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A systematic and unambiguous method of deriving generalized transport equations, i.e., equations
for distribution functions having a single-time structure, on the basis of the nonequilibrium Green
function is obtained, if the common Kadanoff-Baym |,'KB) ansatz is replaced by a modification
which we call the generalized KB ansatz. This new ansatz is fully consistent with the dynamical
structure of the theory and is independent of any specific representation. The resulting equations

appear to be the zeroth-order approximation of a systematic expansion in terms of the collision
duration. In the case of the electron transport in a strong homogeneous electric field, the general-
ized ansatz is shown to be in agreement with the superoperator methods, whereas the KB ansatz is

known to fail in this case.

I. INTRODUCTION

A productive approach to the theory of transport phe-
nomena is to view it as a superstructure built above the
theory of equilibrium many-particle systems. Already in
the early times of applying the quantum field methods to
many-body systems, systematic approximation methods,
well tested for thermal equilibrium, were used in the
theory of transport.

This development, which began in the early 1960's, fol-
lowed two parallel lines. One of these is based on a gen-
eralization of the Matsubara thermodynamic Green func-
tions to nonequilibrium, which is usually identified as the
Kadanoff-Bayrn (KB) method. The formal clumsiness of
the KB formalism was later alleviated by Langreth and
Wilkins, who reformulated this approach in a simple,
very general, algebraic language. This approach is usually
termed the generalized Kadanoff-Baym (GKB) formal-
ism. The alternative theory started from the Bogolyubov
real-time Green functions, well known from the Zubarev
review, where a complete set of anticommutator Green
functions (GF) was introduced well before it was by
Langreth and %ilkins. A corresponding systematic
method for deriving approximations based on generalized
Feynman diagrams was discovered by Keldysh. The
Keldysh and the GKB formalisms are strictly equivalent;
the GKB method is easier for practical applications, how-
ever, and this article is based on it.

On a general level, the field theory of nonequilibrium
systems achieved its principal goals. The equations for
double-time quantities were cast into an algebraic form
with simple structure, and they formed a basis for genera-
tion of complete equation systems for observable quanti-
ties starting from self-consistent diagrammatic expan-
sions. Direct applications to the transport have been rare,
because an actual solution of the equations for double-
time correlation functions is extremely demanding.

Nevertheless, the theory proved to be very useful as a
starting point for finding transport equations for single-
time functions, that is, equations having a structure close
to the generalized master equations (GME's) of the projec-

tion superoperator methods. ' The standard way of gen-

erating single-time equations within the GF method be-
came an approximate construction proposed by Kadanoff
and Baym (KB ansatz). This ansatz is intuitively appeal-
ing and easily leads to usable equations. Practically all
treatments of transport by the field methods have made
use of the KB ansatz or of its equivalent. Nevertheless,
the KB ansatz has several important limitations connect-
ed with its intuitive background. First, the KB ansatz is
bound with the standard %igner representation and its va-
lidity is limited to quasiclassical disturbances of homo-
geneous systems. More significantly, the KB ansatz
enters the structure of the field theory as an alien element,
whose utilization breaks up the systematic GF machinery.
This hinders the establishment of a criterion of applicabil-
ity of the KB ansatz, and, still more, its generalization.
This contrasts unfavorably with the superoperator tech-
niques, which are usually also employed only to generate
the lowest-order approximations for the GME's, but, in
principle, could yield results to all orders.

In this paper, the main emphasis will be concentrated
on such a generalization of the Kadanoff-Baym construc-
tion, to be termed in the rest of the paper the GKB an-
satz, which will overcome the difficulties described and
will be formally consistent with the GKB formalism. For
convenience, Sec. II will be devoted to a summary of this
formalism, that is, the KB formalism in the Langreth-
Wilkins (LW) dialect. The convenient formal structure of
the technique and its immediate connection with the stan-
dard equilibrium theory of solids are reviewed in Sec.
II A. Furthermore, the structure of the theory is very sug-
gestive for deriving the generalized transport equations as
described in Sec. IIB. This is followed by an analysis of
the KB ansatz in Sec. II C.

Section III is devoted fo the derivation and an analysis
of the GKB ansatz. In Sec. III A the idea of the GKB an-
satz is defined, and several natural physical and formal re-
quirements are listed. Then, in Sec. IIIB, the GKB an-
satz is developed from these requirements, and is shown
to be the zeroth-order approximation in the expansion of
the correlation functions in terms of the collision duration
time. In Sec. III C, the whole expansion is obtained from
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a formally closed equation of motion for the correlation
functions. Thus, in agreement with the superprojection
theories, the GKB ansatz can be extended to an arbitrary
order.

The use of the GKB ansatz is documented in Sec. IV
for electron high-field transport in the presence of weak

scattering. This is the simplest step beyond the
Boltzmann equation, in which an interferenee between the
field and the scattering should manifest itself. The choice
of the ansatz thus becomes nontrivial. This problem has
been previously treated by the superprojection methods,
and by the GF methods employing the standard KB an-

satz. The results of the two approaches do not agree.
The sources of the discrepancy can be traced to the
quasielassical character of the KB ansatz, with which one
cannot grasp adequately the gradient corrections. By con-
trast, the GKB ansatz is nonperturbative in the external
field and reproduces the result of the superprojection
treatment in full.

