PHYSICAL REVIEW B

VOLUME 34, NUMBER 10

15 NOVEMBER 1986

Expansion-variational studies of hydrogenlike systems in arbitrary magnetic fields
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We propose an expansion-variational calculation for the evaluation of the energy spectrum of a
hydrogenlike system in an arbitrary magnetic field. A field-dependent hydrogen Landau-type basis
has been used for the ground state and the lowest 13 excited states. Such a basis, expressed in para-
bolic coordinates, leads to analytical calculations. The numerical results have been found accurate
in the case of both low- and high-field limit. The method proposed here is believed to be very tract-

able for more complicated problems.

I. INTRODUCTION

The problem of hydrogenlike systems in an external
magnetic field is fundamental in various domains of phys-
ics, for instance, solid-state physics' and astrophysics.? In
the low-field limit, both standard perturbation and varia-
tional methods have been proved to be valid,® while people
generally use adiabatic techniques in the high-field limit.*
In the past few years, a great deal of work has been done
to obtain the energy values and the wave functions of the
system in the whole range of field strength from unified
calculations.

Reviewing these efforts, one needs to distinguish be-
tween two different methods. The first one refers to the
variational method and was widely used by Yafet, Keyes,
and Adams,’ Larsen,® Pokatilov and Rusanov,’ Aldrich
and Greene,® Gallas,’ Cohen and Herman,'!® and Kais.!!
Choosing some adequate trial functions, one obtained
rather easily the energy values of the ground state and of
some excited states. The second one named ‘“‘expansion-
perturbation method” was used by Cabib, Fabri, and
Fiorio,!?> Praddaude,'> Simola and Virtamo,'* Rosner,
Wanner, Herold, and Ruder."> Using one or two suitable
expansion(s) of the wave function and numerical integra-
tions, this method allows one to calculate the energy value
of a given state accurately.

Since the accuracy of the variational methods depends
on the choice of the wave function used as trial function
to solve a given problem, one must select a “good” wave
function. But in this case, the problem is generally to
keep a right balance between simplicity and accuracy.
Simple calculations give a clear physical picture, but the
results are not so accurate. Increasing the number of vari-
ational parameters, one obtains better solutions for the ex-
cited states but the clear physical picture is lost. In con-
trast to the variational method, the expansion-
perturbation approach can give accurate values of most
energy levels, however, it does not provide a simple
description of the system. Moreover, the extension of this
method is not so easy, even for standard problems like,
e.g., a real exciton in a semiconductor, and it also often
involves elaborated calculations.

From the above arguments, we will try to answer the
following questions in this paper.

(i) What is the best way to combine the usual variation-
al method and the expansion-perturbation calculation?

(ii) How does one get a unified insight for the evolution
of the complete energy spectrum of the system in the
whole range of field strength? It will be shown that an
improved expansion-variational calculation can give satis-
factory answers, both for the description of the physical
system and the accuracy of the energy levels.

The paper is organized in the following way: In Sec. II
we present a general theory of the expansion-variational
method. Taking a new expansion of a set of field-
modulated and distance-scaled hydrogenic wave func-
tions, we calculate the energy levels of the system after a
two-dimensional optimization search procedure. Then, in
Sec. III, we give the results obtained for the ground state
and the lowest 13 excited states. This is followed by some
comparisons and discussions with earlier results. All de-
tails of the calculation have been given in the Appendix.

II. THEORY

We start with the spinless Hamiltonian of a hydrogenic
system in a magnetic field. Using the effective rydberg
(R§ =pe®/2#%€*) as a unit of energy, the effective Bohr
radius (a§ =€#*/ue?) as a unit of length, this can be ex-
pressed as

2
=L iyr s Ly, ()
where L,=—i0/0¢ is the z component of the angular

momentum operator and the dimensionless parameter y is
the reduced field strength (y =e#iH /2cuRg), where € is
the static dielectric constant and p is the reduced mass of
the system. y=1 for H=2.35x10° T in the case of the
hydrogen atom in vacuum and for H =23.5 T in the case
of a real exciton in a model semiconductor with
1=0.1m, and €= 10¢,. '®

All eigenstates of the system can be classified according
to the symmetry of the Hamiltonian. Here, % commutes
with L, and has cylindrical symmetry for all ¥,so L, is a
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momentum constant and the eigenstates must have a de-
finite parity.

