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The self-similarity property of the two-dimensional Penrose lattice is utilized to characterize it in

terms of the distribution of different kinds of vertices, the Voronoi cells, and their nearest neighbor-
hoods. Striking similarities are observed between the layer structures of the crystalline 5-AlllMn4,
A16Mn, Al(sFC4, PtsPg, and Ni3Sii with 8 sublatticc of the Pcnrosc lattice. The latter can be
described in terms of cells which need not have fivefold rotational symmetry. Following the atomic
distributions in the crystalhne A16Mn and All3Fe4, decorations of such lattices are suggested to
model the T phase of Al-Mn and other related quasicrystals. %e find two types of layers with five-
fold rotational symmetry in the T phase. This is in agreement with the electron diffraction from
such quasicrystals.

I. INTRODUCTION

Recent discovery of rapidly cooled Al-Mn alloys' with
icosahedral symmetry has posed a challenging crystallo-
graphic problem for the characterization of this new
phase of condensed matter now known as the i phase or
quasicrystal. As revealed by electron diffraction, ' these
alloys have long-range bond-orientational order but lack
translational periodicity as one should expect in the pres-
ence of fivefold rotational symmetry. Such quasiperiodic
structures can be generated from two or more (but finite)
number of unit cells (repeating motifs). This phase there-
fore represents a state between crystalline and glassy ma-
terials, which have one and an infinite number of unit
cells, respectively. While the sharp fivefold diffraction
pattern has been readily understood in terms of the
structure factor of the bare Penrose lattice (PL), several
models " have been proposed for the relative positions
of Al and Mn atoms in these alloys. Of these the ones
proposed by Guyot and Audier and Elser and Henley"
hold some promise. Both of these describe essentially the
same basic packing unit and are based on the
ct-(Al-Mn-Si) crystalline structure. But in their model it
still remains to completely identify the positions of Al
atoms. From earlier Mossbauer' and extended x-ray-
absorption fine structure' (EXAFS) experiments, pres-
ence of two types of Mn sites with their relative concen-
tration in the ratio of the golden mean ~=(W5+1)/2 was
inferred as also in the model of Guyot and Audier. How-
ever, in a recent Mossbauer study it is concluded that
there are several types of Mn neighborhoods as in an
amorphous solid and therefore the situation still remains
unclear.

Ill additloll to tlic t phase, these alloys also form a
decagonal phase' ' (also known as the T phase) when
cooling rates are lower or the Mn concentration is in-
creased. In this phase a periodic packing of two-
dimensional (2D) quaiscrystals occurs. Interestingly

several crystalline compounds, including the ones forming
quasicrystals, have layered structure and in many cases
there are pentagon-tetragon-triangle nets. ' As we shall
show, these have striking resemblance to a sublattice gen-
erated from the 2D PL (Ref. 18) with "thin" and "fat"
rhombi [with angles (sr/5, 4sr/5) and (2m/5, 3n/5) respec-
tively) as their unit cells. Obviously as in Refs. 8 and 11,
the study of the crystalline structures together with the
20 PL can give some clues regarding the atomic distribu-
tions in the T phase. Moreover, the 20 PI, is a section
through a three-dimensional (3D) PL and high-resolution
electron micrographs with fivefold symmetry have been
interpreted' in terms of the decorations of the 2D PL.
Therefore the decorations of the 2D PL which are much
easier to visualize than the 3D PL may even prove helpful
in understanding further the atomic distribution in the i
phase as well as the correlation between the T phase and
the i phase if any exists.

Though the original Penrose tiling were developed in
two dimensions, most attention (see, e.g., Refs. 4—6) has
been focused on the study of the 3D PL after the
discovery of Al-Mn and other quasicrystals. In this paper
we study the 2D PL. Unlike the regular lattices, different
lattice points of a PL have different local neighborhoods
and hence their characterization is nontrivial. %e have
used the self-similarity property of the 2D PL (Ref. 20) to
calculate concentrations of different vertices and the con-
ditional probabilities of the neighborhoods of a given ver-
tex. This information can be used to generate ordered ar-
rangements of atoms (with a given concentration of dif-
ferent species) by decorating the Voronoi cells. The Voro-
noi construction ' of the 2D PL is a "froth" and exhib-
its pentagons and heptagons in addition to hexagons. The
numbers of pentagons and heptagons turn out to be equal
and therefore the average coordination of a Voronoi cell is
six, as should be expected for a "froth. " However, it will
be shown that in actual 20 quasicrystals which can be
modeled with the PI. as the underlying lattice, the number
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of atoms having five and seven neighbors need not be

equal, as some of the cells may remain unoccupied.
Moreover, coordinations other than 5, 6, and 7 can be
generated so that in general the average coordination for a
decorated 20 PL need not be six and may even turn out to
be a noninteger.