II. GREEN FUNCTION
APPROACH TO TRANSPORT

A. GKB formalism

First, in this section, the formal framework to be used
later is specified. Second, the 6KB machinery is given an
interpretation, which makes it a powerful heuristic tool
for the transport theory.

Consider a system whose initial state p was established
by contact with a bath up to a time to in a distant past.
In the Heisenberg picture, with respect to to and a one-
electron basis labeled by v, the field operator of the elec-
tron field will be written as f(t, v). We shall also use the
notation (ti, vi) = 1, etc. The full physical information on
the one-particle excitations is contained in two correlation
functions, g» and g~, related, respectively, to the elec-
trons and the holes,

g «(1,2) =Tr[pri (2)f(1)],

g ) (1,2)=Tr[pg(1)1( (2)] .

The physical meaning of g,g is twofold. For equ»
t i

—t2 —t, (1) and (2} reduce to tile orle-pai'tiele den-

sity matrices

p)(t;v), v2)=g)(t, vi, t, vi) .

Thus, the "time diagonal" t&
——t2 provides the statistical

information on the system, and p», p) are enough to
specify mean values of all one-electron observables. In ad-

dition, the full double-time g «,g ) also contain the
dynamical information on the evolution of the one-

particle excitations of both types. The double-time struc-

ture of g», g~ is essential for developing the full set of
equations of motion. Such a set consists of formal equa-
tions of motion for g «,g ~ and of a prescription for con-
structing the self-energy terms appearing in these equa-
tions. The KB method solves the double task by extend-

ing the concept of the Matsubara temperature Green
functions from equilibrium also to arbitrary external
fields (analytical in the lower complex time half plane).

The Matsubara GF obeys the causal boundary condi-
tion,

6(1,2) = i T—r[Tpg(1)g (2)], (4)

Go '(1,2)= 5(vi —v2)i —Ho(vi, vz)
r}t i

U ff(ti, vi, v2) 5(ti tz)—
To introduce the L%' rules as the basis of the GKB for-

malism, we write down the analytical continuation of a
product of two causal functions,

0Z(t„t,}= 1tX(t, , t)Y(t, t, ) . (7)'o

The electronlike part for t &, t2 on the real axis becomes

where the chronological operator T acts along a path con-
necting the points to and to i P, —where P is the reciprocal
temperature of the bath. Originally, the ordering was
along the straight hne joining to and to ip—, but the
analytical structure of 6 allows one to deform this path to
a curve, preserving the order of the imaginary parts of the
times involved, but coming arbitrarily close to the real
axis. Of the useful choices, the Keldysh trajectory ex-
tends to infinity and back, while the Kadanoff-Baym path
possesses two protuberances to the times t, and tz, folded
according to the order of Im(ti) and Im(t2). The real-
time functions g» and g ) are thus obtained as an analyt-
ical continuation of the related part of 6 to the real-time
axis. The causal structure of G permits one to develop
the perturbation series for it by standard means, like the
functional derivatives, or diagrams. This perturbation
series can be continued to the real axis term by term, and
this yields the desired perturbation expansion for the self-
energy terms. This completes the KB level.

As a last step, we ~rite down the Dyson equation,

6 =Go+Gora
The forrnal multiplications mean matrix multiplication
plus integration along the time trajectory. The free GF,
60, is conveniently chosen to incorporate the free Hamil-
tonian Ho, and nonperturbatively, the external field U
and all mean-field (i.e., time-diagonal and Hermitian)
terms of the self-energy combining with U to Ueff,

EI E~iz«(t„t,)= f dtx'(t, , t)y«(t, t, ) f dtx (t„t}y—(t, t, ) —f dtx'(t, , t)y (t, t, )0 1 0

'0 to —iP+, d «(ti t)y (t t2}+f, d t x»(ti, t)y (t, t2) .
0
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z» =XRy»+x» Yq,

ZR =XR YR

(12)

(13)

(14)

These rules generate a complete algebra by which an

analytical continuation of an arbitrary product of causal
functions in the complex-time domain can be continued to
the real-time axis in an unambiguous and completely
mechanical manner. Of the four quantities x ~, x ~, XR,
and Xz, only two are independent. The connecting identi-
ties are

XR(ti, t2 ) =X/(t2, ti ),
i(XR —Xz ) =x ~+x

These identities are important for checking the physical
consistency of approximations, as well as for rearranging
equations (for example, expressing them entirely in terms
ofg andg ).

This section will be concluded by severa1 comments on
the LW rules. These have several formal advantages.

(a) The chain rule resulting from the LW rules permits
one to continue analytically a product of any number of
causal factors.

(b) In the product chain of the GF, the correlation
functions appear only once. That means that the equa-
tions for correlation functions necessarily have the charac-
ter of linear superoperator equations provided the propa-
gators 6" and 6"are known.