We first write down the trial functions in the parabolic
coordinates (£,71,@),

1

— img,
y me wE,m), (2)

where ¥(&,n7) has the appropriate parity given an eigen-
value m for L,. Next, we expand ¥(£,7) in terms of a set
of hydrogenic states |X;) which are all assumed to be
distance scaled and modulated by a field-dependent ex-
ponential factor

[9)=c; |X;), 3)
J

Xj=e "¢ ,(BE,Bn) . @

Here, ¢;(BE€,Bn) are the field-free distance-scaled (by B)
hydrogenic eigenfunctions. The summation on j extends
over all hydrogenic states having identical parity. The
two positive variational parameters a and B vary with the
field strength. It is expected that a—0 and f—1 when
¥—0. Some discussion about these parameters will be
found in Sec. III.

Now the Schrodinger equation of the physical system
can be transformed into the following form:

imey cie ~HN BEH# o+ —El$;(BE,BN)=0, (5)
Vam e 2eie B 16;(B&.Bn
where 7 is the well-known hydrogenic Hamiltonian, and
" depends on the field strength. Under parabolic coordi-
nates!’

4 d 0 ) d
%0__u+v du “ay +av dv
2
pr-mo L1 } ©®
4 lu v
with
(Ho+n2)g;(u,v)=0, (7)

n; is the principal quantum number, u =S¢, and v =,

2

_ e Y .2
xH' =4 a+4m + 6 ¢ &n
1 2afn | d d
+(B—=1)——+ —+ (8)
E§+m  &+m |05 I

Let us consider the matrix form of Eq. (5) in the repre-
sentation |X;); we have to calculate two kinds of matrix
elements,

Hj={¢;|e NP x o+ |9;) , )
Uy={8:]e74114,) . 1o

Some useful expressions and relations concerning the
wave functions |$;) and these elements are given in the
Appendix.
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The eigenvalues of Eq. (5) can then be found by solving
the secular equation

HC=EUC, (11

where H and U are the Hamiltonian and overlap matrix,
respectively, and C is the eigenvector.

Let us remember that we will have to minimize the en-
ergy E from Eq. (11). Given a quantum number m and a
parity m, the eigenvalues of interest can be minimized by
varying the parameters a and [ in a two-dimensional op-
timization search. In principle, the complete spectrum of
eigenvalues and eigenfunctions can be obtained by
evaluating the infinite determinant (11) in that way.

III. RESULTS AND DISCUSSION

Before presenting numerical results, let us consider two
special cases which are interesting tests.

(i) Simple approximation for the ground state. If we
have only the first term in the trial function (3), e.g.,

¢(§,ﬂ)=cle“a§71—ﬁ(§+n) 1)

we have exactly the trial function used by Pokatilov and
Rusanov’ and Gallas.!® Using this trial function, the or-
dinary variational calculation leads to the good approxi-
mate energy values of the ground state which are tabulat-
ed in column 4 of Table 1.

(ii) Calculation without optimization. Let us now re-
strict the variation of the two parameters in the expansion
of the trial function (3): Let a=y/4 and B=1. In this
case, we find in Ref. 16 that such an expansion of the
wave function can describe a hydrogenlike system in an
arbitrary magnetic field. One gets simultaneously the en-
ergy levels and the wave functions for both ground and
excited states. Clearly, this improved calculation gives
more reasonable solutions than that of the one-term per-
turbation calculation.” This can be seen from the com-
parison of the energy values of the ground state gathered
in the second and third columns of Table I. The results in
column 2 have been obtained after restriction of the j
summation to the first hydrogenic state, we find again the
results of Ekardt.!” The extension of the j summation to
the lowest 20 states with identical m and 7 quantum
numbers leads to the values of column 3 in Table L.

Since the trial functions (3) are always based on the hy-
drogenic functions and have a Landau levellike exponen-
tial dependence in a magnetic field, they have the freedom
to converge to hydrogenic states at low field and display a
continuous evolution in the whole range of fields. From
the above two special cases, we see that the dependence of
the trial function in the magnetic field is driven by two
variational parameters a and B. The a parameter ac-
counts for anisotropic changes of each individual orbital;
it varies almost linearly versus field strength in a large
range of reduced field parameter. The scaling parameter
B, in the hydrogenic functions, accounts for some isotro-
pic changes of the orbitals. In addition to this, Eq. (11)
gives rise to coupling between various orbitals so it is ex-
pected that our expansion-variational calculation should
give accurate values of hydrogen atom levels.