Our decorations of the 2D PL are based upon the atom-
ic arrangements in the layers of A16Mn and AliiFe4
(which has the same structure as AlsFe) compounds. The
close relationship of the crystalline compounds with the
decagonal phase of Al-Mn can further be noted from the
fact that the repeat distances normal to the layers in

A14Mn, A13Mn, and A13Fe compounds are" 12.4, 12.59,
and 12.476 A whereas in the decagonal phase of Al-Mn
alloys it is' 12.4 A. %e shall show that similar to the
AliFe compound, there are two types of layers in the
decagonal phase. This agrees with the results of diffrac-
tion patterns' of the Al-Mn decagonal phase along the
twofold axes (normal to the fivefold axis).

In Sec. II we discuss the distribution of vertices and
their neighborhoods in the 20 PL and in Sec. III we
describe its decorations for Al-Mn, Al-Fe, and related
quasicrystals. Section IV presents a brief summary of the
work.

II. CHARACTERIZATION OF THE 2D
PENROSE LATTICE

We consider here the arrowed rhombus tiling of a plane
[Fig. 1(a)j as discussed by de Bruijn. ' This belongs to the
P'enrose local isomorphic ' (PLI) class. Although in
real quasicrystals deviation from such a tiling may occur,
the PLI class is the most interesting for the present pur-
pose. As discussed by de Bruijn, ' there are eight kinds of
vertices on this tiling and these are denoted by D, J, Q, K,
$3, S4, S, and S5 (Table I). From the self-similarity
property of the PL it is possible to introduce sublattices. ~'

Like the regular lattices, these sublattices will in general
have unit cells differing from the original ones. In the
present case, consider a given PL, for example, (PL)o. Let
(PL)i be the inflated PL obtained from (PL)o. The side
of each rhombus in (PL), is r times that of (PL)o. The
process of inflation is described in detail by de Bruijn. ' .
The vertices of (PL) i consist of a fraction 1lr of those of
(PL)o. Let the vertices of (PL)„be denoted by a subscript
n, like D„, (S3)„etc. (n =0, 1,2, . . . ). In the transition
(PL)p~(PL)i, Do~0 and Jp~0; i.e., these vertices are
suppressed. Also Qp~D, , Ko ~ J „(S3)o~Q„
($4)o Ki, So ($3)i+($4)i+($5}&, and (S5)o
Here the reader is advised to consult Table I for identify-
ing the vertices of (PL)o and (PL)i in Fig. 1(a), which ex-
hibits this transition clearly. The Do and Jo vertices to-
gether constitute a tetraeoordinated sublattice of (PL)o
(see Fig. 2). This pattern is very sinular to the one derived
by Mosseri and Sadoc, who obtained it by a suitable
decoration of the "kite" and "dart" Penrose pattern. It is
easy to notice that this sublattice has identical 20-gons
which overlap with each other. Each 20-gon has a mirror
but no rotational symmetry. However, there is a point of
global fivefold rotational symmetry (not seen in the fi-
gur) and as one can see to produce a pattern with a pentag

($3)i Q2 Dp

So~ {$4}i~Ki~Ji~.
(S3))~

($5)i~St~ ($4))~ ~ ~

($5))~ .

($3}2 Qi
($5)o~Si —+ (S4)2 +K)~ ' ' '—

(S5)2—+Si~

Just as in the transition (PL)p~(PL)&, the subset of ver-
tices (Do,Jp) drops out and constitutes a sublattice of
(PL)p the subset consisting of (Qp, Kp) drops out in (PL)q,
and similarly the subset consisting of ((S3)o (S4)p} drops
out in (PL)i. From there on, S and S5 keep on inter-
changing in successive inflations (PL)„~(PL)„+,, n & 3.
In this manner, we obtain four sublattices of a given PL
consisting of the vertex pairs (D,J), (Q,K), (S3,$4), and
(S,S5}. The first three sublattices are similar (Fig. 2), but
are progressively bigger and bigger in size by a factor r (in
linear dimensions) from the previous one. The fourth sub-
lattice with S and S5 is similar to the starting PL but
scaled by a factor r . It is worth noting that the transfor-
mation of vertices upon inflation (PL)„,~(PL}„canbe
expressed in a matrix form:

D„
0 0 1 0 0

Jn 0 0 0 1 0
0 0 0 0 1

00000
(S3)„0 0 0 0 0

($4) 0 0 0 0 0
0 0 0 0 0

($5) 0 0 0 0 0

0 0 0
n —1

(j (j 0 Qn —1

1 0 0 &n —1

0 1 0 (S3)„
0 1 0 ($4)
0 0 1 S„

(S5)„

which can be written as

onal symmetry it is not necessary to use only the polygons
which haue fiuefold rotational symmetry or whose angles
are integral multiples of m IIO in contrast to models of i

phase where packing of only the icosahedra has been con-
sidered. The sublattice depicted in Fig. 2 appears to be
important for quasicrystals of alloys whose crystalline
structure is based on pentagon-tetragon-triangle nets. '

Apart from this sublattice, there are three other sublat-
ticcs in the 20 PL. In order to see how these sublattices
arise, let us denote by (PL)„ the inflated PL obtained from
(PL)„ i (n =1,2, 3, . . .}. The transition

(PL)o—+(PL}i~(PL)2~(PL)g

is described by the following transformations of vertices:

Do~0 ~ Jo~O Qo Di~O Ko~Ji~O

(S3)p Qi ~D2~0, ($4)p —+Ki Jq~0,
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V„=MV„ (3)

FIG. 1. {a) Arrowed rhombus Penrose lattice. Thick lines
correspond to the first inflation. (b) The Voronoi construction
corresponding to (a). The shaded polygons show the neighbor-
hoods of vertices S3, S4, S5, and S {fordetails see also Table I).

Here V„ i denotes the vertices on the starting PL
whereas V„denotes the vertices on the inflated PL. The
transfer matrix M has some similarity with the transfer
matrix of the fractals considered by Mandelbrot et al.
for the triadic Sierpinski carpet. In fact, the self-
similarity property of the PL can be used to generate frac-
tal trees with dimensionality ln2/in~ by keeping only the
short diagonals of the thin rhombi on each deflation.
The transfer matrix corresponding to deflation is MT.

It is clear that D and J are not converted into any ver-
tex upon inflation [see Fig. 1(a)]. J lies inside each inflat-
ed fat rhombus while a D originates from the two sides of
each narrow rhombus of the starting pattern and lies on a
side of the inflated fat rhombus. Upon inflation the num-
ber of rhombi of each type is 1/r t'imes their number on
the starting pattern. Since the number ratio of fat to thin
rhombi is r, it follows that the number of D vertices will
be r times that of J vertices. Also the number of vertices
in a pattern is the same as the number of polygons.
Therefore if the probabilities of different vertices p ( V) are
normalized to unity, then from the fact that D and J are
left out on inflation, we get p(D) =1/r and p(J) =1/r .
Also from Eq. (2) we have

p(D)=r'p(Q), p(J)=r p(IC),

p(S5)+p(S4)+p(S3) =r'p(S), p(Q) =r'p(S3),

p (E)=r p(S4), p(S) =dp(S5) .

These can be solved immediately to obtain the concentra-
tions of different vertices and these are listed +' in Table
I. From these the average nearest-neighbor coordination
Z of a vertex turns out to be 4, '

Z= gZ;p(i),

where Z; is the coordination of a vertex of type i. The
same result follows also from Euler's equation, 3 which
for an infinite 2D network is given by

FIG. 2. The tetracoordinatcd network generated from D and
J vertices. Circles denote vertices S3, S4, and S5„while a cross
represents the vertex S. The hexagonal arrangement of Al
atoms found in 5-Al„Mn4 or A16Mn (Fig. 3) is identified by
drawing the two broken hnes. The polygons with thick lines are
found in structures shown in Fig. 4.

where r is the average number of edges meeting at the ver-
tices and n is the average number of edges of the faces.
Since in our case both types of faces (rhombi) have four
edges, n =4 and hence r =4. The same will be true for a
PL based on the "kite" and "dart" pattern and also for
the defective PL (Ref. 33) as well as other lattices in the
PLI class, since the basic units are the same. This calcu-
lation is based upon the connectivity of different vertices,
as shown in Fig. 1(a). However, if we consider the short
diagonals of the two rhombi also to be among the nearest
neighbors, then from Eq. (4) the average coordination is
six. This is interesting as we shall see that the Voronoi
construction has the mean coordination 6.