(c) In particular, the LW rules separate the electron and
the hole correlation functions —in distinction to both the
original KB and the Keldysh formalism. The form of the
equations is identical for both g and g

(d) The LW rules are representationless.
(e) 6" and 6"have, over g ~ and g», the advantage of

having a specified boundary condition (retarded or ad-
vanced), which is crucial for constructing the equations of
motion and for the spectral structure.

The expressions structured according to the L%' rules

This type of expression has two formal disadvantages. It
contains a number of integrals over various ranges, and
the integrals involve all possible products of x» and y».
The clumsiness of such expressions would increase with
each additional factor. Of the numerous integrals, only
the last can be suppressed by the limit to~ —~, in which
it vanishes due to the Bogolyubov principle of asymptotic
vanishing of correlations. ' In that limit, a substantial
formal simplification can be achieved by introducing the
anticommutator real-time GF,

XR(ti, t2)= —ie(ti t2)[x —(ti, t2)+x ~(ti, t2)],

XA(ti t2) te(t2 ti )[x (tl t2)+x (tj t2)]

With these definitions, the time integrations in (8) extend
from —co to cc and can be understood as a part of a for-
mal (matrix) multiplication. Thus,

z =XRy +x Yg

This is the first of the Langreth-Wilkins (LW) rules. The
remaining three read as follows:

can be given a suggestive interpretation, important for the
transport equations. It reads as follows.

(a) Separation of quasiparticle statistics and dynamics:
The LW rules separate to the maximum extent the quasi-
particle propagation described by the retarded and ad-
vanced quantities from the particle statistical distribution
reflected explicitly by the correlation functions.

(b) Causal structure: The invariable order of factors—
retarded, correlation, advanced —reflects explicitly the
causality of the evolution of the correlation functions. In
addition, the time integrations select by themselves the
limits specified by the causality requirements.

[f(t)]direct scattering i (17)

The left-hand side (lhs) of (17) corresponds to the drifting
of free particles with the Hamiltonian Ho+ Uett. The
right-hand side (rhs) contains the scattering terms. In
particular, the back scattering has an integral character
and, as a rule, is a nonlinear function of f. The parame-
ters of this functional dependence are the differential
scattering cross sections, which, with respect to the
Boltzmann equation, represent input parameters indepen-
dent of the external fields. The drift, as well as the
scattering, depend only on the instantaneous values of the
distribution function. The evolution described by such an
equation is strictly Markovian.

To derive such equations by means of any of number of
methods, it is necessary to assume the scattering to be
weak in the sense of a low collision frequency, and the
external fields moderately strong and, in particular,
smooth in time and space. With these assumptions, a
physically significant time interval exists, in which the
equation of the type (17) holds true. "

The Boltzmann equation can be generalized to a quan-
tum transport equation for the time evolution of the
single-particle density matrix (3) by relaxing some of the
requirements on the physical processes in the system.
This will lead to various corresponding types of quantum
coherence. For example, for an increased frequency of
collisions, these will not be mutually incoherent. In Sec.
IV we shall treat the case of strong fields, which is mani-
fested by the coherence of the external field and of the
collisions. Such quantum coherence will render the Mar-
kov approximation invalid. In other words, the collision
term will have some memory. The locality in time is gen-
eralized to a causal dependence of the collision term on
p~ for all preceding times,

p&( T) p&( T)
T

«[P '(t ) ]backseat tering
drift

T
dip (t)]direct scattering

(18)

B. Quantum transport equations

A prototype transport equation is the Boltzmann equa-
tion, which describes the time evolution of the single-
particle distribution function f,

T
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The transition probabilities in (18) are in contrast to the
Boltzmann equation determined as a part of the whole
dynamical problem.

Kadanoff and Baym proposed a method for the transi-
tion from the field formalism to the quantum transport
equations. Their approach will now be described in para-
phrase suitable for further modifications and extensions.

The Dyson equation (5), when continued analytically to
the real-time axis, becomes a set of two couples of
equivalent equations. The first pair has the form of the
Dyson equations for retarded and advanced quantities,

0 0
GA, A GR, A +GR, A ~R, A GR, A

The key relations for g ~ or g ~ can be formally cast into
an explicit integral form, '

The free GF disappeared because of the obvious identities,

Go 'g(~) ——0, (23)

go Go (24)

A more meaningful set of equations is obtained by add-
ing and subtracting Eqs. (21) and (22). In particular, the
subtraction yields the 6KB equation,

(19) with the evolution of the distribution function (20).
To obtain universal dynamic equations, freed from the

boundary conditions, we shall bring (20) to a differential
form. This is possible in two ways:

Gg 'g =o Gg, (21)
(

(22)

g'=GRIr'GA+(I+GR&R)go'(I+&AGA) . (20) I(GR g g GA ) l(GRIT N GA) ~ (25)

In relations (19) and (20), the G plays the role of the

boundary condition specifying G as a functional of the

external field at fixed initial statistical conditions. The

Dyson equations (19) are apparently independent from

(20). In fact, these equations are independent only excep-

tionally. In general, the full self-energy having four

parts —retarded, advanced, and two correlation —is a
functional of the full Green function also having four
such parts. This functional interrelation specifies the

internal dynamics of the system, and, at the same time,

mediates the coupling of the quasiparticle propagation

a double-time precursor of transport equations. The
"Liouvillian" on the lhs describes a nonunitary propaga-
tion of quasiparticles including renormalizations and
damping; the rhs compensates for the successive dying out
of quasiparticles and thus has the meaning of a general-
ized backseat tering.

