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Adsorbed atoms on the surface of a harmonic lattice are immersed in a strong laser field. The op-
tical Bloch equations are derived, which include the thermal relaxation and the coherent excitation
of the adbond. This is accomplished by a transformation to dressed states, which diagonalizes the

interaction with the laser. The single-phonon couplings are then understood as transitions between

dressed states. The radiative contributions for arbitrarily strong fields are obtained in the master

equation, and it is sho~n that the coherences with respect to the dressed states decay exponentially,

due to the phonon relaxation. General properties of the competing phonon-induced redistribution

and optical excitation of the level populations are presented, and exemplified by an explicit elabora-

tion of a three-level system. The results are amenable to analytical evaluation once the interaction

potential is prescribed, and extensions of the approach to include multiphonon processes are
straightfonvard.

I. INTRODUCTION

Relaxation or desorption of an atom in a vibrational
bond with a surface of a crystal with finite temperature is
fairly described by a Pauli-type master equation and has
been studied extensively. ' The vibrational levels of the
adbond are coupled by the phonon field of the crystal, and
phonon-exchange reactions of the bond with the crystal,
which acts as a thermal bath, cause the relaxation or
desorption. The latter process can be either a result of
successive single-phonon excitations up the ladder of vi-
brational states or, when the level separations are larger
than the Debye frequency toD, as a one-step multiphonon
process. Besides the academic interest in these processes,
the thermal desorption of adatoms is the major technical
method to obtain clean surfaces. However, when the dis-
tances between the lower levels are large in comparison
with ~a„ the desorption rate might be very low, since the
first excitations can only occur through multiphonon pro-
cesses.

An obvious way to enhance the desorption is by irradia-
tion of the surface with infrared laser light. The laser,
with frequency coL, is tuned in resonance with a vibration-
al transition. In this fashion one can efficiently populate
a high-lying state, such that the transition to the continu-
um can be established by a resonant one-phonon pro-
cess. " There is obviously a competing effect, which di-
minishes the efficiency of this procedure. An optically
excited bond can decay to a lower state under emission of
a phonon into the crystal. This can be considered as a
conversion of a photon into a phonon, and the net result is
an energy flux into the crystal, without desorption of the
atom. On a much larger time-scale, however, this process
heats the crystal, and consequently the desorption is again
enhanced.

The problem of irradiation of an adsorbed atom„ in
combination with thermal relaxation due to the coupling
with the phonon reservoir, has been treated in the weak-

field limit' ' with a perturbative approach and for spe-
cial choices of the coupling potential (harmonic, Morse). '

A systematic development of a concise theory for strong
laser fields, which does not rely on a specific form of the
potential, is apparently not available yet. In this paper,
we investigate the interaction of an intense radiation field
with the bounded atom. We interpret the results in terms
of transition diagrams, and we identify the contributions
of pure-phonon, phonon-photon exchange, and one-
phonon —two-photon processes to the laser-assisted redis-
tribution of the level populations and to the decay of the
coherences. Common features are illustrated by an exam-
ple.

II. EQUATION OF MOTION

%e consider an atom with mass m, which is adsorbed
on the surface of a harmonic-lattice crystal. The van der
Waals forces are represented by the potential V between
the adatom and its nearest surface atom, and by an effec-
tive surface potential P. The lateral motion of the atom
will be neglected, since it couples only weakly to the pho-
non field, and the direction perpendicular to the surface
will be denoted by z. If we choose the origin of our coor-
dinate system at the equilibrium position of the surface
atom, with mass M, and indicate the position of m by zei
and of M by u, then V will only depend on the distance

I
zei —u

I
. Since

I
u

I

is much smaller than
I
z I, we can

expand the potential as

V( Ize, —uI )= Vo(z) —u e, Vo(z)+
dz

where Vo(z) is defined as the interaction for u=O. We
will only retain these two terms, which implies that we
neglect multiphonon processes. This will keep the formu-
lation concise and the interpretation transparent. It is,
however, straightforward to retain higher-order terms.
The atomic part of the interaction is abbreviated as
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QU

