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van der Waals interaction between an atom and a surface at finite separations
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A general expression for the van der Waals energy of an atom near a planar surface is derived in

terms of the imaginary part of the retarded surface response function Im[g(q, tu]. This expression
allows a direct calculation of the asymptotic coefficient C3 of the van der Waals energy using

response functions determined from optical data. For simple metal surfaces we introduce a
dispersed surface plasrnon-pole approximation to the response function. The van der Waals energy
calculated with this response function reproduces the asymptotic coefficient C3 and effective
image-plane position Z„dw calculated by Zaremba and Kohn, and is also finite at all atom-surface
separations unlike the usual asymptotic series approach. Using this van der Waals energy we calcu-
late the binding energies of helium on simple metal surfaces. We also take into account the velocity
of the atom parallel to the surface, giving a velocity-dependent contribution to the van der Waals
and, at high velocities, an imaginary part due to real excitations.

I. INTRODUCTION

The van der %aals interaction between an atom and a
surface has been a subject of theoretical interest for many
years. Recently, interest has been stimulated by the
development of helium atom diffraction as an experimen-
tal probe of surface structure. ' Observations of selective
adsorption resonances ' in helium diffraction allow direct
measurements of the quantum states of the helium atom
bound to the surface, thus providing detailed information
about the strength of the van der Waals potential. Anoth-
er very recent development has been the construction of
an atomic force microscope capable of directly measuring
van der Waals forces.

The van der Waals interaction arises because of correla-
tion between the adatom electrons and those of the sub-

strate. In semiclassical terms this corresponds to the for-
mation of an image dipole in the substrate in response to
the instantaneous dipole moment of the adatom. At
large separations between the atom and the surface the
van der Waals energy can be written as an asymptotic ex-
pansion,

U„dw(z) =—
3

+O(z ),
(z —z„dw)

defining the asymptotic coefficient C3 and an effective
image-plane position z„dw. Clearly this expression will

only be correct at large separations, for example, the
asymptotic form diverges at the image plane z„dw while
the true van der Waals potential will always be finite. In
this paper we shall calculate the van der %'aals energy at
finite separations between the atom and the surface. %e
shall thus investigate the differences that arise between
the asymptotic form of the potential given in Eq. (1) and a
more realistic van der %aals potential. This is of particu-
lar interest for the binding energies of inert gasses on rnet-
al surfaces since the majority of calculations to date have
assumed that the van der %"aals can be accurately approx-
imated with the asymptotic expansion in the region of the
potential minimum.

The outline of this paper is as follows: In Sec. II we
shall derive a general expression for the van der Waals en-

ergy in terms of the imaginary part of the retarded sur-
face response function Im[g(q, co)]. The asymptotic ex-
pansion of the van der Waals energy can then be derived
from the Taylor expansion of Im[g(q, to)] in powers of q.
In Sec. III we introduce a surface plasmon-pole approxi-
mation to the response function. With this response func-
tion the van der Waals reproduces the C3 and z„dw coeffi-
cients of the asymptotic expansion calculated by Zaremba
and II ohn, but also remains finite at all atom-surface
separations. We find that our calculated van der Waals
energy differs significantly from the asymptotic form at
typical physisorption distances. In Sec. IV we calculate
the binding energies of helium on simple metal surfaces
using these results for the van der Waals potential. Final-
ly, in Sec. V we generalize our formalism to take into ac-
count the velocity of the atom parallel to the surface.
This results in a small velocity-dependent contribution to
the van der %aals energy and, at very high atom veloci-
ties, loss processes due to real excitations.

II. GENERAL FORMULATION

In this section we shall derive a general expression for
the van der Waals energy which is valid for all atom-
surface separations. To do this we formulate the problem
in terms of the imaginary part of the retarded surface
response function Im[g (q, co )].