The evolution of the density matrices p~ follows from
(25), if 6„„'are replaced by Go

' —XR
„

from the Dyson
equation, all quantities are reduced to g ~ and 0.~ using
the definition identities (9) and (10); finally, the two times
are set equal, t

&
——t2 ——T. The result is

T T
i [G op~—](T)=f d t[cr~(T t)g ~(t, T)+g ~(T t)IT~(t, T)]—f d t[0 ~(T t)g~(t, T)+g ~(T t)o~(t, T)] .

This identity will be called the GBE, although it cannot
be considered an equation for p ~, because it is not closed.

The lhs of (26) has precisely the meaning of a time-

diagonal drift in the mean field. On the right-hand side,

by contrast, the double-time structure is still preserved
and essential, because the correlation functions are spread
over a strip around the time diagonal of the width of
quasiparticle lifetime.

C. Kadanoff-Baym ansatz

Kadanoff and Baym proposed to convert the GBE into

a closed equation by expressing approximately the correla-

tion functions g~ through their time diagonals p~. In

other words, they search for an approximate functional

dependence g~ [p~]. For a weak scattering homogene-

ous system in equilibrium, the lifetime is long and the
quasiparticles spend most of their time in a state with a

sharp cllcl'gy. Tllls frcc plopagatioI1 ls infrequently IIlfcr-

rupted by collisions, whose duration is short. In the pres-

ence of an external field smoothly changing in space and

time, this picture is locally correct, and represents the

physical basis of the approximation known as the KB an-

satz. This ansatz emerges as an outgrowth of a physical

picture already visualized by Boltzmann and developed by

Bogoljubov, van Hove, and others, as reviewed in Ref. 14.

I

The formal expression of the KB ansatz has been
developed using a gradient expansion around equilibrium.
The natural representation is then the mixed %'igner rep-
resentation, in which the two times t& and t2 are replaced
by T and co, where T=(t&+t2)I2 and energy co is the
Fourier conjugate to (t~ tz); the same —is done for the
momenta and coordinates.

For a homogeneous equilibrium system„ the correlation
function can be expressed employing the Fermi-Dirac dis-
tribution function,

(~,p) =fFD(~)t [GR (~,p) —GA (~0,p)] .

The spectral function, defined as

&(~,p) =I [GR(co,p) —GA(co,p)],
has, in the weak scattering limit, a 6-like character,

(27)

(28)

a (co,p) =2n6(co c(p) ) .. — (29)
This permits us to relate the Fermi-Dirac distribution to
the density matrix p ~,

p (p)=—g'(t, t, ,p)
~ ..

dco
g '(~,p) =fFD(c'(p) ) .2'

With this correspondence, the approximate functional
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dependence g ~ [p ~ ] is

g (co,p) =p'(p)a (co,p) . (31)

K.adanoff and Baym assumed this relation to be locally
valid also in the case of weak nanequilibrium. This yield-
ed the KB ansatz as

Gg g =0, (33)

(3) For equal times, t l
1——2, the identity (3) must hold.

(4) For
~

r, —12
~

sufficiently large (this will be quanti-
fied below), g» should satisfy the homogeneous equa-
tions,

g ~(co, Tp, R) =p~(Tp, R)a (co, Tp, R) . (32)
6 —] 0

This ansatz solves the task of converting the GBE (26)
into a closed equation for the distribution p~, at least if
the propagation factor a depends on the distribution at
most through the mean field. Such separation of the sta-
tistical aspect from the dynamics is strictly valid only for
the Boltzmann assumption of instantaneous local col-
lisions. In addition, this assumption is utilized in an in-
tuitive manner when generalizing (31), justified in homo-
geneous equilibrium systems, to the KB ansatz (32). The
accent on the near equilibrium leading to the use of the
mixed representation masks somewhat the circumstance
that (32) does not satisfy the requirement of the causal
time evolution.

This is harmless in the true Boltzmann limit. The
problem emerges when corrections for gradient, renormal-
ization, ar interference effects are required. The GBE
contains all this, but when combined with the KB ansatz,
it may include the corrections in an incomplete or incon-
sistent way. This has been suspected for some time, ' and
was pointed out specifically in Ref. 16. Finally, the intui-
tive character of the KB ansatz was an obstacle. to deriv-
ing its validity criterion, so that the resulting equations
could be checked only against the results of independent
studies employing alternative techniques of nonequilibri-
um statistics, while it was clear that the fundamental as-
sumption about the collisions should provide the starting
point for judging the theory with the use of its intrinsic
means.