The Voronoi construction corresponding to the PL of
Fig. 1(a) is shown in Fig. 1(b). It contains pentagons,
hexagons, and heptagons only. Table I displays the
polygons originating from different vertices. There are
three types of pentagons, two types of hexagons, and two
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types of heptagons. The relative abundances of pentagons
and heptagons are equal and given by 2/r . Hence the
average coordination of each Voronoi cell is six. Since
Voronoi construction is tricoordinated, the same result
follows again from Eq. (5). The even and the odd central
moments of the edge distribution defined ' as

pk = g(n —6)"p(n)

0
o

are 4/r and 0, respectively. Here p(n) is the probability
of cells with n edges. Therefore the distribution is sym-
metric with width 4/~ . Since the histogram displaying
the number of polygons with different number of sides in
the Voronoi construction of the PL is symmetric about
hexagons, the pattern is statistically free of disclinations
although locally disclinations, dislocations (5-7 pairs), and
grain boundaries [(5-7)—(5-7)— strings] can always be
found [see Fig. 1(b)]. Here the defects are defined in the
sense of the "5-7 construction" used extensively in the
study of 2D systems. In the case of a general quasiperiod-
ic lattice not belonging to the PLI class, nine additional
types of vertices are possible and the polygons associated
with these new vertices will also have eight, nine, or ten
sides. Though the Voronoi construction still remains tri-
coordinated (i.e., it still retains the "froth" property), the
histograms of polygons will no longer remain symmetric
about hexagons.

The neighborhood of each Voronoi cell in the PLI class
is given in Table I together with their (conditional) proba-
bilities. These were calculated from the knowledge of
p (i) and by visual inspection of a large Voronoi pattern of
the PL. Katz and Duneau and Elser have developed a
general mathematical procedure for the calculation of
neighborhood patterns in a PL in arbitrary dimensions but
the details of the neighborhoods of the 2D PL are not
given. It is noted that the vertices E, S3, S4„5, and S5
have only one type of neighborhood while D and J each
has four different neighborhoods. These two are the most
abundant and are likely to be the most favorable places
for packing. In the case of Al-Mn quasicrystal, as we
shall discuss, these are occupied by Al atoms which also
have several different neighborhoods even in the crystal-
line form of these alloys. Q has two types of neighbor-
hoods but has the smallest area. It is very likely to form
structural vacancies. %'e have made an elaborate calcula-
tion to check that these neighborhoods do satisfy the fol-
lowing exact sum rule known ' to be true for any 2D
"froth":

g nm(n)p(n)=36+@2,

o o-A(, ~-Nln

FIG. 3. The two types of layers in the 5-Al~&Mn& structure.
As compared to (b), layer (a} has additional Al atoms denoted by
an open circle. The dashed lines denote the unit cell of the
structure.

~ A( oF&

~ t

where m (n) is the average number of edges of the cells
surrounding a given n-gon.

III. DECORATIONS OF THE 2D PENROSE LATTICE

Having specified the distribution of vertices and their
neighborhoods, atomic models can be generated by
decorating the 2D PL for a given concentration of (dif-
ferent) atoms. Our strategy is based on the observation
that the local arrangement of atoms in layers of some

~ Ni

FIG. 4. Layer structures for (a) A113Feq, {b} Pt5P2, and (c)
Ni3Si2. The dashed lines denote the unit ceB of the structure.
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crystalline compounds can also be found in the 2D PL.
Moreover, from the fact that the quasicrystal transforms
into the corresponding stable crystalline compound, one
can expect the local distribution of atoms in quasicrystals
to be close to the corresponding crystalline state. Similar
conclusions were drawn from one of the Mossbauer' and
EXAFS (Ref. 13) experiments. Some of the compounds
whose layers show similarity with Fig. 2 are 5-A1»Mn&,
Al»Fe4 (isostructural with Ali3Co4), Pt&Pz, and Ni3Si2.
Their layer structures are shown in Figs. 3—5. Several
other compounds such as A16Mn, a-(Fe-A1-Si), WA14,
FezA15, a-CuFe4A123, etc. also have' layers of the types
shown in Fig. 3(b). Comparing these layer structures with
Fig. 2, it is easy to see that the hexagonal arrangement of
Al atoms around a Mn atom in Fig. 3 is similar to the
hexagon shown in Fig. 2. The two pentagons fused at a
vertex and forming the polygon with vertices labeled 1—8
in Fig. 2 can be seen in Figs. 4(a) and 4(c) while the
polygon with two pentagons joined with a tetragon can be
seen in all the three structures in Fig. 4. From this com-
parison it becomes clear that the packing of pentagons in
these alloys (crystalline as well as quasicrystalline) plays
an important role. These packings may be done in several
ways which may lead to a classification of quasicrystals.
We shall focus on two such packings obtained from the
20 PL.