2Muco(k}

' 1/2

(aitt+aitt )eitt (2.3}

Here u and u' are the volumes of the crystal and unit cell,
respectively, eb, is the unit polarization vector of the pho-
non mode ks, a~ and a~ are the annihilation and
creation operator for the mode ks, and co(k) is the disper-
sion relation. VA'th this notation, the vibrational coupling
of the adbond to the crystal is accounted for by the Ham-
iltonian K+ Vu+P+H~h —u AS, with K the kinetic en-

ergy of m and H ph the free-field phonon Hamiltonian,

Hph
——QRco(k)ai ai

k, s
(2.4)

The pure atomic part K+ Vo+(() of the Hamiltonian
will be termed the bare-atom Hamiltooian, since it de-
scribes the atomic bond with u=O and without a laser
field. Its eigenvalues fico; and eigenstates

I
i ) are defined

by

(K+ Vu+iI}) Ii ) =%co; Ii ), (2.5}

and explicit representations in coordinate space can easily
be found for a number of potentials. ' A prime example
here is the Morse potential, which provides a fair repre-
sentation of the binding potential well, and for which
analytical expressions for i)lco; and

I
i ) are known. With

respect to its own eigenvectors, we can write the bare-
atom Hamiltonian as

S = Vo(z),
dz

and the amplitude of the phonon field for the surface
atom M will be represented by

brational bond. The interaction Hamiltonian is then
—p E(t).

The full equation of motion can now be summarized as

i' =[H,p], p =p, Trp= 1,CtP

dt
(2.10)

with the free evolution of the adbond Hb and the phonon
field H~h given by Eqs. (2.6) and (2.4), respectively. The
coupling parameter with the phonon mode ks is given by

' 1/2
U

2Muco(k)
e~ e&. (2.12)

III. DRESSED STATES

The interaction between the bare states and the laser
mode can be diagonalized directly. To this end we intro-
duce the transformed density operator tr(t) by'

cT( t) =e 'p(t)e (3.1)

with P~ the projector onto the ground state. This
transformation eliminates the oscillatory factors in the in-
teraction term —p, E(t), but at the expense of the appear-
ance of a time-dependent coupling with the phonon field.
The equation of motion for cr(t) reads

where p(t) is the density operator of the atomic bond and
the phonon field. The Hamiltonian is given explicitly by

H =Hb+Hph —g pi„(ai +ai„)S
k, S

——,A'0( Ie)&g Ie +e Ig)&e
I
), (2.11)

Hb ——K+ Vp+tI}=+%co;P;,

with

P;= Ii)&i I,

(2.6)

(2.7)

do'
i A = [H~+H~h, cr]

dt

—g&i [(ai +ak )e(t),~],
k, s

(3.2)

E(t}=EuRe[a exp( icoL t)], — (2.8)

and the coupled levels will be denoted by I
e) and

I
g).

This excited state and ground state (which is not neces-
sarily the lowest state) are separated by co, —cog ~0, and
the frequency mismatch with coL, the detuning, will be in-
dicated by b.=cot —(co, —cog }. The strength of the dipole
coupling is expressed in terms of the Rabi frequency

Q=fi 'Eo&e Ip, eIg), (2.9}

which contains the dipole-moment operator p, of the vi-

the projector onto the eigenstate
I
i). We shall assume

that for the atomic part S of the interaction with the pho-
non field, the diagonal matrix elements &i

I
S

I
i ) vanish.

This is only an approximation in the presence of a laser
field, since the &i

I
S

I
i ) term will give rise to a small ra-

diative contribution, but not to pure phonon transitions.
A continuous single-mode laser is tuned into resonance

with a specific transition of the vibrational bond. The
electric component of the electromagnetic field at the po-
sition of the bond is

with

i toe tP —ituc tP
(3.3)

The dressed-atom Hamiltonian H~ is defined as

Hg ——g fico; P; + , fi(coL +co, +cog )(P,—+Pg )
t~e, g

——,'ir~(P, —Pg) ——,'&&(
I
e&&g

I
+ Ig&&e I ),

(3.4)

which has the interpretation of the bare atom Hb dressed
with the photons of the laser field, including the interac-
tion.

Similarly to Eq. (2.6), we now write

Ho ——g fu3;P;, (3.5)

with Ace; the eigenvalues of H~, and I'; the projectors
onto the eigenstates

I
i ) of Ho. The eigenvalue equations

of Ho are readily derived from Eq. (3.4}. We obtain
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(3.6) which allows us to write

with

(3.8)

q(t) =S+e PzS +e SPg .