III. BACK CONSTRUCTION
OF T%'0-TIME CORRELATION

FUNCTIONS FROM DISTRIBUTION FUNCTIONS

A. General considerations
In this section, which is central to the entire paper, we

shall develop further the idea of reconstructing the total
correlation function g~ from its time-diagonal element

p . The construction of the functional g [p~] will be
attempted on two levels. First, an approximation on the
physical level of the KB ansatz will be constructed and
will be called the GKB ansatz to indicate that it is fully
consistent with the exact framework of the GKB formal-
ism. Next, we shall obtain an exact closed functional
equation from which the functional g ~[p~] can be con-
structed to any order of approximation. It is important
that such a relation exists, because an approximation can
be Judged agalllst lt. All approxlmatlon fal g [p ] fit-
ting into the GKB scheme should obey the following con-
ditions.

(1) The structure of the approximate g» should expli-
citly reflect the requirement of causal time evolution.

(2) The expressions should have a full electron-hole
symmetry.

which are the asymptotic limit of the exact equations of
motion, Eqs. (21}and (22).

(5) The correlation function should satisfy the spectral
identity (16).

In addition to these conditions, we shall attempt not to
use any specific representation. The formal conditions de-

fine the natural class of admissible functionals g» [p»]
entirely by their dynamical properties. Any particulars of
the physical system, and/or an approximation for the
self-energy are secondary. The class is rather wide, but
not wide enough to contain the g ~ specified by the KB
ansatz.

B. Zeroth order: GKB ansatz

The 6KB ansatz will be developed considering the
same kind of physical situation as the original KB ansatz,
namely the case of a weak scattering in the system, when
the individual collisions are not very frequent, while the
quasiparticle lifetimes are lang. Each scattering event can
then be understood as being a very fast transition between
two quasiparticle asymptotic states. This regime permits
us to transform the description of the time development
of g ~ in a physically important manner directly leading
to the GKB ansatz. The integral form of the Dyson equa-
tion (20) for g ~ selects the appropriate solution of the dif-
ferential GKB equation (25) after the boundary condition
specified by the "free" go . This can be transformed to a
form containing only the full quantities g», simultane-
ously replacing the boundary condition by an initial con-
dition locally valid at each moment on the time diagonal.
The initial condition will be given by the particle density
matrix p~ just before the collision. In this formulation,
there is no need to explicitly recall the quasiparticle in-
coming states, and thus, any specific representation (like
the momentum representation for homogeneous case).
After these comments, we shall derive the GKB ansatz in
two ways, based on purely heuristic considerations.

First, the exact equation (20) can be, with the use of
(19),written as

g =G.(GO, 'g:Go-,—'+~")~,, (35)

The KB ansatz (32}, when transformed to the time
domain, reads

t] +t2
g (rl 12) lP GR(rl 12)

( t]+~2—fP
2

G~(&l 12) .

Transition from (35) to (36) formally represents a
transformation from the boundary condition to the local
initial conditions; it is not possible ln this form, because
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(36) evidently violates two of the conditions of Sec. IIIA,
namely conditions 1 and 4. '%e shall arrive at the 0KB
ansatz by improving (36) ad hoc to the form

t (—G~f f '—G~ ), (37)

where we have denoted

f»(t„t,) =p'(t, )6(t, —t, ), (38)

to keep the two-time form. This approximation for g»
automatically satisfies the forrnal conditions of Sec. III A,
and is thus consistent with the 6KB framework. The in-
nocent change in the order of two factors leading to (36)
in fact makes deep changes in the structure of g». This
emerges when trying to determine under what conditions
Eqs. (37) and (36) might be equivalent. For this, (i) the
time ordering should be unessential —equilibrium or
near-equilibrium state; (ii) Gtt „andp» should coinmute
as operators. This is automatic only if the system has a
natural representation —practically a homogeneous sys-
tem. Thus, the equivalence is limited to the original KB
assumptions, and allows no straightforward generaliza-
tion.

The second derivation of the GKB ansatz will be based
on the use of two characteristic times, the quasiparticle
lifetime r, and ~„which is customarily called the collision
time and should measure the time span over which the
quantum coherence, many-particle correlation, and simi-
lar phenomena decay. The presently considered regime is
characterized by the inequality v, ~~v.: beyond v, the sys-
tem behaves as if it were composed of a gas of quasiparti-
cles damped with the lifetime ~ and the condition (4)
above becomes

~
t, t2

~
&&w, . W—e want to give the 6KB

ansatz a physical interpretation by showing that Eq. (37)
follows from Eq. (35) under the model assumption r, =0;
it is appropriate to call this the Wigner-Weisskopf (WW)
model. ' Then the self-energy will be local in time, that
is, all four components o», Xa „will contain the factor
5(ti t2). This —leads, in the first place, to the "semigroup
property" of the quasiparticle propagation,

concentrated to the time diagonal in any case. In the %%'
model, o. also behaves that way. If now, say, I~ &t2,
then the first term of (37) results, and for ti & t2, the other
one results. This derivation indicates the meaning of the
GKB ansatz, but is not truly satisfactory: it replaces the
condition w, /r «1 by r, =0. This degenerate case does
not allow us to consider the physical consequences of
nonzero, even if small, collision times.