Following Ferrell and Ritchie we use a self-energy for-
malism to derive the van der Waals energy. This formal-
ism provides a natural description of the effective poten-
tial for charged and neutral particles interacting with sur-
faces. " For completeness we shall summarize the im-
portant formulas of Ferrell and Ritchie, which we gen-
eralize to include the q dependence of the surface response
function. The self-energy is defined by

where 6 is the atomic Green function and 8' is the
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screened interaction. 5 is a positive infinitesimal. In
terms of this self-energy the expression for the van der
%'aals energy is

U„dw(z()) =I Juo(r)X(r, r', coo)uo(r')d'r d'r', (3)

where uo is the atomic ground-state wave function, with
energy co0. The atomic nucleus is located at z0. An im-
plicit summation over spin degeneracy is included in (3).
The atomic Green function is given by

u„(r)u„'(r')
G(r, r', co) =g (&)

where u„ is the nth excited-state wave function with ener-

gy n
In order to find the self-energy we need the screened in-

teraction W. To define W we must introduce the surface
response function g(q, co). Consider the surface to occupy
z &0, and to be subjected to an external potential of the
form

eqzei(q R cut )— (5)

where q is a wave vector parallel to the surface and
r=(R,z). The linear response to this external potential
must be of the form

g(q ~)e —q1ei(q R —ut)

for z ~ 0, thus defining the response function g (q,co). ' '
Since any external potential may be decomposed into
Fourier components as in Eq. (5) the function g(q, co)

completely determines the response of the surface. Note
that g(q, co) is a retarded response function and therefore
satisfies the Kramers-Kronig relations. Using this
response function the screened interaction may be written
as follows:

W(r, r', co) = — gt(q, co)
d q
2&/

Xexp[iq. (R—R') —q(z +z')]
)&exp( —2qzo)

(we shall use atomic units throughout), where we have
taken the atomic nucleus as the origin of the coordinates.
The function g, (q, co) is the time-ordered response func-
tion corresponding to g (q, co), which is given by

g, (q, co) =g (q,co ) if co & 0 and g, (q, co) =g (q, co )' if co & 0.
%e can now combine these equations to give an expres-

sion for the van der Waals energy Substitu. ting the
screened interaction and the atomic Green function into
the expression for the self-energy we find

fno dco d q 2 ( —zoo) gt(q co)
Uvdw(z0 ) ig 8

QP~ 0 2% 2&/ CO —QP„0

(8)

In deriving (8) we have made a dipole approximation for
the atomic matrix elements. f„o is the oscillator strength
for the atomic dipole transition from state 0 to state n;
here ~no=~n —o.

Finally, we can use the known analytic properties of the
response function g (q, co) to write the van der Waals ener-

gy in terms of Im[g (q, co)]. This results in

U dw(zo)= —g I I dqq e

X Im[g (q, co)]
N+C0„0

(9)

after integrating over the directions of q. Equation (9)
represents our general expression for the van der Waals
energy.

We can see from Eq. (9) that if Im[g(q, co)] were in-
dependent of q we would find an inverse cube z depen-
dence in the potential. Similarly the part of Im[g(q, co)]
linear in q gives a z term in the potential, thus defining
the effective image-plane position z„dw. The usual treat-
ments of the van der Waals potentials only include these
leading powers of q in the surface response and therefore
give the asymptotic expansion of the van der Waals as in
Eq. (1). In Sec. III we shall introduce a model response
function which reproduces the correct asymptotic limit
for the van der Waals but which also remains finite at all
zo. With this response function we can therefore test the
validity of the asymptotic expansion at finite atom-
surface separations.

The importance of writing the van der Waals in terms
of the imaginary part of the response function
Im[g(q, co)], as in Eq. (9), is that the response function
can in principle be determined experimentally. For exam-
ple, Im[g (q,co)] is proportional to the electron energy loss
probability in EELS experiments. ' ' In addition, at
q =0 the response function can be related to optical data.
This is because at q =0 the surface response function can
be found by elementary electrostatics and is given by

g(0, co) = e(co) —1

e(co)+1
(10)

where e(co) is the dielectric function of the solid. Equa-
tion (9) shows that the response function at q =0 gives the
asymptotic coefficient of the van der Waals energy, C&,
therefore C& can be found directly from optical data. Us-
ing the experimental frequency-dependent dielectric func-
tion of silver' we have calculated C& helium on silver; we
find the value of C& ——0.0618 a.u. in excellent agreement
with the work of Zaremba and Kohn.

We can also rewrite Eq. (9) in terms of a frequency-
dependent atomic polarizability a(co). This gives

( ) I d z 2q,
~ dco "dco' Im[g(q, co)]Im[a(co')]

0 0 ~ 0 CO+ QP

It is of course possible to show that this is equivalent to the usual expressions for the van der Waals energy involving an-
alytic continuation of the response function and polarizability to the imaginary frequency axis. ' By using Eq. (9) for
the van der %'aals energy we avoid any need for analytic continuation.
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III. DISPERSED SURFACE-PLASMON —POLE
APPROXIMATION

In this section we shall introduce a plasmon-pole ap-
proximation for the surface response function
Im[g(q, co)]. Using this response function the calculated
van der Waals energy has the correct asymptotic coeffi-
cients C3 and z„dw but also remains finite for all dis-
tances.