Here we used that (g ~

S
~
g) =0, and we introduced the

time-independent part of the interaction by

where S=S—PgS —SPg . (3.15}

(3.9)

Hence the dressed states are identical to the bare states,
provided that i&e,g. The states

~
e) and

~
g) are cou-

pled to form
~
+ ) and

~

—) according to

~
+ ) =

~

e )cos(8/2) +
~ g )sin(8/2),

~

—) =
~ g )cos(8/2) —

I
~ &»n(8/2»

(3.10)

(3.11)

which is a parametrization in terms of the angle 8/2,
where 8 is defined by

8=arctan(Q/b, ) . (3.12)

For weak driving fields (Q~O) we have
~
+ )=

~

e ) and

~

—)=
~ g ), but for strong fields we find

~+)=( ~g)+
~

e))/v2. The summation in Eq. (3.5) runs
over the bare states i ~e,g, and over i = +, where

P+ ——
~

+)(+ ~. This diagonalizes the laser interaction.
The relation between the eigenvalues of Hb and H~ is il-

lustrated in Fig. 1.27 "
The couphng to the phonon field is now regarded as an

interaction between the dressed bond and the free pho-
nons. The time dependence of this interaction is embod-
ied in q(t) from Eq. (3.3). With the idempotent property

Pg =Pg, we can expand the exponentials as

(3.13)

IV. INTERACTION PICTURE

In contrast to the photon field, where only the laser
mode is occupied, the phonon field consists of many
modes ks, which all contribute to the interaction. This
prohibits an immediate diagonalization, so other methods
have to be applied. In this section we set up the notation
and write down the basic equation. To this end, we intro-
duce the density operator in the interaction picture by

i A (H&+Hph )lf —i% (Hp+H ph
)t

«7(t) =e ottje (4.1)

%%en there is no coupling between the dressed system and
the phonon field, we have o(t)=cr(0)=o(0). The equa-
tion of motion for cr(t) follows from Eq. (3.2), and we ob-
tain

ih' —o (r) = [W(t), o (t) ] . (4.2)

The interaction Hamiltonian W(t) is then

W(t)= —+13 {a e '"'""+o e'"' ")q(t),
k, s

with the transformed atomic part given by

(4.3)

The identification of the contributions to the interaction
of the three frequencies in Eq. (3.14) will facilitate the fol-
lowing computations considerably.

iit 'Hgt
{ }

is 'Hg—t
(4.4)

j n+I, g)
jn, e&

ih
—

I f}+ I, -&

f(t) =g e '
Pk [5+e PsS+e SPs I Pi,

k, l
(4.S)

If we expand the exponentials in the projectors on the
dressed states and use the expression (3.14} for q(t}, we
obtain

jn, g)
j n-[, e)

jn- t, +&

FIG. l. Energy levels of the bare system plus the free laser
field are represented by the diagram on the left-hand side. The
detuning 5 is taken positive. The number of photons in the
laser mode is indicated by n. If the dipole coupling —p-E is in-
cluded, a new diagonalization yields the dressed energy-level
system on the right-hand side. The level separations 5 and ~L
in the bare system now become 0' and ~L, where 0' is always
larger than 5 due to 0 &0. This is the ac-Stark shiA (Ref. 27).
The state

~
k), which is not coupled to another level by the

laser, remains unaltered. In general, we suppress the quantum
number n and represent the dressed atom as an infinite ladder
of states

~

+ &, which is the famous Jaynes-Cummings model for
the interaction of a two-level system with a strong radiation
field (Ref. 28).

~kl =k ~1 (4.6)

—ih IH&t iR IH&t
oo(t) =e tTo(t)e (4.g)

and therefore it is sufficient to derive an equation for
(To{i). If we iterate the first integral of Eq. (4.2) twice, dif-

is the level separation between the dressed states
~

k ) and

~

I). Besides the usual time dependence exp(ihki&) in
the interaction picture, we now also find
exp[i (hk(+a)L )t].

