength
limit it arlses from a series expansion of the Lindhard po-

larization® in the wave vector. If we consider only the
second-order term this modification can be expressed as
39
Wp =Wy 1 +— ’
? 44 ]
) (6)
g,me

" 2r8w,9)ef

where g; is the 2D screening wave vector,' and g, the val-
ley degeneracy. For a given ¢ nonlocal corrections are
much larger for GaAs than for Si because of the smaller
mass and lower valley degeneracy.

-In a magnetic field B perpendicular to the 2D plane,
the magnetoplasmon frequency wp,, is shifted in the local
approach® by

Ohp=07 +©} . @)

Here w.=eB/m, is the cyclotron frequency. Nonlocal
corrections cause an interaction of the plasmon resonance
with harmonics ne, (n =2,3,4,...) of the cyclotron fre-
quency resulting in a splitting of the magnetoplasmon
dispersion at the intersections with nw,.. The amount of
the splitting is governed by the parameter (quvp/w,)?, in
which v is the Fermi velocity. Since vg is related to the
plasmon frequency w; via N; we can rewrite this parame-
ter for n =2 as 6 (g/q;) analogous to the nonlocal effect
for B=0 T [Eq. (6)]. This interaction has been treated
theoretically (e.g., Refs. 26—29) and has recently been ob-
served in Al,Ga,_,As-GaAs heterostructures.!> We will
discuss it in more detail in the course of the presentation
of our experimental results.

III. SAMPLE CHARACTERIZATION
AND EXPERIMENTAL SETUP

The samples are Alj,3Gag7,As-GaAs modulation-
doped single heterostructures grown by molecular-beam
epitaxy (MBE) on GaAs semi-insulating substrates. Their
cross section is shown in Fig. 1. The thickness of the
GaAs buffer layer is about 1.3 um. On top of a thin
spacer layer (d;~35 A) of undoped Al ,3Gag 7,As js
grown a Si-doped layer of Al ,3Gag 7,As (da~530 A,
ng=1x10" (cm~3%). Both d; and d,; were estimated
from the Al,Ga;_,As growth rates. The total thickness
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d;+d, is verified by cross:section transmission electron
microscopy to be 55020 A. A protective cap layer of
Si-doped GaAs of 570-A thickness completes the layer se-
quence. After alloying indium contacts to the 2D chan-
nel, the cap layer was partly removed by reactive ion etch-
ing. The residual thickness of the cap layer dg, was
determined by Auger electron sputtering to about 230+ 80
A. At this stage we characterized the samples by
Shubnikov—de Haas (SdH) and cyclotron resonance (CR)
measurements. The mobilities derived from the van der
Pauw method are about 1.8x10° cm?’V~!s~!. The
charge density is N, =(6.7+0.4)x 10'! cm~2. The spread
in density reflects measurements from different samples
including density gradients and slight N drifts caused by
the cool-down process. Due to the persistent photoeffect
the charge density in the 2D channel can be increased by
illumination up to about 9.5x 10! cm~2. As a side effect
of light exposure a parallel conductivity caused by free
carriers in the Alj,3Gag 7,As layer is induced. However,
if not otherwise noted all measurements here are per-
formed at the initial charge density N, =6.7x10'! cm~2.

To excite longitudinal collective oscillations of the
two-dimensional electron gas (2D EG) with FIR radiation
a grating coupler* is necessary (Fig. 1). A grating of
periodicity a <<Agr spatially modulates the incident ra-
diation and couples to the collective oscillation with wave
vectors ¢ =(2mm /a) (m =1,2,3,...). For this purpose
Ag gratings with periodicities of submicron dimensions
were prepared on top of the samples using holographic in-
terferometry and liftoff techniques. A second set of sam-
ples was prepared with a continuous thin metal layer un-
derneath the grating. No influence of a Schottky barrier
formation on N; has been found in measuring the SdH ef-
fect in these samples. Fluctuations in the density are
within the margins given above. In the following sections
we will discuss the results of two representative samples
with parameters listed in Table I.

The FIR measurements are done in transmission with a
rapid scan Fourier transform spectrometer®® in combina-
tion with a wave-guide system immersed together with a
superconducting solenoid in a bath cryostat. The sample
is mounted in the center of the magnet while the detector
is located about 15 cm below the coil. Both are cooled by
He exchange gas to a temperature of 4.3 K. A scatter fil-
ter is placed in front of the sample to avoid heating of the
2D EG by radiation and to operate the Ge:Ga composite
bolometer under background limited conditions. Winston
cone optics is used to focus the FIR radiation onto the
sample and to guide the transmitted signal to the detector.