For simple metal surfaces the response function

Im[g(q, to)] is dominated by a single peak at the surface-
plasmon frequency. Furthermore the van der Waals ener-

gy calculated using Eq. (9) will be relatively insensitive to
the detailed shape of the peak. We shall therefore approx-
imate the response function by a single plasmon pole, '

giving
2

Im[g(q, co)]=— 5(so —co, (q))
2 co, (q)

(12)

for co~0. Here co, is the surface-plasmon frequency at
q =0 and cos(q) is the surface-plasmon dispersion relation.
It is clear that this approximation for the response func-
tion satisfies the following sum rule:

—I co Im[g (q, co )]de =Los (13)

ro, (q) =co, +aq+pq + —,'q" . (14)

The aq term gives the linear surface-plasmon dispersion
at small q. The q /4 term is included to represent the
continuum of single-particle excitations at large q. The
pq term is included to interpolate between these two re-
gimes. Following Echenique et a/. ' we choose the value
of p by requiring that the surface-plasmon line cps(q) joins
the single-particle continuum at the same point as the
bulk-plasmon line does, as prescribed by %ikborg and In-
glesfield. '

The plasmon dispersion parameter a can be directly re-
lated to the static image-plane position of the surface.
This follows from the low-q expansion of the response
function g(q, oi). The small wave-vector limit of the sur-
face response function can be written in the following
form"

g(q, co) = [1+2dip(oi)q]+0(q ),e(oi) —1 2

e(o~)+ 1
(15)

where the quantity dip(o~) can be interpreted as a dynami-
cal image-plane position. As os~0, dip(co) becomes the
static image-plane position of the surface dip(0). We can
relate this image-plane position to our model response
function as follows: Using the Kramers-Kronig relations
we obtain

which is the surface generalization of the well-known f
sum rule in the bulk. The surface sum rule can be derived
from the bulk one using the specular reflection model'
which gives the surface response in terms of the bulk
dielectric function e(q, to). Following Echenique et al. '

we take the surface-plasmon dispersion relation to have
the following form:

TABLE I. Dispersion coefficients for surface-plasrnon —pole
approxlm ation.

Q (a.U. )

—0.6000
—0.1589
—0.0609
—0.0295
—0.0167

p (a.u. )

2.0660
0.8603
0.4684
0.2960
0.2058

We thus find that the value of a is determined by the stat-
ic image-plane position of the surface

a= —2~,'d»(0) . (17)

There are accurate calculations available for the static
image-plane position of simple metal surfaces in the jelli-
um approximation and the values of cos are determined b~
the jellium Wigner-Seitz radius according to co, =3!2r,.
For r, =3 jellium using Lang and Kohn's calculation of
the image Plane' gives dip(0)=1.43 from the jellium
edge, and thus we find a= —0.1598. Once a is known we
can determine the value of P as described above, for r, =3
this gives p=0.8603. In Table I we give a summary of
our calculated values of a and p for various substrates.

Note that our values of a (and hence also of p) differ
from those of Echenique et al. This is because they used
positive values of the plasmon dispersion coefficient a
which were consistent with the work of Ritchie and
Marusak, Inkson, ' and Inglesfield and Wikborg, on
the other hand, the calculations of Feibelman give a neg-
ative value for the dispersion coefficient a. A positive
value of a would correspond to a static image plane locat-
ed behind the jellium edge, while it is well established that
for realistic treatments of the surface barrier the image
plane is located outside the jellium edge.

IV. RESULTS AND DISCUSSION

%e can now calculate the van der %'aals energy using
the surface response function discussed above. Substitut-
ing the plasmon-pole response function into the general
formula of Eq. (9), we obtain

U,dw(z)= ——,'g I dqq e
~no

X
co, (q) [oi,(q)+co„o]

(18)

This integral will remain finite for all z & 0 and so the cal-
culated van der Waals energy will not suffer from diver-
gences. It is straightforward to evaluate the integral nu-
merically to give the van der Waals energy as a function
of z. %e can find the behavior at large z by making the
asymptotic expansion

1 fno ~sU„(z)=-
oino (tos+oino)