So far there exist no definite rules such as the size of
atoms or electron per atom ratio to form quasicrystals.
However, if the currently known quasicrystals are con-

AL e Fe

FIG. 5. (a) and (b) show the decoration of the two types of
layers in A1~3Fe~ by narrow and wide rhombi. In (c) the layer (b)
is redrawn with pentagons and thin rhombi as basic units.

sidered to be an indication, then alloys having locally
icosahedral arrangements or layers with pentagonal ar-
rangements of atoms may be considered to be good can-
didates. %e thus believe that the above-mentioned alloys
and others with similar structures should be good candi-
dates for quasicrystal formation. In fact, besides Al-Mn
and Al-Fe, a-(Al-Mn-Si) and a-(Al-Fe-Si) (Ref. 11) have
already been confirmed to form quasicrystals. However,
this structural requirement may not be sufficient or even
necessary and only the discovery of many more quasicrys-
tals may lead to certain rules.

In the following we discuss possible decorations of the
layers of Al-Mn and Al-Fe having fivefold rotational
symmetry and show how such layers can be stacked to
generate three-dimensional structures. These should serve
as models of the T phase. Though the Al-Mn and Al-Fe
quasicrystals fall into the same category, we shall discuss
them separately, as their crystalline structures are dif-
ferent.

A. Al-Mn

Consider the 5-Al»Mn4 crystalline structure (Fig. 3).
This has two types of Mn layers, while for A16Mn there is
only one [Fig. 3(b)]. The two layers of 5-Ali~Mn4 have
chains of pentagons. In one layer [Fig. 3(a)] each Mn
atom has five Al atoms as nearest neighbors which form a
pentagon, while in the other layer one of such Al neigh-
bors is missing. Since the Al-Mn quasicrystal transforms
into A16Mn structure upon crystallization, we suggest the
following decoration of Fig. 2 by comparing it with the
A16Mn layer structure. All the vertices in Fig. 2 except a
J nearest to S3 and S4 are occupied by Al atoms. The
latter corresponds to having the central vertex in the hexa-
gon shown in Fig. 2 to be vacant, as one finds in the
atomic distribution in A16Mn layers [Fig. 3(b)]. The
centers of the regular pentagons are occupied by Mn
atoms. These are also the S3, S4, S, and S5 vertices and
constitute the second infiation of the original lattice [Fig.
1(a)]. The resulting atomic distribution is shown in Fig.
6(a). This model gives Mn concentration to be 21.7 at. %.
From Fig. 6(a) the nearest neighborhoods of (S and S5)
and (S3 and S4) are different. The nearest environments
of S and SS are similar and have fivefold symmetry [see
also Fig. 1(b)]. The concentration of such Mn atoins is
1/w . The other two sites S3 and S4 have nearly identical
environments of Al atoms which form a hexagon [the
shaded polygons in Fig. 1(b)], similar to the one shown in
Fig. 3(b). The concentration of such Mn sites is 1/r, and
so the ratio of the two kinds of Mn sites is r which is con-
sistent with the EXAFS (Ref. 13) and one of the
Mossbauer' data. %ith this decoration the nearest-
neighbor environment of the Mn atoms in each layer is a
mixture of the two found in the two layers of 5-A1„Mn~.
Also the areas of the four cells which Mn occupies differ
at most 2.67% from the mean value. These areas are
given in Table I. It is clear that g and Ehave the sraall-'
est area, and in our model they are vacant. Similar to reg-
ular lattices, such sites may be occupied by impurities like
8, C, N, 0, H, etc. , and filling of space by such atoms
may even facilitate quasicrystal formation. Al occupies
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cells whose areas differ significantly. It will therefore not
be surprising if there occurs some relaxation (either in-
plane or puckering) around these sites. This will lead to
some fluctuation in the interatomic distances. Neglecting
such relaxations if a mean distance of 2.5 A is taken for
Al-Mn, then Al-Al. distances are 2.93 and 2.5 A. The
latter is also equal to the side of the rhombus. These
values lie well within the range found in the crystalline
state, where Al-Al distance varies from 2.57+0.03 to
2.89+0.045 A, and the Al-Mn distance varies between
2.435+0.025 and 2.64+0.03 A. From this decoration, the
nearest-neighbor coordination number of atoms from
Voronoi construction ranges from 2 to 5 and therefore the
actual crystal structure will contain defects even though
the underlying PL is statistically defect free. A slight
modification of this decoration can be obtained if the J
cells left empty in this decoration are also filled with Al.
Then the layer arrangement of atoms will be similar to
Fig. 3(a) and the Mn concentration then turns out to be
19.7%%uo with the ratio of the two types of Mn sites still
equal to ~. But the distinction between the two sites be-
comes difficult if only the nearest neighbors are con-
sidered. In light of the recent Mossbauer experiments'