The quantity we extract from our measurements is the
relative change in transmission

TABLE 1. Parameters of samples nos. 1 and 2. a, d, and Rg
are the grating periodicity, total distance between the grating,
and the 2D channel and sheet resistance of the continuous gate,
respectively.

Sample a d =d; -td,\l +d, Rg
no. (A) (A) (Q/0)
1 8720170 800+100
6810+50 800+100 800

AT TX)-T(Y)
T T(X) ’

where T is the transmission depending on X and Y. X
and Y can be either two different magnetic fields or two
different charge densities. In the small signal approxima-
tion AT /T is proportional to the difference in the real
parts of the 2D high-frequency conductivities®! dependent
on X and Y. For analytical expressions of the high-
frequency conductivity we refer the reader to the Refs. 4,
5, 29, and 30. We will see in the following that for our
experimental conditions we are already beyond the limits
of the small signal approximation. We then use exact
Fresnel coefficients of the system, taking into account the
different dielectric layers and the quasi-two-dimensional
electron gas.

IV. CYCLOTRON RESONANCE EXCITATION
WITH AND WITHOUT GRATING COUPLER

Novel features are observed in cyclotron resonance exci-
tation measured on samples with grating couplers. Figure
2 shows the cyclotron resonance for sample no. 1 before
and after preparation of the grating coupler. We have fit-
ted the experimental CR line shape, obtained on samples
without grating coupler, using exact Fresnel coefficients
(Fig. 2) to obtain information about the scattering time
and cyclotron mass. For our high-density and high-
mobility samples we have to take into account the follow-
ing facts. In the so-called linear approximation (see
above) AT /T is proportional to the real part of the
dynamic conductivity AT /T = A Reo(w,B), with

A=—=2/[1+(e5)"*+0¢ /€]

and o; the average conductivity of the gate. For
7=7x10"'2 5, which corresponds to a dc mobility of
about 180000 cm?/V's, and N, =6.7x 10'! cm~2, one cal-
culates in this approximation a full width at half max-
imum (FWHM) of Av, ~1.5 cm™! and a maximum signal

60 WITH GRATING
No. 1 COUPLER
=| B=sT
Ng=6.7 x10"'cm=2
S0 T =4.5x10712s
(%) €Gqo"€AIF12.8
mc=0.071
WITHOUT GRATING
40 COUPLER

1 | L
52 60 68 76

WAVE NUMBERS (cm~!)

FIG. 2. Experimental cyclotron resonances for sample no. 1
with and without grating coupler. The dotted line is the line
shape calculated with exact Fresnel coefficients and the listed
parameters. The grating coupler enhances the CR amplitude
and decreases the CR linewidth.
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(AT /T)pax of about 310% for the active circular mode.
The latter demonstrates that one is far beyond the limits
of the linear approximation. Using exact Fresnel coeffi-
cients, one calculates that with increasing N, the max-
imum signal saturates if it approaches 100% and the
linewidth is broadened and no longer determined by 7
alone. Deviations from the linear approximation are well
known, see, e.g., Ref. 1, and have tentatively been ob-
served in Ref. 32. The line shape calculated using Fresnel
coefficients for linearly polarized incident radiation for
samples without grating coupler is shown in Fig. 2 by a
dotted line. The experimental CR amplitude is about
37% with a FWHM of Av, =(5.5+0.3) cm ™! in the mag-
netic field range from 2.5 to 9 T. Best fits were obtained
with a cyclotron mass m,=(0.0710+0.0005)m, and a
scattering time 7, of about 4.5x107!% s which is 1.5
times smaller than calculated from dc measurements
(Fae~7X 10712 5). The relation between 7, and 74 is in
good agreement with theoretical predictions for the case
of short-range scatterers.>*> For magnetic fields smaller
than 2.5 T a decrease in cyclotron mass is found with de-
creasing magnetic field. In addition a slight increase in
CR amplitude and decrease in FWHM is observed. We
could study the CR only down to about 1.7 T with a suffi-
cient signal-to-noise ratio since our instrument posed a
low-frequency limit of about 15 cm™'. The cyclotron
mass  obtained at this particular field s
(0.0690+0.0005)m,. The magnetic field dependence of
the CR might be related to the nature of the scattering
processes involved. Scattering processes can introduce
electron-electron interactions which can shift the CR posi-
tion and induce harmonic CR transitions.>* We would
like to point out that, for the samples used here, we have
not observed any indication of a harmonic cyclotron reso-
nance.