2

g(q,O)=, =1—,+0(q') .
o~, (q) cu,

3 fno (2sos+o~no)~s a
16z n o~, o (co, +co„o) 2',

(19)



JAMES F. ANNETT AND P. M. ECHENIQUE

Comparison with Ref. 5 shows that the asymptotic coeffi-
cient C3 and the effective image-plane position z,dw that
we calculate agree exactly with the calculations of Zarem-
ba and Kohn. Recent detailed calculations of the
electron-hole pair contribution to the surface response
give a van der Waals reference plane position which is
somewhat smaller (by about 20%) than given by Zaremba
and Kohn. Instead of determining the dispersion coeffi-
cient a from the static image-plane position we could
choose a so as to reproduce these more exact calculations
of the van der Waals reference plane. We would not ex-
pect such a 20% change in a to significantly alter our
conclusions. To summarize, Eq. (18) gives a van der
Waals potential which remains finite at all atom-surface
separations; furthermore, using the dispersion parameters
a and P given in Table I the van der Waals potential has
an asymptotic expansion identical to that calculated by
Zaremba and Kohn.

%'e have calculated the van der %aals energy given by
Eq. (18) for helium on a variety of simple metal sub-
strates. The oscillator strengths and frequencies were tak-
en from Dalgrano and Victor, and the values of a and P
were as given in Table I. Our results for helium on r, =3
jellium are shown in Fig. 1 (solid line). For comparison
we also show the potential calculated using the asymptotic
form of Eq. (1). Figure 1 shows that at typical atom-
surface separations the calculated van der Waals potential
is significantly weaker than that given by the asymptotic
form. For example, at z=7 our calculation gives only
about 60% of the asymptotic result. This difference has
important consequences for calculations of the binding
energies of helium on simple metal surfaces, which we
discuss below.

A number of other approaches have been suggested for
suppressing the divergence at the image plane of the
asymptotic van der %'aals potential. %'e compare these

calculations with ours in Fig. 2. %'hat is plotted is the ra-
tio of the calculated van der Waals energy to the asymp-
totic approximation, thus giving a measure of how quick-
ly the potential achieves its limiting form. Our calcula-
tion is given by the solid line in Fig. 2. The dashed lines
in Fig. 2 were calculated following the prescription of
Nordlander and Harris. These authors simulated the
falloff of the response function g(q, co) at high q by sim-

ply introducing a cutoff k, in the integrals over q. Before
introducing the cutoff they also translated the origin to
the van der Waals reference plane z„dw, and so they ob-
tained the following result:

U dw(z)
C3

f(k, (z —z„dw)),
(z —z dw)

(20)

f(x)=1—(2x +2x+1)e
Nordlander and Harris estimated the value of the cutoff
k, by requiring that the van der %'aals energy approach
its "bulk" value (estimated as about 1 eV) at the reference
plane z„d~, this procedure gave k, =l. In our calcula-
tions for helium on r, =3 jellium the van der Waals ener-

gy was found to be about 0.16 eV at z„dw, this is substan-
tially less than the values of about 1 eV assumed by Nord-
lander and Harris, suggesting that a more appropriate
value of k, would be 0.5. In Fig. 2 we show the potential
calculated from Eq. (20) using either k, = 1 or k, =0.5 for
comparison with our results. It is clear from the figure
that the Nordlander-Harris potential approaches its
asymptotic limit much sooner than ours. This is because
the cutoff procedure forces the potential to approach the
asymptotic limit exponentially rather than as a power law
in z as in our calculation. We can therefore conclude that
the differences between the van der Waals energy at finite
distances and the asymptotic expansion of Zaremba and
Kohn are much larger than Nordlander and Harris es-
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FIG. 1. van der %'aals energies for helium on r, =3 jellium

calculated using the dispersed surface-plasmon —pole approxi-
mation of this work (labeled AE) and using the asymptotic ap-
proximation of Zaremba and Kohn (Ref. 5), —C3/(z —z„d~)'
(labeled ZK). The jellium edge is located at z =0.

FIG. 2. Comparison of different calculations of the van der
Waals energy. %e plot the ratio of the energy to its asymptotic
limit —C3/(z —z„d~ ) . The calculations shown are the
dispersed surface-plasmon —pole approximation {solid line), the
Nordlander-Harris wave-vector cutoff method (dashed lines) for
k, =1 or k, =0.5, and the calculations of Holmberg, Apell, and
Giraldo (dotted line).
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timated. This implies that the binding energies of helium

on simple metals would be smaller than obtained by either
Zaremba and Kohn or Nordlander and Harris.