(b)

FIG. 6. Decorations of the tetracoordinated lattice (Fig. 2)
for 1ayers in (a) A1-Mn and (1) Al-Fe quasicrystals. The solid
circ1es denote A1 atoms while the open circles denote Mn (Fe)
atoms.

here it should, however, be pointed out that there are
more than two types of Mn neighborhoods if atoms
beyond nearest neighbors are considered. These can affect
the charge distribution around a Mn atom and create dif-
ferent electric fields measured in Mossbauer experiment.
Further, the Al-Mn quasicrystal seems to be a two-level
system as Mn can occupy either S3 and S4 or the adjacent
J. This fluctuation in the occupancy of S3, S4, or the J
cells may lead to the formation of new local neighbor-
hoods.

B. A1-Fe

It becomes clear that on the basis of the cell areas, the
atomic size cannot be fixed and models based upon hard
ball packing may not be very fruitful for these alloys.
This can further be expected from the large variation in
Al neighbor distances and from the structure of the layers
in Ali&Fe4, Pt5P2, and Ni&Si2 shown in Fig. 4. All of them
have similar kinds of pentagon-tetragon-triangle nets but
the atomic distributions are different. In the case of
AliqFe4 [Fig. 4(a)] alternate pentagons have an iron atom
at the center and these are joined together with a tetragon.
A similar arrangement on a PL can be obtained if S3,
S4, and S5 (shown with circles in Fig. 2) are occupied
with iron while D and J are occupied with Al. With this
choice those pentagons which join at a vertex have no iron
atom at their centers, as also seen in Fig. 4(a). The result-
ing atomic distribution is shown in Fig. 6(b). All the 20-
gons in this case have the same atomic distribution but in
general it may be context dependent, as in Fig. 6(a). The
coordination number of atoms is 4 or 5 thus indicating
the presence of defects in this structure also. This decora-
tion leads to iron concentration of about 14.6 at. %. Ex-
perimentally Al-Fe quasicrystal samples have approxi-
mately 18 at. % iron. Though there is no published data
on the actual Fe concentration in the i phase, it should be
noted that the other plane of crystalline Ali&Fe4 structure
shown in Fig. 5(c) has much higher concentration (32
at. %) of Fe as compared to the one (15.4 at. %) shown in
Fig. 4(a). Also though the structure of this plane is based
on pentagons, it is quite different from the one shown in
Fig. 4(a). It is quite possible that as for regular lattices,
successive layers have different atomic arrangements in
Al-Fe quasicrystals and in particular in the T phase.
Here it is interesting to note that recently two sets of lines
have been observed in x-ray powder diffraction from
Al-Fe quasicrystals, indicating the presence of planes with
spacIngs Gf and 2G.

Henley" has decorated one of the layers of AliiFe4
[Fig. 5(a)] with two kinds of rhombi used in Fig. 1(a). We
have decorated the other layer with the same rhoIDbi.
Both of these do not belong to the arrowed rhombus pat-
tern. The vertices DQ, EC, (SS)5can be seen on both the
patterns though their decorations are different for the two
layers. These decorations of a layer with rhombi are nat
unique We think tha. t instead of decorating a layer with
rhombi, it is better to find cells whose distribution may be
unique like those shown in Fig. 4 and then to look for cor-
responding patterns from the PL's. We have found for
the other layer of Al]3Fe4 a structure based upon penta-
gons and rhombi, as shown in Fig. 5(c). A prominent
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ed within some pentagons. This mill also reduce the Fe
(Mn) concentration and bring it closer to the experimental
value' of about 22.4 at. %. %'hen this is done the decora-
tions of the decagons become context dependent and a de-
tailed discussion of this will be published elsewhere.