A remarkable observation is made for cyclotron reso-
nance with unpolarized radiation transmitted through
samples with grating couplers, which are known to polar-
ize the radiation linearly in the far field. We find that the
signal increases to about 58% (Fig. 2), which is above the
maximum value of 50% expected for AT /T on a sample
without a grating coupler. The CR position is unshifted
but its FWHM is reduced to Av, ~4 cm~!. This observa-
tion does not depend upon the direction of the magnetic
field and there is no circularly polarized FIR radiation in-
duced by our sample holder which could simulate such a
result. We attribute the enhanced CR excitation to near
field influences of the grating coupler. Deteriorating the
grating efficiency reduces the enhanced CR amplitude sig-
nificantly. For a quantitative discussion a rigorous theory
for the grating coupler is required which includes the
complex optical anisotropy of the sample. It is threefold
anisotropic, due to the 2D system itself and the linear
grating and is gyrotrop due to the magnetic field. Such a
theory is presently not available.

V. GRATING COUPLER-INDUCED INTERSUBBAND
RESONANCE IN SPACE-CHARGE LAYERS ON GaAs

The depletion charge governs the width of the 2D chan-
nel and thus the finite-thickness correction [Eq. (3)]. To
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obtain information about N4, we have measured the in-
tersubband resonance (ISR) transitions in our samples
which are known to be strongly dependent on N, depl- ' Due
to the spherical symmetry of the GaAs conduction-band
ISR transitions for B=0 T can only be excited with an
electric field vector perpendicular to the interface. Such
an electric field component perpendicular to the interface
is provided by our efficient grating couplers®3>3¢ in their
near field. ’

Figure 3 shows the ISR for sample no. 1 obtained in
transmission for radiation incident perpendicular to the
surface. In Fig. 3 we have evaluated

M_ T(Ns)'_T(Nssat)
T T(N;)

The initial charge density N, of 6.7 X 10'' cm~2 has been
increased by a light emitting diode (LED) to its saturation
value of N, =9.5%10" cm~2 (see Sec. III). ISR associ-
ated with the charge density N;.,,=9.5x 10" cm~? is
clearly observed in our experiment. The ISR signal is su-
perimposed on a background of Drude type, showing a
decrease in AT /T with increasing wave number. This
Drude-type absorption is caused by carriers in the doped
Alp 23Gag 7pAs layer which are also responsible for the
parallel conductivity observed in dc-transport measure-
ments. The resonance profile is of accumulation type’’
with a sharp increase on its low-energy side and a long
high-energy tail, characteristic for a not dominating con-
tribution of the depletion charge to the band bending at
the interface. The resonance position is at about 400
cm~! or equivalently at 50 meV. To estimate the de-
pletion charge, we have compared the resonance position
with calculations for electron energy levels in GaAs
space-charge layers.*® From this comparison we derived a
value Ngep~2.6X10'" cm~2. This value represents an
upper limit, since we have not considered the depolariza-
tion field and excitonlike effect, which cause a shift be-

AT Ng=9.5x 10''cm=2
T

8.0

o RESTSTRAHLEN

%) REGIME |

6.0

a0l

2.0
olpt I I L

100 200 300 400

WAVE NUMBERS (cm~1)

FIG. 3. Grating-induced intersubband resonance for sample
no. 1. The arrow marks the resonance position for
N =9.5x 10" cm~2 The ISR is superimposed on a Drude-
type background absorption caused by free carriers in the doped
AloAngao,nAS layer.
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tween the ISR transition energies and the actual subband
separations.! No ISR is observed associated with the
charge density N,=6.7x10'"" cm~2. Most likely for
N,=6.7x10"" cm~2 the ISR transition is hidden in the
frequency regime associated with the reststrahlen band of
GaAs. Due to our thick substrates ( =~0.3 mm), a regime
spanning from 250 to 320 cm~! is not transparent for
FIR radiation (Fig. 3). However, SdH measurements give
no evidence that a second subband is populated, and we
conclude that in this case the subband separation is larger
than the Fermi energy of 22.6 meV. On the other hand
the ISR at 9.5X 10'! cm ™2 of 50 meV sets an upper limit
for the subband separation at 6.7 10! cm~2. Assuming
the ISR to be within the reststrahlen band of GaAs, we
can estimate the depletion charge to be approximately
1.5% 10" ¢cm~? with an uncertainty of 0.5X 10! cm~—2.
Although there is a large uncertainty in knowing Ngep, we
will show in the following that this does not affect the
finite-thickness correction significantly.