Since the system of interest is the adbond, we define the
reduced density operator of the dressed atom by

cro(t) =Trpha(t),

and similarly for oo(t). Taking the trace over the phonon
field in Eq. (4.1) yields
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ferentiate the result with respect to time, and take the
trace over the phonon field, we obtain

d
0 ~2 Ph

—pro(t)= —
Trodi, f dt'[W(t), [W(t'), o'(t')]]

n (co) = [exp(fm/ks T) 1—] (5.1)

We extend the definition of n (~) to negative values of co,

which enables us to write

(4.9)
n (co)+1= —n( —co) . (5.2)

The right-hand side of this equation accounts for the pho-
non interaction in the evolution of cro(t}.

This will simplify the notation considerably. Next we in-
troduce another function of u by

V. PHONON RESERVOIR f(co)=g 2k (
~

co
~

)[n(co)+1],
co d /co/

(5.3)

The phonon field will be considered as a large reser-
voir, ' or heat bath, with a short recovery time. Then
the integral in Eq. (4.9) can be evaluated by standard tech-
niques, so here we merely state the result, Care
should be exercised, however, since the atomic part of the
interaction, cl(t), contains three frequencies for a single kl
matrix element. This gives rise to a number of cross
terms, which do not appear without a laser field.

The average number of phonons in mode co for the
crystal in thermal equilibrium at temperature T is

with

(5.4)

in terms of the dispersion relation k =k (co), which is the
inverse of co=co(k). This f (co) enters because of the sum-
mation over all modes ks of the reservoir.

After these preliminary definitions, we can evaluate the
integral in Eq. (4.9). We obtain the simple result

cro(t) = —i Q I Skt I
'f(~kt)[PkcJo(t)+cro(t)Pk 2Pt &—k

I
cro(t)

I
k &]

k, t

—
z gg+ I Sgt I

f(~+t coL, )[P+cr—o(t)+cro(t)P+ 2Pt &—+
I
cro(t)

I

+ &]

Y~ 2 g+ I Sgk I
'f(~k++cot )[Pkcro(t)+oo(t)Pk 2P+'&k

I
cJ—o(t)

I
k & l

k, +

—g+g- l Sg I'[f(coL)+f( coL, )]QP+—oo(t)P; . (5.5)

The first term comes from the time-independent part S of
the interaction, and is proportional to

~
St,t ~=

~
& k

~

S
~

l &
~

. Here the summation runs over all
dressed states k, l. The second and the third terms only
connect the dressed states + with all other states. In the
first term„ the overall factor contains f(hkt), which de-

pends only on the level distance &ok —~~, but in the other
two terms, this frequency is shifted by the optical fre-
quency col. Furthermore, they involve the geometrical
factors

(5.6)

e.g., the matrix elements of the projector on the ground
state with respect to the dressed states. This factor is only
nonvanishing for the states ~+& and

~

—&, which ex-
plains the limited summations in the last two terms. For
later purposes we note that g+ can be expressed in terms
of the optical parameters 0' and 5 according to

(5.7)

as can be found from the definitions (3.10} and (3.11) of
the dressed states.

Notice that the operator equation (5.5) for cro(t) in-
volves only well-defined quantities. The projectors inside

the square brackets select a specific matrix element of
oo(t) with respect to the dressed states, and the prefactors
contain f (co), a given function of co and the temperature,
and the matrix elements of S =d Vo/dz. Besides that, the
optical parameters g+ appear, which are known functions
of Q and the detuning b, . In view of Eq. (2.9), the pa-
rameter 0 is proportional to the laser intensity and to the
square of the transition-dipole moment. It is this com-
bination that determines whether a laser field can be treat-
ed as a weak field (perturbation), or not. We address this
item in more detail in Sec. VII. The temperature enters
parametrically through f(co) from Eq. (5.3). If the laser
heating of the crystal is considerable, the temperature will
depend on time, and hence an additional macroscopic
heat-transport equation has to be supplied. However, if
the direct heating is dominant, the details of the atomic
evolution and the radiative excitation of the adbond have
no importance. Therefore, we assume an "adiabatic fol-
lowing'* with temperature in this paper.