(42)

Combining these two equations, the correlation functions
are obtained as

g ' =i (G„f' f G„)+G„5—F„'+&F„'G„. (44

C. Complete iterative reconstruction of g from p'
The feasibility of an exact building up of the full corre-

lation functions from their tine-diagonal sections can be
motivated on physical grounds resembling somewhat the
reasoning leading to the Kohn-Hohenberg theory. ' The
behavior of the system is completely specified by the indi-
cation of the external field, which is a function of a single
time variable. If now a functional substitution is intended
to replace the external field by a response of the system as
an independent variable, it should be expected that it will
again be represented by a function of a single time. Then
arbitrarily complex characteristics of the system, includ-
ing the fuH correlation function as a special case, must be
completely specified by the fundamental response func-
tion.

A procedure for this goal can be developed starting
from another set of four basic GF equations,

ga'(ti, t2)= ie(t, —t, )g &(t„t,)—, (40)

gg (ti, t2)=i 8(t2 ti )g»(ti, t—2) . (41)
These functions are easily related to Gq z,g~ and have
the property that the discontinuity in their time derivative
contains the distribution function p» (see Ref. 5). This al-
lows us to write expressions for these quantities which ex-
plicitly separate the equal-time initial conditions,

gP =Gttf ' —tGa&FR'

g~ =f G~ + t &~~ G~ (43)

Gtt (t, t') =iG„(t,t")G„(t",t'), t & t"& t' . (39)

Second, in (35), the highly singular term Goago»G&„' is

If the correction terms 5F could be neglected, the GKB
ansatz for g» would be immediately recovered

The correction terms have an explicit form, which we
write here for electronlike 5F~, 6F&

t2
~+& ( i t2)= —'e(ti —t2) f [& (ti, t)g (t, t2) cr (ti, t)g (t, t2))tit, — (45)

6F„(ti,t2)= ie(t, t, ) I [g'(t ,i—)ter'(t, t, ) —g'(t, ,t)o'(t, t, )]dt, (46)

which can be found by applying Gti to (42) or Gq
' to (43). Equations (44), together with (45) and (46) clearly represent

a set of linear integral equations for g» provided Gii, G„,and the functional cr& [g»] are known.
Before discussing the meaning of this result, it is useful to perform certain transformations using Eqs. (9) and (10).

Then, for example g ~ for t
& ~ t2 is given by

f~ fl t~

g (t, , t, )= G~( »tt, )f (t, )+J dtG„(t,,t) I dto (t t)G„(tt, )+ J 8tG„(t»t)J titXti(t t)g (t t, ) .

(47)
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In this form, g and g
~ are formally decoupled, and a

direct coinparison with (35) is possible. The first term of
g «according to (35) (the boundary condition) is replaced
in (47) by the term representing the gliding initial condi-
tion. This replacement is not exact, and the difference is
transferred to the correction terms. These are, in either
case, formally of the order of the scattering strength, and
iteration of both (35) and (47) can thus be interpreted as
an expansion in the powers of the scattering interactions,
with the external field incorporated nonperturbatively in
each successive term, including, in particular, the zeroth
order of (47) (the GKB ansatz).

The correction terms in (47) have the general form of
the back scattering 6Ro «6„term of (35); the integration
limits are different, however. Namely, the outer integra-
tion extends only from tz to ti in contrast to the —oo

lower limit in (35). By this, the integration variables in
(47) satisfy the inequahties t » t & t2 & t It is .this separa-

tion of ranges of t and t that makes the inner integrals

negligible, once t exceeds t2 by more than a characteristic
time by which the self-energy is already small. For the
second term of (47), this is the decay time of the many-
particle correlations in the Bogolyubov sense, while for
the third one it is the characteristic time for the quasipar-
ticle formation. Both correction terms thus appear for ti
sufficiently later than tz to function as a renormalization
of the GKB ansatz term by amounts expressing an expli-
cit memory of times before ti, and reflecting the time
spread of the collision around t2 Similar . interpretation
can be given to other time combinations, and to g ~.

This analysis shows that iteration of the integral equa-
tion (47) for g «around the GKB ansatz should be under-
stood rather as an expansion in terms of the short relaxa-
tion times in the system ("the collision duration times"),
than in terms of the scattering strength. At the same
time, the notion of the collision time r, was not needed
during the derivation. With this interpretation, (47)
operationally replaces the definition of the collision time.
The present method of deriving the quantum transport
equations thus appears to have the physical background
identical with the approaches based on the superoperator
techniques.

IV. HiGH-FIELD ELECTRON DRIFT:
A TEST EXAMPLE

A. Importance of the example

cause of all these advantages, this example was previously
treated by several authors using various approaches in-
cluding the superoperator formalism ' and the GKB for-
malism. The first attempt to combine GKB with the KB
ansatz was made by Barker, who seems to have believed
that there is complete agreement with the superoperator
results. More recent work by Jauho and VAlkins
discovered that a straightforward application of the KB
ansatz to GKB produces in the final equations retarda-
tions which are halved, in places, compared to superopera-
tor results which are undoubtedly correct. As pointed out
already, in the GF procedure, which is formally impecc-
able, some physical ingredient must be wrong and the
most suspicious among the candidates is the KB ansatz it-
self. In the following, we shall replace the KB ansatz by
the 6KB ansatz, repeat the derivation, and then make the
comparison.