V1. 2D PLASMON RESONANCES
AT ZERO MAGNETIC FIELD

Experimental results for sample nos. 1 and 2 are shown
in Fig. 4. In Fig. 4(a) we have evaluated

AT _T(B=0)-T(B=8T)
T T(B=8T)

Two well-pronounced plasmon resonances of amplitudes
33% and 5%, respectively, are present. They correspond
to plasmons with wave vectors ¢, =2m/a and q,=4m/a,
respectively. In Fig. 4(b) we show

AT T(N;)—T(N;+dNy)

T T (N, +dN,) ’

which for dN; << N; is qualitatively the derivative of T
with respect to N;. N, has been changed by a short light
pulse from a LED. In this spectrum a third resonance
due to plasmon excitation at wave vector g3 =61 /a is also
resolved for sample no. 1. Due to a lower grating-coupler
efficiency for sample no. 2 only one resonance is present
in Fig. 4(c). This trace is again qualitatively a derivative
with respect to N;. This time the density change is in-
duced by a small voltage applied between the gate and the
2D channel. Column 3 of Table II lists the experimental
resonance positions for both samples, including their ex-
perimental uncertainties.

In order to compare the experimental plasmon frequen-
cies with theoretical values we first have to discuss how
accurate an absolute plasmon frequency can be deter-
mined within the knowledge of the experimental parame-
ters. First we determined for sample no. 1 that the as-
sumption of an ideally screening gate is valid. We eva-
porated onto the grating coupler of this sample an addi-
tional layer of Cr of thickness 5 nm and resistivity 1
kQ/0. We found no change in the plasmon resonance
position, indicating perfect screening. This can also be
deduced from the fact that three plasmon resonances are
observed in Fig. 4(b), which assures that the ratio t/a
(Fig. 1) is close to one. Only then an efficient excitation
of higher spatial Fourier components of the FIR field is

(a) No. 14
30 Ns=6.7 x 101 em™2
- 5 om -1
AT q,=0.72 x105 cm.1
T gp= 1.44x10%cm
(%) 93=2.46 x 103cm™!
201
10
q,
oL~
10[-(b) No. 1 qa,
AT / 93
T '
O —
(%)
_10 —
_.20 —
-30- ‘
() No. 2 Ng= 6.7 x 10" cm™
q=0.92x10%cm™
25 Vg=-100 mV
AT
T
(%)
_25 —
L 1 | | J
20 40 60 80 100

WAVE NUMBERS (cm™)

FIG. 4. Experimental plasmon resonances for a space-charge
layer in GaAs with N,=6.7Xx10'"" cm~2. The arrows mark
plasmon resonance positions. For the upper trace (a) transmis-
sions at B=0 T and B >8 T have been ratioed to determine
AT /T for sample no. 1. The middle trace (b), qualitatively the
derivative of the upper trace, is obtained by changing N, slightly
via the persistent photoeffect. The lower trace (c) is for sample
no. 2 with a thin metal layer underneath the grating. A voltage
Vs applied between the gate and the space-charge layer is used
to change N, and to extract AT /T.

possible.”

The plasmon frequency depends on N, Ngcpi, d; g, €Gas
and €5;. We have made a great effort to determine these
parameters, yet their uncertainties still limit the compar-
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TABLE II. Experimental v, g and theoretical v, o plasmon frequencies calculated in classical local
approximation for €5;=11.0 and €g,=12.8. For the other parameters see Table I. The given inaccura-
cy Avpige for v, 1o results from the uncertainties of N;, d, and ¢. v, nonlocs Vpd> aNd ¥, corr are calculated
plasmon frequencies including the nonlocal effect, the finite-thickness correction, and correlations,

respectively.
Samp]e q Vp expt Vp loc Avp loc Vp nonloc Vpd Vp corr
no. (10° ecm™") (em™1) (em™) (em™!) (cm™") (cm™") (cm™")
1 0.72 44+0.5 43.0 +2.5 44.5 42.7 42.6
1.44 69+1 69.1 +2.8 72.9 66.9 67.9
2.16 88+2 87.6 +3.2 94.3 82.9 85.3
2 0.92 53+1 51.4 +2.6 53.4 50.7 50.8

ison of the absolute plasmon frequency. In the local ap-
proach [Egs. (1) and (2)] the uncertainty in the parameters
N;, d, and q along limit the comparison to an accuracy of
about +2.5 to +3.2 cm™! (see column 5 of Table ID.
Thus, inspite of high-mobility samples and a careful char-
acterization, the accuracy is limited to gain information
on the higher-order g corrections from the absolute
plasmon frequency. However, if we compare resonance
positions for different wave vectors g, the uncertainties of
the parameters act on the resonance position for different
q in the same direction, at least in a first approximation.
So comparing plasmon frequencies at different wave vec-
tors allows us to analyze effects on the plasmon dispersion
in a quantitative way.