Very recently Holmberg, Apell, and Giraldo have also
calculated the saturation of the van der Waals potential at
small separations. %e show their results in the dotted line
in Fig. 2. These authors used a model surface response
function similar to ours, although they explicitly separat-
ed the terms linear in q (giving the reference plane posi-
tion z„dw) from the behavior at large q (giving the "cut-
off"). Despite the differences between their response
function and ours, Fig. 2 shows that their results are very
similar to our calculations. %e would expect their calcu-
lated van der Waals to be slightly larger than ours (as Fig.
2 shows) since they include the quadrupolar polarizability
of the atom, which we have neglected.

V. HELIUM BINDING ENERGY

The calculations discussed above show that the van der
Waals energy is significantly weaker at typical atom-
surface separations than other authors had supposed.
This implies that the binding energies of helium on simple
metal substrates would be less than had been previously
supposed. At present there seem to be no experimental
observations of selective adsorption resonances of helium
on simple metal substrates that could test this hypothesis.

We can write the energy of the helium atom near a met-
al surface as a sum of three terms,

nett and Haydock. ' The calculations of Annett and Hay-
dock made use of the image potential of the surface, in a
more exact treatment the nonlocal self-energy defined in

Eq. (2) should be used instead. Note that the hybridiza-
tion is a second-order effect of the self-energy, while the
van der Waals defined in Eq. (3) is a first-order process.

Figure 3 shows our results for the potential energy of a
helium atom near an r, =3 jellium surface. To illustrate
the relative importance of the different terms the curve is
broken down into its constituent contributions. %e can
see from the figure that in the well region potential is en-

tirely dominated by the van der %aals and the repulsion
since the hybridization falls off quickly with distance. In
the repulsive region the (appropriate for helium diffrac-
tion experiments) the U~ term dominates while the hy-
bridization is the second largest term. At a typical helium
atom classical turning point of z =3Uh„b is about 25% of
UR, consistent with the arguments of Annett and Hay-
dock."

We find that the well depth of the helium r, =3 poten-
tial is 1.25 meV and that the minimum is located at
around z=s. This binding energy is substantially less
than that found by either Zaremba and Kohn or by
Nordlander and Harris. The difference arises because
our calculated van der Waals energy is significantly less
than that calculated by these authors (see, for example,
Fig. 2). For example, had we used the Nordlander-Harris

U(z) = Uz (z) + Uh„b(z) + U„dw(z) . (21)
100

These terms are, respectively, the repulsion energy due to
overlap of the occupied metal electronic wave function
with the helium 1s orbital, the hybridization due to cou-
pling of the occupied helium ls into unoccupied metal
states, ' ' and finally the van der Waals interaction dis-
cussed above.

%e calculate the overlap repulsion energy Uz using the
approach of Harris and Liebsch. This gives the repul-
sion energy as an integral over the occupied local density
of states of the metal at the helium atom position. Since
the local density of states outside the metal is sharply
peaked at the Fermi level, a good approximation to this
integral should be given by

80—

60—

40 q

20—I 10

8—

Q3I
4—

UR(z) =0 8g(4+6, )p(z.), (22)
- UvdN

where the function g(E) is the function given by Harris
and Liebsch for the scattering of electrons of energy E
below vacuum. 4 is the work function of the metal and b,
is an energy shift representing the mean of the metal local
density of states relative to the Fermi level; we took 6 as
1.5 eV. p(z) is the charge density of the jel1ium surface,
which we take from the self-consistent calculation of
Lang and Kohn. The factor of 0.8 is included to ap-
proximately take into account the second and higher-
order scatterings of the metal electrons by the helium ls
core, as suggested by Nordlander.

The hybridization energy Uh„b takes into account the
relaxation of the helium core due to overlap with unoccu-
pied states in the metal. We take the magnitude of the
hybridization energy Uh„b(z) from the calculations of An-

I
0

"tot

I I l

4 S 6 7 8 9

distance (units of ag
FIG. 3. Calculated potential energy of a helium atom near

r, =3 jelhum (solid curve}. The dashed curves show the three
contributions to the energy: the orthogonalization repulsion en-

ergy due to overlap of the helium 1s with occupied metal states
(Uq), the hybridization energy due to mixing of the helium 1s
with unoccupied metal states (Uh„b), and the van der %'aals en-

ergy ( U„d~).
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TABLE II. Potential minimum energies and separations for
helium on jellium.