VI. BLOCH EQUATIONS

For a given transition
~

k & ~
~

I & there might be a con-
tribution from more than one term in Eq. (5.5) if k =+ or
I =+. In order to distinguish between the various contri-
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butions in every transition, eve rearrange the terms.
Furthermore, we will express all matrix elements of S and
S in terms of bare-state matrix elements. This implies
that the optical parameters will appear in the overall fac-
tors, and hence the effect of the laser is tracked down ex-

plicitly in every transition.
From the definition of S, Eq. (3.15), it follows immedi-

ately that

(k ISil)=(k IS Il), if k~+, l~+ (6.1)

so that for states
I

k ), I
I ), which are not directly coupled

by the laser, we can replace S by S. If one of these states
equals

I
+ ), or

I
—), we obtain

I S+k I'=g+
I S,k I

' if k4+ (6 2)

and again g+ accounts for the optical effects. We note
that these matrix elements connect the excited state

I
e)

with
I
k). Finally„we find

(k iS il)=0 (6.3)

if both
I
k) and

I
i) are one of the states I +) or

I

—).
For the matrix elements of S itself, as they appear in the

,second and the third terms of Eq. (5.5), we find

sg, I
'=g,- (6.4)

& transition
I
k) ~

I
i) might gain contributions from

a+I =g+f (~+i)
I
S i I

'+g+f (~+I ~I. )
I Sgi I

'

ak+=g+f(~k+) I Sek I
'+g+f(~I++~L)

I Sgk I

'
~

(6.6)

for 1&+, kQ+. The transition rates between the two

I

+ ) doublets are determined by

a++=a =g+g lf( —~L)+f(~L)J ISg I',

=tg'+f( fl' —~L)+g'f( &'+—~L)] IS; I',
(6.S)

(6.9)

a +=is'-f(&' ~L)+g'+f«'+~i)] IS.g I'. (6.10)

We note that akk&0 if k =+ or k = —.
With these identifications of the various contributions,

Eq. (5.5) can be summarized as

more than one term in Eq. (5.5), but for the time evolution
of oo(t) these terms add up. Hence, we can define the ef-
fective rate constants akl for every specific transition

I
k )~ I

I). The radiationless coupling between two bare
states is governed by

au=f(~ki)
I Ski I

kW+ i&+ . (6.5)

For k =I this rate constant is zero, because vie assumed
Skk ——0. If one of the states equals I +) or

I

—), we ob-
tain

—o&(t) = ——,
' g ak, [PI,rro(t)+rro(t)Pk 2PI (k

I
o'c(—t)

I
k ) ]—a++ g P+o'o(t)P+

k, i +
(6.11)

for the atomic density operator in the interaction picture.
Transforming back with Eq. (4.S) then yields the optical
Bloch equations for this system. We find

)k)
g g 9+

i% rro(t) =(H—q, rro(t)] i AI oo(t),—
dt

o'o(t)t=ao(r), Troo(&) = I
(6.12)

where the Liouville operator I' is defined by its action on
an arbitrary operator p according to

I p = —,
' g a gi(Pkp+ pPk —2' ( k

I p I
k ) )

l

2
9+9- I g+

i

I

I

I

+a++g P pP (6.13)

Here the summation runs over all dressed states. This I
represents the relaxation of the adbond due to single-
phonon transitions, and it incorporates the combined
phonon-photon processes, as will be explained in Sec. VII.

VII. DIAGRAMS

The structure of the relaxation operator I is quite
transparent. Every kl combination assumes the form

,'(P, ,+~nP~ 2P~(—ki, ik))—

FIG. 2. Illustration of the single-phonon transitions, whenev-
er a

I + ) or
I

—) state is involved. The parameters near the
arrows are the optical parts of the prefactors as they occur in
the transition rates. Vihthout a driving laser, the g+ vanishes,
and hence only the double-art'owed transitions survive. For
weak incident fields, the single arrows appear, and only for suf-
ficiently strong fields will the dashed transition

I
+ )~

I

—) be
present. %e note that there are no transitions in a single doub-
let. Furthermore, the corresponding downward transitions have
the same optical factor but a different f(co), e.g. , a different
temperature dependence. Besides these transitions, we have
single-phonon processes between any two bare states

I
k) and

I
I ), which are obviously independent of the laser parameters.
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Now we can distinguish two cases. First, for k&1 and k
and 1 not both equal to + or —we find

d, & k
I
oo«)

I
1)= [ t —(8 k co—t ) ,

'—(A—k+A, )]

x(k Ioo(t) I1), (8.2)

where we introduced the abbreviation

(8.3)

&& (k
I
oo(0) I1) (8.4)

for a given initial state oo(0). For t »(&k+&t) ' we
find (k

I
oo(t) I1)=0 for any initial state oo(0). This jus-

tifies the random-phase approximation with respect to
dressed states and in the long-time limit. Since the coher-
ences between dressed states vanish, they do not disappear
with respect to the bare states, as is commonly assumed in
a random-phase approximation.