IV. SUMMARY AND DISCUSSION

FIG. 7. Atomic arrangement of atoms in layer adjacent to
the one shown in Fig. 6. The underlying lattice has been gen-

erated from Fig. 2. Open (sohd) circles represent Al (Fe) atoms.

feature of this structure is the occurrence of four penta-
gons with a narrow rhombus in between. A quasiperiodic
pattern with similar features can be generated from a suit-

ably decorated 20 PL, and it is shown in Fig. 7. This has
been obtained from Fig. 2 by joining points in triangles
obtained from perpendicular bisectors. This tiling is full
of identical regular decagons. In addition to the prom-
inent unit of the crystalline structure, this has a cap which
comes from the three identical double pentagons (fused
at a vertex) sharing each other in a 20-gon. This way of
generating the structure suggests automatically how to
continue it in the third dimension. Looking at the atomic
distribution in the crystalline Al&3Fe4, an obvious choice is
that all these lattice points be occupied with Fe or Mn
atoms and each half rhombus has an Al atom. It remains
now to show how the centers and the remaining sides of
the pentagons should be occupied. In the crystalline
structure there are two types of distributions. As shown
in Fig, 5(c) there are one or three Al atoms within a pen-
tagon. As the periodicity in a direction perpendicular to
the layers is very nearly the same in the crystalline and
the T phase, we shall expect both types of pentagons to be
necessary also for the T phase. Considering here the sim-
plest case when an Al atom is placed at the center and
remaining edges of the pentagons, the Fe concentration
turns out to be nearly 35 at. %. The corresponding
decoration is sho~n in Fig. 7. In this decoration each Fe
atom is placed on three Al atoms of the underlying layer
and an Al atom sits above the tetragon or pentagon of Al
atoms. This decoration has the mirror symmetry. The
next layer similar to Fig. 6 can be continued on this and
thus the average concentration of Fe will be around 25
at. %. Since the period of the structure is 12.4 A, one
would expect some distortions in these layers and two
more layers should be added as in the crystalline alloys be-
fore the structure repeats itself. Such distortions occur
when instead of one, two or three atoms are accommodat-

In summary we have calculated the distribution of ver-
tices and their near neighborhoods on a 2D PL and sug-
gested its decorations. In contrast to the original quasi-
periodic tiling of a plane with "kite" and "dart" or rhom-
bi, these decorations suggest importance of packing of
pentagons. Though these have been derived from the ar-
rowed rhombus Penrose pattern, they contain cells which
neither have fivefold symmetry nor do their internal an-

gles have any relationship with fivefold symmetry. Most
models of i phase have been constructed with packing of
icosahedra. As in our case, it is plausible that objects
which are not fivefold symmetric could pack to form
something with that symmetry.

Our decorations are based upon the crystalline struc-
tures of A16Mn and AliiFe4, alloys and should serve as
models for the T phase. Though the positions of some of
the Al atoms may not be accurate, our Inodel should be a
good starting point for more detailed analysis of the T
phase. It also becomes clear that there are two types of
layers in the T phase, one having almost twice as much
the transition-metal atoms as in the other layer. These
two layers alternate and such a model is consistent with
electron diffraction. A transition from the T phase to the
crystalline structure seems to involve rearrangement of
atoms within layers such that the chemical order is main-
tained to a large extent. Our decorations for one of the
layers in Al-Mn and Al-Fe quasicrystals differ from one
another only in the occupancy of some of the Al and Mn
sites. It is likely that different quasicrystals have different
concentration of species. Depending upon the actual con-
centrations and sizes of the atoms, there can be different
decorations even though the underlying PL is the same.
Al-Mn seems to be a two-level system where Mn can oc-
cupy one of the two neighboring sites. The study of the
bare and decorated Penrose lattices shows that the actual
quasicrystals will in general contain defects which will be
arranged in an ordered way and the average coordination
number need not be an integer. This is analogous to
Frank-Kasper phases. ' A proper characterization of de-
fects and correlation of our layer arrangements with the
atomic distribution in the i phase need further study and
we are currently exploring it.
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