fno J~y 4 —2 z

no 4[co,(q) +co„o]~co,(q)
2

r, (ao) (ao)
This has the asylnptotic limit of

2.63
1.26
0.71
0.32
0.26

7.5
8.0
8.0
8.5
9.0

VI. PARALLEL VELOCITY DEPENDENCE

In the self-energy approach to the van der Waals energy
it is straightforward to include the velocity of the atom
parallel to the surface. Following Ferrell and Ritchie
this leads to the following generalization of Eq. (9):

n0
Uvaw(»= —Q

nO

approach to U„qw with k, = 1 our potential would have
had a depth of 2.5 meV occurring at z =7, in agreement
with the results of Nordlander and Harris. Such a large
difference between theories could certainly be tested by
hehum diffraction experiments. At present there appear
to be no selective adsorption resonance data for helium on
simple metal surfaces, although there seems no reason in
principle why these experiments could not be carried out
in the near future.

%e have also calculated the binding energies and equili-
brium separations of helium on a number of substrates;
these results are summarized in Table II.

v fno 3z

z „~no 16(co, +co„o)
(26)

in agreement with the work of Ferrell and Ritchie.
In order to investigate the importance of dispersion on

the velocity-dependent part of the potential we have cal-
culated the potential of Eq. (25) for helium on r, =3 jelli-
um. The results of this calculation are shown in Fig. 4,
where we plot the ratio of the calculated potential to the
asymptotic form given by Eq. (26). We see that the
velocity-dependent part of the potential is only about 50%
of its asymptotic value at a typical atom-surface separa-
tion. The approach to the asymptotic limit appears to
occur more slowly than for the static potential shown in
Fig. 2. For helium on r, =3 jellium the magnitude of the
asymptotic form given in Eq. (26) was calculated to be
0.0334U /z . For typical helium atom scattering veloci-
ties and distances this gives only a minute change in the
van der %aals energy due to the atom velocity. However
these velocity-dependent effects may well become signifi-
cant for atoms which are more polarizable than helium, or
at higher beam energies than for low-energy atom scatter-
ing.

It is interesting to note that for very high atom veloci-
ties the van der Waals energy given in Eq. (23) has an
imaginary part. This is a result of loss processes that can
occur due to real excitations of the atom and the solid.
The condition for these processes to occur is the vanishing
of the denominator of Eq. (22), which occurs when

J~dcof 2 qe
2

1 2
2 MU P 6)JI O+ QP . (27)

Im[g (q, co)]

co+cono vq+q /2M—

This implies that these loss processes will not occur except
for high atom energies (for helium co„o is of order 20 eV),

(23)

Here v is the velocity vector parallel to the surface and M
is the mass of the atom. The extra terms in the denomi-
nator —v q+q /2M are the change in the kinetic energy
of the atom due to interaction with the virtual quantum
of wave vector q. In the static case v=0 and Eq. (23)
reduces to Eq. (9), since the recoil term q /2M is negligi-
ble.

For small velocities we may expand the van der %aals
potential in a power series in U. The leading velocity-
dependent term is found to be

fno deil ~ 2 2~ Im[g(q co)]
Gqg 8

3 2g U

~no 0 'ir 0 (~+~no)

0
NcQ

C 08—
Q
CL

&6Q
o
U

04
Q.
Q) co

cg

~ 02—

V
Q
0) 6 8 10 12 &4

distance (units of ao)

(24)

%e have again neglected the q /2M recoil term since it is
negligible whenever q ~&2Mcono or z &&(2M'„o) ' . If
we substitute our dispersed surface-plaslnon —pole approx-
imation for the response function Im[g(q, co)] we find the
velocity-dependent part of the potential to be

FIG. 4. Velocity-dependent part of the van der ~aals poten-
tial. %e plot the contribution to the potential proportional to
U, where U is the atom velocity parallel to the surface. The cal-
culations are for helium on r, =3 jellium. The curve plotted is
the ratio of the velocity-dependent potential to its asymptotic
form of CU /z', thus giving an indication of the effects due to
the finite separation between the atom and the surface.
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and furthermore that the low-energy excitations of the
solid (i.e., electron-hole pairs) will be the most significant.
%ork is under progress to calculate the total loss probabil-
ity for an atom impinging on a surface. Sols, Flore, and
Garcia have calculated loss processes that occur at lower
atom velocities due to second-order terms in the self-

energy.
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