For k =I we obtain the master equation

tik(t) — '4kttk(t)+ y olknl(t)
dt I

(8.5)

where we have denoted the population of the kth level by

(8.6)

Equ~t~on (8 5) invo»es the populations of all levels, but it
does n«couple with the coherences. This shows that a
master-equation approach is only correct with respect to
the dressed states, since transformation of Eq. (8.5) to
bare states involves coherences. In the bare-state basis we
have to include all matrix elements simultaneously, which
is a cumbersome procedure.

Equation (8.5) for the populations is a simple set of
linear first-order differential equations with time-
independent coefficients, and it can be solved easily for
any configuration of states

I
k). The set (8.5) has to be

accompanied by the normalization

g nk(t) =Trcro{t) = 1 .
k

The structure of Eq. (8.5) is obvious. The population of
I
k ) decays exponentially with an inverse lifetime Ak due

to decay and/or excitation to all other levels, and it is
modified by the gain term atknt(t) from every other level

1& This shows that a
I

k & ~ I1& transition occurs at a
rate aktnk(t), as already mentioned in Sec. VII. Further-
more, level

I
k ) decays with a total rate Aknk(t), and the

coherence between
I
k) and

I
1) decays with —,(3k+At).

This also clarifies, at that stage, the arbitrary factor —,,
which was separated from the overall factors in Eq. (5.5).

Equation (8.2) is an equation for a single coherence of
oo(t), and we note that its time evolution decouples from
the evolution of the other matrix elements. The solution
is

—i(coI, —ul )t —(8k+HI &t/2(k Ioo(t) Il)=e e

IX. DECAY OF DRESSED STATES

The rate constants akt for every transition
I

k )~ I1)
between dressed states are defined in Eqs. (6.5)—(6.10).
They are also defined for k or 1 equal to e or g in Eq.
(6.5). We now make a slight approximation in the level-

distance dependence of the constants by assuming that
f(u) does not vary significantly over one

I
+) doublet.

This is exact for weak fields and perfect resonance. Then
we can express the rate constants entirely in the bare-atom
transition constants (6.5) and the laser parameters g+.
%e obtain

o+t =g+oet+g'+ogt~ 1&+

ok+ =g+oke+g+okg kW+

a++ =a =g+g (aeg+age),
2 2a+ =g +agg +g Qeg

= 2 2
g —age +g+aeg

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

In analogy with the definition (8.3) for the total decay
constant Ak of a dressed state, we now define

Ak = g ak„, k =bare
n =bare

(9.6)

which would be the relaxation constant for the bare state

I
k) if the laser field were not present. Now it can be

proven immediately from Eqs. (9.1)—(9.5) that the defini-
tion (9.6) is identical to

n =dressed
ak„, k =bare (9.7)

A+ ——g+A, +g+Ag . (9.8)

Here Ae and Ag are defined by Eq. (9.6), and they are in-
dependent of optical parameters. The g+ factors enter
into Eq. (9.8), so that the decay of the dressed states does
depend on 0 and b, . From g+ +g = 1 it follows that

A++A =3,+Ag, {9.9)

which is not so obvious, since A++A or A, +Ag has
no direct physical interpretation. Recall that the loss rate
from the doublet I +) equals A+n+(t)+A n (t).