B. Procedure

The GKB ansatz, although it appears in the course of
general considerations, cannot be applied consistently be-
fore a specific approximate description of the considered
system is selected. Thus, to employ its advantages in full,
the following procedure should be followed: (l) At the
Matsubara level, the Dyson equation 6 [X] is supplement-
ed by a specific functional X[6] defining the interactions
involved, and the physical approximation used. Here, ex-
perience with the equilibrium situation can be transferred
to the nonequilibrium. (2) At the GKB level, the LW
rules are used to convert these relations into the pair
g«[cr«], o«[g«] valid for the correlation functions. In
parallel, the equations for the quasiparticle propagation as
given by 6z „and X~ „canbe developed. (3) All these
relations are combined into the GBE equation (26), which
thus acquires an explicit form specific to the given physi-
cal situation. (4) Only at this stage is the GKB ansatz for
g«[p«] employed, and the correlation functions are re-
placed by the distribution functions. The generalized
transport equation results.

C. Model

The system is formed by noninteracting electrons mov-
ing in a single band with the dispersion law e(p) under the
influence of a homogeneous electrical field E(t), which
may depend on time. To keep the spatial homogeneity,
the gauge

Our general analysis will now be illustrated by the ex-
ample of. electrons drifting in a single band under the in-
fluence of a strong homogeneous electric field. If the
scattering is weak, there is no forrnal obstacle against us-
ing the usual Boltzmann equation. At the same time, de-
viations form the purely Markovian character of the
transport are to be expected, because the electric field can
produce sizable effects upon the collision process itself.
This interference effect is the simplest quantum correc-
tion to the Boltzrnann equation. It is so simple that the
corresponding GBE can be obtained in an explicit form,
which opens the path to a full numerical solution. Be-

(48)

H (t) =e(p —eA ), (50)

(5 I)

is used. Then the momentum p, the free Hamiltonian,
and the free field-dependent GF are given by, '
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The scattering mechanism will be represented by an in-

teraction of the electrons with a single branch of phonons.

It will be assumed that the phonons are not brought out of
their equilibrium by the interaction. The approximation

for the electron self-energy will be taken in the form of
the self-consistent Tamm-Dankoff approximation (i.e.,
the vertex is taken to be bare in the spirit of the Migdal

theory). The Dyson equation and the X[G] functional

then become with the standard meaning of all graphical symbols.

(53)

D. GBE and transport equation

(52)
The LW rules are trivial for the present self-energy and

yield it as

o'(«p')=g
~

Vq ~'d«(r„r,,q)g'(r, ,r„p'—q), (54)
q

where the form of the interaction element V& need not be specified, and the phonon correlation function is that of free
phonons, see (58) below. Introducing this into the GBE, Eq. (26), it becomes

p (Tp )=g
~ V~ ~ I dT[g«(T t,p )d~(t, T q)g (t, Tp q)—

+ d~(T, t,q)g ~(T, t,p q)g «(t,—Tp ) g~(T, t,p—)

&&d«(t, T q)g «(r, T p q) d«(T—t,q—)g «(T t,p q)g (t, Tp—)] .

Now the 6KB ansatz (37) can be applied, and (55) becomes

p~(Tp )= f dt+S~(T, t,p,p q)[1 p~(—t,p )—]p~(t,p q)—
(55)

T—J 1 t +S (T, t,p q,p )[1—p~—(t,p q)jp~(t, p ), — (56)

with the transition probabilities (the "memory functions") given by

S'(TYPAL S'2)=
I Vui —p2 l'(G~(T & S I )GA(r TP2)

xd«[r, T, +(p, p, )]+G,(T —t pz)G„(t,Tp&)d [t, T, +{@~—pz)]) . (57)

These equations have the standard form of the generalized
master equation, ' and should be considered the final
product of the GKB formalism.

E. Explicit relations for the transition probabilities

In general, the GF g«and G~ „entering Eq. (57) de-
pend on the electron distribution and are to be determined
in the course of the self-consistent process of solving the
transport equation (56). This dependence is usually weak
and in certain physically important situations, it can be
neglected. Then the Dyson equations for G~ q decouple
from the transport equations and can be solved as a
separate problem. This happens, in particular, for a
quasielastic scattering, or in the limit of a low electron
concentration, as will be assumed here.

The phonon correlation function is simply

d«(r„r„q)=(X,+1)e ' ' '+&,e
(58)

d (r„r,,q)=X,e ' '+(N, +1)e ' '

with Xq the Bose-Einstein distribution coefficient.
The self-energy entering the Dyson equation (19) could,

in principle, be calculated to the end, because it is the
same as it is for an isolated polaron. We shall not need
this presently, because we shall resort to the %igner-
%eisskopf approximation. As already pointed out in Sec.
III 8, this approximation is compatible with the GKB an-
satz, and it was also employed in the work of Barker. In
the present context, the %'% approximation means that
self-energy is to be taken without retardations, in other
words, as being local in time,

+i6(r, —t, )
(59)

2r[p —eA (r, )j
In mixed representation, it may be said that the model

self-energy is energy independent. Therefore, the real part
of X means only a shift of the quasiparticle energy and
can be adsorbed in the (possibly strong) dependence of the
quasiparticle state on the momentum.