The parameters determining the plasmon frequency
which could not be measured independently here are €g,,
€a1, and m,. €g, is known fairly accurately at low tem-
peratures®® and we have adopted a value of 12.8. To ap-
proximate the plasmon mass m, we have substituted it by
the cyclotron mass at low magnetic fields m_=0.069m,.
Since €, is not known at low temperatures for the fre-
quency regime of interest here we have treated it as a vari-
ational parameter to reproduce the resonance position for
sample no. 1 and g, with the classical local Eq. (1). From
this procedure we have obtained a value €,;=11.0 for the
average dielectric function for the three-layer system of
GaAs cap and Al ,3Gag 7,As layers (Fig. 1). The theoret-
ical local plasmon frequencies for all experimental wave
vectors calculated with the discussed values of €g,, €a),
and m, and the measured parameters listed in Table I are
summarized in column 4 of Table II. In the following we
will discuss the size of the higher-order g correction terms
to the local plasmon dispersion.

In Fig. 5 the local plasmon dispersion [Egs. (1) and (2)]
is shown by a solid line. Both plasmon dispersions taking
into account the nonlocal effect [Egs. (1), (2), and (6),
marked as curve 1] and the finite-thickness correction
[Egs. (1) and (3), marked as curve 2] are shown by dashed
lines. At a wave vector of 2.16 X 10° cm™! the nonlocal
correction accounts for an increase in plasmon frequency
of 6.7 cm™! (see column 6 of Table II). If the nonlocal
correction would be the only g-dependent correction it
should lead to a clear increase with respect to the classical
local plasmon frequency. The calculated correction is so
large that it could be well seen within the experimental ac-
curacy. In the magnetoplasmon experiments, to be dis-

cussed in Sec. VII, we directly observed the same nonlocal
interaction, in excellent agreement with theory, so we
know that this mechanism is present. However, here the
predicted large plasmon frequency enhancement cannot be
deduced from our experiment and we conclude that the
nonlocal correction must be canceled due to other process-
es. Indeed, Fig. 5 demonstrates, that in particular the
finite-thickness correction lowers the plasmon frequency
significantly. We calculated the finite-thickness correc-
tion for Ngey=1.5% 10" cm~2 and found the result to be
rather insensitive to the absolute value of N in the
range from 0.5% 10'! cm~2 to 3 10! cm~2. Variations
are smaller than 1.3 cm~! even at the largest g values
shown. A major fraction of the nonlocal correction is
compensated by the finite-thickness correction, which at
g =2.16X10° cm~! accounts for a decrease in the local
plasmon frequency of about 4.6 cm™! (column 7 of Table
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FIG. 5. Theoretical and experimental plasmon dispersion.
The solid line is the classical local plasmon dispersions [Egs. (1)
and (2)]. The curves marked 1—4 are defined as follows: curve
1, plasmon dispersion including nonlocal correction [Egs. (1),
(2), and (6)]; curve 2, plasmon dispersion including finite-
thickness effect [Egs. (1) and (3)]; curve 3, plasmon dispersion
including nonlocal and finite-thickness corrections combined
[Egs. (1), (3), and (6)]; and curve 4, plasmon dispersion including
all correction term [Egs. (1), (3), (5), and (6)].
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II). Taking the two correction terms into account we
show the resulting plasmon dispersion in Fig. 5 with a
dotted line [Egs. (1), (3), and (6), marked as curve 3]. The
net result is positive and leads to a small increase with
respect to the local plasmon frequency. At g =0.72x 10°
cm™! and ¢ =2.16X10° cm™! this increase ranges be-
tween 1.3 and 2.4 cm ™!, respectively. Taking the nonlo-
cal, finite-thickness, and many-body correction into ac-
count, we arrive at a plasmon dispersion shown in Fig. 5
by a dash-dotted line (marked as curve 4). The total
correction is negligibly small and positive for all wave
vectors with respect to the classical local plasmon disper-
sion. Because of the smallness of the correlation term it
cannot be resolved within the experimental accuracy but
we can clearly demonstrate the cancellation of the nonlo-
cal plasmon frequency enhancement by the finite-
thickness correction. In our analysis we have neglected
the correction term due to coupling to the intersubband
modes [Eq. (4)]. Since we are in the nonresonant limit
fiw, <<E, this correction is negligible. Even for the
highest wave vector the expected correction is lower than
1%. Recently resonant ISR-plasmon coupling has been
studied experimentally in Ref. 40.