X. STEADY STATE

The master equation (8.5) can be solved immediately for
any initial set of populations nk(0). The transient
behavior of the solution is however trivial, since we have a
pure exponentially decaying system. Furthermore, it is
experimentally not feasible to prepare the system in a
well-defined initial state. Due to the relaxation, however,
every oo(0) wiB evolve to a steady state o, defined as

provided that we define ag~ and a, + as in Eq. (9.2). This
remarkable result states that the decay constant for the
bare state

I
k), including k =e and k =g, is unaffected

by the presence of the laser.
The decay of the dressed states

I
+ ) can now easily be

expressed in terms of the rate constants of the bare levels

I

e ) and
I g ). The result is
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o = lim oo(/), (10.1)

arknr ~ (10.2)

which is not necessarily unique. Similarly, we denote
nk( ao ) by nk In this limit, the master equation reduces
to

An+
nr&rk = .

k~e, g

0
4A

(A, +As)(ng n—, ), k =g

0
4A

(A, +Ag)(ng —n, ), k =e

or equivalently

(n/a/k nkak/)
r =dressed

(10.3)

We will now derive some salient features of the steady-
state solution. %e recall that the coherences vanish with
respect to the dressed states, so that o. is given by

k =dressed
nk~k ~ (10.4)

in terms of the solution of Eq. (10.3) and the projectors

Pk on the dressed states. With the definition of the
I

+ )
states in Eqs. (3.10) and (3.11), we can transform the den-

sity matrix cr to the bare-state representation, which yields

o= g nk~k+, (n+ n )(—
I
e)—(g I

+ Ig)(e
I

) .0
k =bare

(10.5)

Here nk is the same as nk in Eq. (10.4) for k&e,g, and
the relation between the populations n„ng, and n+ is ex-

plicitly

nq =g n+ +g+n

ng
——g+n+ +g n

(10.6)

Equation (10.5) shows that a nonvanishing coherence
(e

I

o'
I g ) appears in the bare-state representation. With

the aid of Eqs. (10.6) and (10.7), we find the relation

(10.11)

n„(a„g+a„,) =agng+W, n, ,
k =bare

(10.12)

and the laser has disappeared completely in this combina-
tion.

Let us now consider a specific situation. Suppose that
the ground state

I g) is the lowest state and that its
separation from every other level is larger than the Debye
frequency. Then the single-phonon transition rates from
and to

I g ) can be neglected in comparison with the radi-
ative coupling to

I
e ). From Eq. (10.11) for k =g, it then

follows that

ng ne (10.13)

and the master equation reduces to

where all quantities pertain to bare-state properties. This
result is remarkably simple also. The laser only modifies
the master equation for k =g and k =e in the form of an
additional term, and the optical parameters only appear in
the combination 0 /5 . The set (10.11) couples, however,
between all k values, and therefore the extra terms affect
all populations nk. We notice that the right-hand side of
the master equation for k =e and k =g contains the same
radiative contribution. If we add the two equations, we
are left with

(10.8)

n/a//, Ak n/, , ——
r =bare

(10.14)

and with the expression (5.7) for g+, we obtain for the
coherence

(e Io Ig)= (n, ng). —0
(10.9)

In the absence of a laser we have Q=O, and (e
I
o I g )

vanishes.
Relations (10.6) and (10.7) can be inverted to express

n+ in terms of n, and ns If we s.ubsequently use Eq.
(9.8) for the relation between the rate constants, we find

++n+ +8 n =A~ne+c4gng f 10.10)

This identity expresses that the total loss rate of
I
+)

equals the sum of the loss rates of
I

e ) and
I g ), as could

be expected.
An advantage of the application of dressed states is that

the master equation (10.3) has a simple form. With the
relations of Sec. IX, we can transform Eq. (10.3) to its
bare-state equivalent. %'e find

for every bare state
I

k ). This is, however, the master
equation in the absence of the laser, and it might seem
that the laser has no effect at all. Such is not the case.
The master equation always provides one superfiuous
equation, which allows us to impose the normalization
(8.7) on the solution. Now we have the restriction n, =ns,
so Eq. (8.7) should be replaced by the constraint

2n, + g n„=l .
k&e, g

(10.15)

This proves that for this specific configuration the distri-
bution of population over the states is purely thermal for
k&g, e.g., independent of the laser intensity. The nor-
malization (10.15) indicates that we can ignore the ground
state completely, provided that we take into account that
there is p. population equal to n, missing. The desorption
rate is determined by the populations of the upper levels,
which implies that the presence of the laser enhances the
desorption. Indeed, population which would be trapped in
the ground state is now continuously pumped upwards to
the desorptive states.
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XI. SIMPLE THREE-LEVEL EXAMPLE

~e~eq+ lfgagg ~
goal

Ple +Plg + Pl ~
= 1,

(11.2)