In practice we have limited the j summation in expan-



6914

Y. CHEN, B. GIL, AND H. MATHIEU

TABLE 1. Comparison of the binding energies (in units of Rg) of the ground state in the magnetic

field, obtained by various methods.

Epr Egpr Eyar® Egy Ecpg* Erwnr®
Y Ref. 19 Ref. 16 Ref. 18 This work Ref. 12 Ref. 15
0.2 1.200 1.179 1.181 1.181 1.181 1.181
0.5 1.362 1.388 1.394 1.394 1.394
1.0 1.605 1.649 1.659 1.661 1.662 1.662
2.0 1.995 2.013 2.035 2.041 2.045 2.044
3.0 2.213 2.282 2.314 2.324 2.329 2.329
4.0 2.428 2.502 2.541 2.554 2.562 2.562
5.0 2.608 2.690 2.735 2.751 2.761
10.0 3.259 3.377 3.448 3.476 3.496%2 3.496
20.0 4.046 4.220 4.351 4.397 4431
50.0 5.283 5.556 5.892 5.975
100.0 6.348 6.767 7.367 7.477 7.578

#Rounded to three decimals.
"Reference 13.

sion (3) to a few terms. We can enlarge the expansion if
we need to calculate the energy levels with a greater accu-
racy. We can also choose a better basis which has eigen-
values and eigenstates closer to the real ones.

For a given state, the minimization is obtained after the
following “step-by-step” computational procedure: First,
we minimize the corresponding eigenvalues of Eq. (11) by
taking a=v/4 and B=1 as initial values in the case of
only one term for the trial function (3). Then, the found
values of a and B are used as initial values to minimize
the energy in the case of a two-term expansion of the trial
function (3) and so on. We extend the summation in the
trial function in order to obtain better accuracy.

The numerical results, obtained for the ground state
with this expansion-variational method, are given in Table
I, column 5. We have used an expansion of the trial func-
tion (3) up to the lowest six m =0 even-parity hydrogen-
like basis function. The lowest Landau level has been tak-

en as energy origin. Let us first compare this calculation
with the previous one'® given in column 3, clearly the
present calculation gives better results. Remember that
20 m =0 even-parity states have been used in order to get
the numerical results of column 3 and only 6 for the
present calculation. Now, let us compare the data of
columns 4 and 5; our expansion-variational method gives
high-order corrections to the results obtained by the usual
variational method of Ref. 18.

As a final comparison are shown in columns 6 and 7
the corresponding results of Cabib et al.,'? Praddaude,!’
and of a recent most accurate calculation by Rosner
et al.'’ Despite the simplicity of the present approach, a
satisfactory agreement is found between our results and
those obtained after more elaborate computations.

Table II displays a comparison of the field dependence
of the lowest 13 states above the ground state. These ex-
cited states are labeled in column 1 by the asymptotic

TABLE II. Comparison of the energy values (in units of Rg) of the 13 lowest states above the ground state in the magnetic field,

obtained by various methods.

v=0.2 y=1 y=10
This This This

State work Ref. 15° work Ref. 152 work Ref. 15°
2so (1700) 0.296 0.298 0.314 0.321 0.411 0.418
2p_, (0-07) 0.500 0.501 0911 0913 2.235 2.251
2po (1"‘00) 0.370 0.370 0.519 0.520 0.760 0.765
2p,1 (0701) 0.100 0.101 —1.089 —1.087 —17.765 —17.749
35 (1710) 0.079 0.083% 0.066 0.071 0.076 0.079
3p_a (1-01) 0.176 0.182 0.245 0.251 0.358 0.365
3po (2700) 0.148 0.150 0.178 0.180 0.217 0.220
3p,1 (1701) —0.224 —0.218 —1.755 —1.748 —19.642 —19.636
3d_, (0702) 0.362 0.363 0.703 0.706 1.805 1.816
3d_, (1*00) 0.263 0.264 0.412 0.413 0.673 0.678
3dy  (2%00) 0.144 0.145 0.129 0.132 0.150 0.154
3d,, (1*01) —0.137 —0.136 —1.588 —1.587 —19.327 —19.322
3d,, (0702) —0.438 —0.437 —3.297 —3.294 —38.195 —38.184

2Rounded to three decimals.
®Reference 8.
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quantum number corresponding to the zero field case
n;lim(NTN,m). The results in columns 3, 5, and 7 are
taken in the work of Rosner et al.!* and of Aldrich and
Greene.® The variational expansion used for 2sq, 35§, and
3d, states are up to the lowest six (identical parity and m
component) hydrogeniclike basis functions. Concerning
the remaining levels, we have restricted our expansion to
the lowest four corresponding states. Again, a fair agree-
ment is obtained when compared with previous data.