In the following we will discuss the linewidth of the
plasmon resonance. From the spectra in Fig. 4 we find
for sample no. 1 and g, an experimental linewidth of
Av,=2.5 cm~™!. This is to our knowledge the smallest
linewidth that has ever been observed for 2D plasmon res-
onances in semiconductor space-charge layers. Neverthe-
less, it is roughly three times larger than expected from
the dc mobility (r=7x10'?s, AViheory=0.76 cm ™ h.

Several processes can be responsible for the large exper-
imental linewidth. The first is broadening due to inhomo-
geneities in the sample. A 6% variation of N; over the
active sample area is enough to explain the observed
broadening. A variation of d also causes inhomogeneous
broadening, directly via the plasmon dispersion and in-
directly via a smaller N; for a thinner doped Al,Ga,_, As
layer. To check these assumptions we have blocked most
of the active sample area and measured only a small spot
of 2 mm in diameter at different locations within the 25
mm? original area. We found no difference in the reso-
nance position and linewidth. Therefore, if inhomogenei-
ty is the main reason for the broadening, then the relevant
scale is smaller than the diameter given above.

Several other processes must be considered. For our ex-
periments a strong coupling to the plasmon resonance is
observed on sample no. 1. More than 30% of the
transmitted FIR radiation is coupled within the plasmon
excitation, implying that the plasmon resonance is strong-
ly coupled to radiation fields. This should lead to addi-
tional damping processes resulting in line shifts and a
broadening of the resonance. In the small signal approxi-
mation it has been calculated® that for the conditions here
with @/c <<q such influences are expected to be small.
However, the question arises whether this approximation
can still be applied for 30% signal coupling. It would be
helpful to have more accurate theories on the linewidth
and dispersion of plasmons coupled strongly to radiation
fields which are presently not available. In any case, we
think that the strong coupling cannot be the main reason

for the broadening, since similar plasmon linewidths are
also observed for couplers with less efficiency, e.g., sample
no. 2.

For high-mobility samples other processes become also
important. We have calculated that ohmic losses in the
grating coupler affect the plasmon linewidth. Assuming
an ohmic resistivity of 1 kQ /0 causes a 100% broaden-
ing of the plasmon linewidth. From the evaporation of
additional Cr layers mentioned above, we can conclude
that this effect is not the main contribution to the ob-
served linewidth. A similar influence, however, would
also arise from dielectric losses in the Al,Ga;_,As layer,
which are not known for the doped region.

Recently the 2D plasmon dispersion and linewidth for
GaAs heterostructures has been investigated theoretical-
ly'® where, in addition to nonlocal, correlations, and
finite-thickness corrections, scattering processes are also
included within a self-consistent memory function ap-
proach. Impurity scattering couples the 2D plasmon reso-
nance with different types of excitations, in particular
plasmons of different wave vectors and the electron-hole
continuum. Dissipative and reaction processes influence
both the linewidth and the resonance frequency. Thus, if
the resonance positions and linewidths are interpreted in
terms of cyclotron or plasmon masses and scattering
times, these quantities become frequency and wave-vector
dependent. However, at the relative high charge densities,
effects here are expected to be small.*! This is also con-
firmed by the fact that within our uncertainty in deter-
mining the FWHM (~0.25 cm~!) we do not observe a
difference in the FWHM of the resonance with g, and
q,=2q,, for sample no. 1. We conclude, within the ex-
perimental accuracy we cannot extract details of this
theory beyond the nonlocal and finite-thickness correc-
tions discussed above.