(11.3)

which are Eq. (10.11) for k =g, k =ri and the normaliza-
tion. If we add Eq. (11.1) to Eq. (10.11) for k =e, we ob-
tain Eq. (11.2). The solution of the set (11.1)—(11.3) is
easily found. For n„we obtain

~eg&gq+ a'ge~eg+ &gqaeq

0+,(A, +A, )(a,„+a,„)45

~eg~ g +&gg~e +a genug +~eg& gg+ &ge&eg

0
+avgage+ p (Ae+Ag)(a, v+agv+2Aq)gQ2

(11.4)

and similar expressions hold for n, and ng This. result
displays explicitly the dependence on the optical parame-
ter Q /b, and the laser-independent inverse lifetimes.

If we now set ai& aug&coD—and co, —cog&aiD, Eq.
(11.4) reduces to

eg
Pl~ =

aeq+ 2&ye

and the populations n, and ng are

qeQ
Ple =Plg =

aeg+2age
(11.6)

This shows that in this limit the dependence on the laser
intensity indeed vanishes, as stated in general in Sec. X.
Without a laser, the stationary state for this hmit becomes

Pf ~
=Ple =0, Pig = 1

Hence the laser sustains a finite population of the states

~
e ) and

~
il ), which have a finite desorption rate.

In order to demonstrate the applicability of our ap-
proach, we elaborate an example. Suppose that we have,
beside the levels

~
e) and

~ g), one other level
~
g).

Three independent rate equations are then

n, a,g+nva„g A——gng+ 2 (A, +Ag)(ng n,—),0
'9 'M g g' 4g2

reservoir, but the irradiance tends to maintain a tempera-
ture gradient between the adbond and the phonon field.
This can be understood from the underlying photon-
phonon exchange reactions via the adbond, as pictorially
displayed in Fig. 4. Since the absorption rate does not
necessarily equal the rate of stimulated emission, a net
photon absorption rate will remain. For strong fields this
simple picture does not apply anymore, and we have to
consider rnultiphoton processes as mell. This was accom-
plished by the introduction of the dressed states, which
are schematically presented in Fig. 1. The Hamiltonian of
the atom plus the laser, including the interaction, is diago-
nal with respect to these dressed states. The interaction
with the phonon field was restricted to single-phonon
transitions, which were assumed to be dominant. For sit-
uations where this is not the case, higher-order processes
can easily be included. In practical si.tuations only two,
not necessarily adjacent, levels will be coupled resonantly
by the laser. The generic idea is to drive a ~g)~ ~e)
transition, with

~ g) as one of the low-lying states and

~
e) as close as possible to the continuum. This configu-

ration prohibits resonant coupling of other transitions and
gives a maximum enhancement of the desorption. Besides
that, the optical frequency will be larger than boa, and
consequently the direct crystal-heating is absent. Hence,
our two-level and adiabatic approach can be regarded as
quite general.

The dressed states appear to be a convenient basis set
for the derivation of the optical Bloch equations for this
configuration. The master equation was obtained by tak-
ing the matrix elements of the full operator equation, and
it was shown that the populations obey the Pauli equation.
The coefficients involve, however, the optical parameters
0 and b, and hence the lifetimes of the transitions depend
on the properties of the driving field. Furthermore, it was
shown that the coherences with respect to the dressed
states decay exponentially to zero. The master equation in
the bare-state representation and in the steady state was
obtained by applying the relation between dressed states
and the bare states. We found that the master equation
greatly resembles the radiationless equations, and that the
presence of the laser could be incorporated entirely by the
addition of a few terms.

The general theory was exemplified by the simple case
of a three-level system. We achieved the explicit steady-
state solution for the bare-state populations, and it was
pointed out that the system can be desorptive due to the
continuous optical excitation, whereas the bond would be
completely in its lower, nondesorbing state in the absence
of the irradiance.

XII. CONCLUSIGNS

We have studied the interaction of a physisorbed atom
with strong coherent radiation. The mechanisms of spon-
taneous phonon transitions of the vibrational atomic bond
and the photon absorptions and stimulated emissions aH

give rise to a redistribution of the level populations. The
thermal relaxation, due to phonon-exchange reactions,
drives the system towards equilibrium with the phonon
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