The explicit solution of (19) for G~ z in dependence on
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an arbitrary external field and for any quasiparticle life-

time w is

GR(t„t&,PF)= —i8(t, —t, )

f~

Xexp i f dt's)[p e—A(t)], (6{))

where g=e —i l2r .Introducing (58) and (60) into (57) we
obtain the promised explicit form for S~.

%'e shall rewrite the transport equation in an explicit
form by inserting the 5» and returning to the scalar
gauge A =0, 4 = Ex—, see Ref. 21. With the notation

T
P(t)=p —e f E(t")dt",

1
W+ ——exp i f dt'I tr'P(t')] —rtP(t')]+~ I (61)

p (p T}+eE(T) p (p, T)=2 f &
Re~ V&

~

i
(2~)'

&&f,@q —p —p) f dtdp

(2m ) 00

x I [(N, + )W++N, W ][1—p (p(t), t)]p'(p(t), t)

[N,~ —+(N, +1)W ][1—p'(p(t), t}]p (p(t), t)] .

F. Discussion

The transport equation (61) can be identified with Eq.
(22) of Ref. 20. It transcends the BE primarily by the
memory character of the collision term, which allows us
to take into account the field dependence of the scatter-
ing. This was not prevented by the use of the GKB an-
satz, because even for very short collision times the field
dependence of the quasiparticle scattering states, as
described by the retarded and advanced GF, persists.
%hen this dependence can be neglected, that is, in the
limit of slowly varying perturbations, the rhs of the
present transport equation reduces to the standard col-
lision term of the Boltzmann equation (17).

A more explicit form is obtained in two limits. The
first is for a stationary electric field. Secondly, a fully ex-
plicit form is obtained for the linear response, which
represents a generalization of the Boltzmann equation to
fields with "arbitrarily" high frequencies.

It is in these two limits that a meaningful comparison
of the GKB ansatz (37) with the KB ansatz (36) is made
possible because of the work of Jauho and Wilkins who
treated the present model applying systematically the KB
ansatz. These authors found that the KB ansatz produces
an equation for the stationary transport formally identical
with (61), but with the time retardations reduced at places
by a factor of —,'. More drastic effects were found in the
high-frequency limit of the linear response, which, with
the use of the KB ansatz, displayed unphysical resonances
at half the frequency of the external field. Presently, we
can give a direct explanation for this. As discussed in
Sec. IIIB, for homogeneous systems the KB ansatz and
the GKB ansatz appear in very similar forms, because the
operators involved, p» and 6& z commute. %'e repeat
here for clarity the explicit expressions for t i & t2,

g ( &, t&, tp)= ip (t, ,pF)G„(t,—,t„pF)
representing the GKB ansatz, and

g (t„tpi)= ip— ,p Gg(ti, t2P ), (63)

representing the KB ansatz. The difference between the
two ansatzes in this case reduces to the differences in the
time arguments of the distribution functions. The mean
time appearing in the KB ansatz as a consequence of
quasiclassical manipulations is responsible for the above-
mentioned one-half-factor discrepancies. This can be seen
explicitly, if our procedure leading to (61) is repeated, but
the step from GBE to the final transport equation (56) is
made under the use of the KB ansatz.

V. CONCLUSIONS

The questions addressed in this paper were not connect-
ed with a specific system, although we had in mind the
electron dc-transport in a single band as a prototype case.
The first question we asked was how to find a method of
obtaining quantum transport equations, which would be a
natural and consequent extension of the nonequilibrium
Green-function technique. The central result of this pa-

per is the GKB ansatz (37), which, to our mind, answers

this question in full.
In addition to the basic compatibility with the GF ap-

proach, the GKB ansatz has several important features,
namely a nonperturbative and representationless form,
which guarantees that the GKB ansatz can be applied in a
wide range of situations including discrete dynamical
variables. The GKB ansatz is also not necessarily quasic-
lassical, as it is not connected with a %'KB expansion of
the %'igner function.

All thee gratifying features do not determine the valid-

ity of the GKB ansatz. This must be checked in each
specific situation; the second question analyzed in this pa-

per is the general approach to deriving an appropriate cri-
terion. This question is answered by the integral equa-
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tions (47), which indicate in a closed form the corrections
to the 0KB ansatz. As mentioned in several places in the
paper, the usual discussion of the range of validity of the
transport equations is based on the comparison of charac-
teristic times for the quasiparticle formation and the
quasiparticle decay. These times are usually called the
collision time 7, and the lifetime ~; and they have a suit-
able definition, e.g. , under the conditions consistent with
the Boltzmann equation. A satisfactory, truly general,
definition most probably cannot be given, because such

times are in general dependent not only on the underlying
equilibrium system but also on the strong nonequilibrium
process driven by the external field. Our integral equa-
tions written in the time domain, and explicitly dependent
on the time structure of the self-energy, replace the im-
mediate comparison of characteristic times, whose mean-
ing and magnitude may conversely result from the
analysis of a given physical problem based on these equa-
tions. It is this direction of investigations which poses
many new questions.
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