VII. MAGNETOPLASMON EXCITATION IN GaAs

Figure 6 shows plasmon resonances measured in mag-
netic fields B perpendicular to the interface of sample no.
1. Plasmon resonances are observed for ¢, =2m/a and
q,=41/a. Both resonances shift with increasing magnet-
ic field B to higher frequencies. At certain magnetic
fields, B=~1.7 T for g,, a second resonance appears at
lower wave numbers and increases in intensity with in-
creasing B, whereas the original resonance observed at
B =0T decreases in intensity. Both resonances repel each
other, indicating a resonant interaction of different
modes. A similar antilevel crossing is also observed for
the magnetoplasmon resonance with g, in the field regime
B=2.2—-3.5T. In Fig. 7 we plotted the experimental cy-
clotron and plasmon resonance positions. The cyclo-
tron resonance frequency ., increases linearly with B.
The experimental magnetoplasmon resonances in general
follow the classical magnetoplasmon dispersion [Eq. (7)]
and approach the cyclotron resonance at high magnetic
fields. However, when the magnetoplasmon dispersion
crosses harmonics nw, (n=2,3,4,...) of the cyclotron
frequency, a strong interaction of plasmons and harmonic
cyclotron resonance is observed. This results in a splitting
of the magnetoplasmon dispersion and an exchange of the
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FIG. 6. Experimental plasmon resonances as a function of a
perpendicular magnetic field B for sample no. 1. AT/T has
been obtained by ratioing spectra for two different magnetic
fields. For clarity the CR, marked w,, is shown only for the two
higher magnetic fields. The plasmon resonance for B =0 T and
g1 (g;) is marked by a downward (upward) pointing arrow.
Due to interaction with the harmonic CR the nonlocal effect
splits the plasmon resonance with g, into two branches, marked
,_ and w;,, at around 1.9 T.

excitation strength discussed above for Fig. 6. Excitation
of harmonic cyclotron resonance is strictly forbidden in a
parabolic isotropic translationally invariant system. Elec-
tron wave functions in a magnetic field are the wave func-
tions of a harmonic oscillator, with energy levels E, =#iw,
(n ++) and the optical matrix elements for Ans+1 are
zero. The dynamic spatial modulation of the charge den-
sity that characterizes the plasmon excitation breaks the
isotropy and thus the selection rules given above are no
longer valid. In several theoretical papers this nonlocal
interaction of plasmons and harmonic CR has been calcu-
lated (e.g., Refs. 26—29). The strength of the interaction
is governed by the parameter [(vrq/w.)]>. As was point-
ed out in Ref. 29, the small effective mass and the small
valley degeneracy make the splitting for GaAs very large.
For n =2, (vpq/w.)?* is 0.26 for q, and 0.56 for g,,
whereas in previous experiments on Si (Ref. 5) it is 0.005.
This nonlocal interaction was first reported in Ref. 12
for a wave vector ¢ =0.56x 10° cm~! and for 2w,. Here
we can observe the splitting for g, =0.72%10° cm~! and
g,=1.44x10° cm™!. The experiment shows that the
splitting increases with increasing wave vector ¢, which is
a direct consequence of the nonlocality. For the large
value of g, the effect is strong enough that a splitting has
also been observed for 3w, (Fig. 7). In Ref. 29 the nonlo-
cal plasmon excitation was calculated, including finite
values of the scattering time 7. The latter is important to
describe the amplitude of the excitation. With this theory
we have calculated the theoretical curves in Fig. 7. Using
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FIG. 7. Experimental plasmon resonance positions as a func-
tion of the magnetic field for two wave vectors ¢, and g, =2¢q,.
Solid and dashed lines are calculated using Eq. (7) of Ref. 29.
We have used the parameters listed in Table I and a scattering
time of 7,=7x 1072 5. Experiment and theory are in excellent
agreement.

the same parameters as in Table I the theory reproduces
excellently the experimental magnetoplasmon dispersion
without any fitting parameter. The nonlocal splitting for
both g, and g, is in exact agreement with theory. The
theory also predicts, that the splitting is much smaller for
3w, as it is observed in the experiment. With the same
parameters and formalism we have also calculated the
dependence of the amplitude on the magnetic field B.
There is good agreement with the theory for the w,
branch of the magnetoplasmon dispersion, as shown in
Fig. 8(a). The enhanced experimental amplitude in the re-
gion of 3 T for the w_ branch might have the same origin
that causes the variation in linewidth and will be dis-
cussed for Fig. 8(b) below. The experimental linewidth of
the magnetoplasmon resonance increases with B, except
for the crossing regime at 2w.. There the w_ branch ex-
hibits an asymmetric profile and a variation of the half
width as shown in Fig. 8(b). The linewidth of the w
branch increases with B, whereas the linewidth of the w_
branch shows a minimum at B~2.5 T and then increases
with B. Assuming a B-independent 7, the local magneto-
plasmon theory predicts an increase of the magneto-
plasmon linewidth, due to the increase for the slope of the
magnetoplasmon dispersion. For 7=7x10"'2 s Av, is
0.75cm™'at B=0Tand 1 cm~' at B=3.5T. The non-
local plasmon theory predicts that in the crossing regime
the linewidths of both the w, and w_ branch increase,
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FIG. 8. Normalized magnetoplasmon amplitudes (a) and
FWHM (b) for a wave vector of g, =0.72Xx 10° cm™" as a func-
tion of the magnetic field B. The dashed line indicates the
FWHM of the CR measure on samples with grating couplers.
Solid lines are calculated using Eq. (7) of Ref. 29. The parame-
ters used are the same as described for Fig. 7. Positions of CR
harmonics are marked by arrows. The overall agreement be-
tween experiment and theory for the normalized amplitudes is
good for the o, branch, but not for the w_ branch between 2
and 4 T. In this magnetic field regime also the FWHM of the
_ resonance shows an anomaly.