IV. CONCLUSION

We have proposed a two-parameter expansion-
variational method in order to treat the problem of hydro-
genlike systems in an arbitrary magnetic field. This has
been shown to give results in satisfactory agreement with
earlier propositions without variational treatment. More-
over, by using only two variational parameters, the
present results are the best ones. Furthermore, if we en-
large the expansion terms, the exact solution of the prob-
lem should be approached. As a consequence of the
choice of the basis states, both wave functions and transi-
tion probabilities can be obtained immediately. Finally,
this algorithm is expected to be very useful for solving
other problems when we have to consider variational cal-
culations.

APPENDIX

Let us write the eigenstates of %7, in the parabolic coor-
dinates (¢ dependence dropped, u =3¢, and v=/7) as

im|/2
pi=Aiexp | ——(u+v) | |—
i n;
XL\ /)L /) (A1)
where & J\, L+ | is the Laguerre associated polynomial

and A; is the normalization constant.
n;=N;+N,+ |m | +1 is the principal quantum number
and N,N,=0,1,2,....

If we denote this wave function as | N\N,m ), it can be
seen that when NN, the state | N\N,m ) is doubly de-
generate, the states with definite parity are then a linear
combination of | N;,N,m ) and | N,N,m ) states,

l¢,>— 1+P,,,, |N\Nym) , (A2)
where P,w is the permutation operator on the variables u
and v, with P,, |N\N,m )=+ |N,N,m). Let #=C,P,,
be the parity operator of the system, where
C,f(p)=f(p+m) and it can be verified that (¢-
dependence included)

T giy=m|d;), (A3)

with 7= +1. Here i represents the assembly of the quan-
tum numbers N;, N,, m, and m. So we can rename the
basic functions |X;) in the expansion (3) as follows:

|X;)=|NTNym) . (A4)

Now the symbolical state | NTN,m ) represents the hy-
drogenic function (A2) factorized by a Landau-type ex-
ponential factor e ~%".

From the Hamiltonian %, %", and the equations (5),
(7), and (8), we express the matrix elements H;; and Uj; in
the following form:

H;=4 oz+%m~32/4n,-2 So+(y2/16—a?)s,
+(B—1)sz+2as3} ) (AS5)

U,‘j"—"So, (A6)

with
So={X;1X;) , (A7)
S\ =(X; [EnX;), (A8)
1
S,=(X; | —— x->, (A9
2 < E4+m [/ )
o d
Sy=(g; |e—2atn 1| 9 3 ¢->. (A10)
’ < e+ |eg g

Now let us assume
—afn—BE+n)/2n;

X;(&,m)=A; ‘/12_‘” e'm%e

XPNlsz(ﬁgyBTI) ’ (A11)

where PNlNz,,,(Bg,Bn) is a polynomial of § and 7. It is
then a straightforward exercise the reduction of the above
integrals into the following forms:

JKa,b)= f f Elmke —atn—bE+n gedy  (Al12)
with a =2a and b=8(n;"" 1)/2 and clearly
Jia,b)=JHa,b) . (A13)

These two-dimensional integrals can be easily transformed
into one-dimensional ones,

JKa,b)=1lle%a ~"1+Vp!~kk(q) (A14)
with

Ik — k., —(+1) eV AlS

K= w—ak dy (A15)
and

g=b?/a .

All these integrals can be calculated from the following
relations and depend only on the exponential integral
E/(—q)."

If(q)= ZCk" i), (A16)

IXg) =[1—q'e}_(9)]1/(Ig'e?) , (A17)
and

I3(g)=—E:(—q), (A18)

(— [ e

E;( fqy e Vdy . (A19)

Initial values of this final integral can be obtained numeri-
cally.
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