e.g., Av,_=1.1 em~'at B=1.5T and Av, , =1.1 cm™!
at 2 T. Asymmetric profiles are only found if the magne-
toplasmon resonance coincides with higher harmonics of
the CR and the nonlocal splitting is smaller than the
linewidth of the magnetoplasmon resonance. Nevertheless
this effect cannot be the reason for the observed anomalies
in the magnetoplasmon line shape. We rather attribute
the experimentally observed B dependence of the magne-
toplasmon resonance to inhomogeneity and/or grating-
coupler influences.

Calculations of the nonlocal magnetoplasmon resonance
linewidth show that an inhomogeneity of N; leads to a
stronger broadening of the w, branch as compared with
the w_ branch. Inhomogeneous broadening is stronger in
the regime where the resonance is plasmonlike and thus
dependent on N, and d, whereas it is smaller in the re-
gime where the mode is CR-like and thus not dependent
on N; and d. Inhomogeneous broadening is most likely
the dominant effect for the plasmon resonance linewidth
at B=0 T (Sec. VI). Thus, its influence is also expected
at finite magnetic fields. Furthermore the grating coupler

might also affect the observable linewidth. In Sec. IV we
demonstrated that the grating coupler causes a decrease in
FWHM and an increase in amplitude of the CR. Here it
could also influence the CR-like w_ branch more than the
plasmonlike w branch. Surprisingly the FWHM of the
w_ branch at B=2.5 T is about half the FWHM of the
grating-coupler-influence CR [Fig. 8(b)]. Qualitatively
the same line-shape anomalies, discussed here for the
plasmon resonance with gq;, have also been observed for
the resonance with g, =2q;.

As discussed above, nonlocal corrections on the magne-
toplasmon dispersion are small in Si(100) MOS struc-
tures.>?> However, a strong interaction with harmonics
of the CR is also observed. It has been shown that this in-
teraction is induced by scatterers which break the transla-
tional invariance of the 2D system.*? This mechanism in-
duces the excitation of so-called ‘“subharmonic” CR in
B-sweep experiments®? on Si samples for ¢ =0. This ex-
periment is equivalent to an observation of harmonic CR
in frequency sweeps at fixed B. For our GaAs samples
we observe harmonic CR only with grating couplers. The
excellent agreement of the nonlocal theory with our exper-
iment also demonstrates that the observed splitting is of
nonlocal origin and not of the scatterer-induced type dis-
cussed for the experiments on Si.*’ From the experimen-
tal nonlocal magnetoplasmon dispersion in Fig. 7, in par-
ticular, in the region where the resonance is dominantly
CR-like, an effective harmonic cyclotron mass
m. =eB/nw, can be extracted. Both m., and m,, agree,

within less than 2% with the cyclotron mass m.=0.071
for magnetic fields larger 2.5 T. On the contrary, for
scatterer-induced harmonic CR on Si, m increases due

to electron-electron interaction.*” The importance of
electron-electron interactions on a possible me (n >2)

enhancement for GaAs is unknown, since scatterer-
induced harmonic CR has not yet been confirmed experi-
mentally. However, considering the fact that for the same
charge densities, due to the smaller effective mass, the
average kinetic energy for GaAs is larger than for Si,
compared to the average interaction energy, a smaller m

enhancement is expected.

VIII. CONCLUSIONS

We have investigated the 2D plasmon dispersion in
high-mobility Alj ,3Gag 7,As-GaAs heterojunctions. In
perpendicular magnetic fields a strong interaction with
harmonics of the CR is observed, resulting in a splitting
of the magnetoplasmon dispersion. This splitting in-
creases with wave vector g and is in excellent agreement
with a quasiclassical nonlocal theory. The plasmon
dispersion for B =0 T has been investigated for plasmon
wave vectors g larger than 2 10° cm~!. The large ~8%
increase of the plasmon frequency due to nonlocal effects
at this q is found to be canceled primarily by the effect of
the finite spatial extent of the quasi-two-dimensional
space-charge layer.
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