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The modulated phases of o.-uranium consistent with a Landau-type theory are described in detail
and analyzed in terms of their superspace symmetry. It is suggested that the phase transition at 43
K is to a phase which is incommensurate both parallel and perpendicular to the a axis, that the
phase transition at 37 K is to a phase which is commensurate along the a axis but incommensurate
in a perpendicular direction, and that the transition at 23 K is to a purely commensurate phase.

I. INTRODUCTION

The observation by neutron diffraction of weak satel-
lites near q=(+ —,',0,0) by Smith et al. ' and of stronger
satellites at q=(+ —,', +p, +y) (where p and y are nonzero)

by Marmeggi and Delapalme indicate that the phase
transition discovered at 43 K in C-centered orthorhombic
a-uranium by Fisher and McSkimin is due to the appear-
ance of a modulation of the basic structure. Lander4 has
given a detailed review of these and related works.

In a measurement of the atomic displacements associat-
ed with the q =(+ —,', +p, +y } refiections Marmeggi
et aL assumed that the modulated phase was a single-q
state and that a given crystal contained equal populations
of the four single-q domains [the four domains corre-
spond to q=+( —,',p, y), +( —,', —p, y), +( —,', —p, —y), and
+( —,,p, —y)]. However, Smith and Lander6 have raised
the possibility that the modulated phase might be a
multi-q state and van Smaalen and Haas and van
Smaalen7 claim to have given, by making use of super-
space groups, ' "a complete list of all possibilities along
with their consequences for the structure. " They have

also identified a preferred possibility [Pmcrn ( —,py)] for
the modulated structure of a-uranium; their preferred
possibility is, in the language of this paper, a quadruple-q
state.

It is important to note that there are three, and not just
one, low-temperature phase transitions in a-uranium (at
temperatures of 43, 37, and 23 K) as shown by the
thermal expansion measurements of Steinitz et al."
Thus, to fully understand the modulated phases of a-
uranium, one must understand the differences between the
modulated phases in each of the three temperature re-
gions.

Very recently, Chen and Lander' have performed elec-
tron microscopy studies which have clearly identified dif-
ferent coexisting phases in a-uranium; this coexistence of
different phases, indicating that the phase transitions do
not go to completion, is at least part of the reason a de-
tailed understanding of the modulated phases has been
difficult to obtain. Chen and Lander find that below 23
K the nearly commensurate phase [a phase which gives
diffraction at wave vectors close to q=( —,,0,0) but not at
the incommensurate wave vectors] grows at the expense of
the incommensurate phase. Furthermore, they find that

the incommensurate phases which occur between 23 and
37 K and between 37 and 43 K are 2 —q states (in the
language of this paper), which would appear to rule out
the preferred state of van Smaalen and Haas7 as being the
explanation of either of the incommensurate phases.

This paper develops a Landau-type theoretical model
for the incommensurate phases. This approach not only
allows an identification of a number of possible different
modulated phases, but also gives information on the phase
changes which might be expected as a function of tem-
perature. For example, the model allows a second-order
phase transition to various modulated phases described by
q=(+a, +p, +y); in general there is no reason for a to
equal one-half immediately below the second-order phase
transition temperature, although a phase transition from a
state with a& —,

' to one with a = —,
' is predicted to occur at

lower temperatures for certain model parameters and is
thus a possibility for the transition at 37 K.

The work of van Smaalen and Haas, which is based on
symmetry considerations only, describes in addition to
some of the phases obtained here, phases which I have not
obtained. This is not surprising, since a Landau theory
adds restrictions due to energetic consider'ations to the re-
quirements of symmetry. On the other hand, I find a
number of phases not described by them, which is surpris-
ing in view of their claim to have given a "complete list of
all possibilities. "

The satellites found by Smith et al. ' close to
q=(+ —,',0,0) occur at positions ((h + —, )(1—5), k, l }, i.e.,
they have the unusual property of appearing to be refiec-
tions from a lattice with a lattice constant a„which is
slightly larger than twice the fundamental lattice constant
ao,' also, the space-group symmetry of the superlattice was
found to be Prrtnrn. Smith et al. ' rejected the idea that
the superlattice peaks which they observed represented a
new phase which occupied a small fraction of the total
sample volume because high-resolution scans of the fun-
damental Bragg peaks failed to detect evidence for the
two sets of Bragg peaks which would be expected for two
coexisting phases. Instead, they' attributed the shift of
the satellite positions from q=(+ —,,0,0) to the presence
of discommensurations. In this article, I examine the
commensurate phases resulting from a X4 normal-mode
distortion for which q=( —,',0,0).and show that one of the
two possible phases has space-group symmetry Pmnm in
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agreement with that observed. This observation coupled
with the electron microscopic observations of Chen and
Lander' (of nearly commensurate phase domains embed-
ded in the incommensurate phase) mentioned above sup-
port the conclusion that the satellites near q=( —,',0,0)
represent scattering from commensurate phase domains
embedded in incommensurate phase material having a
slightly different average lattice constant.

Two shortcomings of this article are that we have ig-
nored the possibility that "the structure [of a-uranium] at
room temperature may be non centered, "' and that we
have ignored the striations observed by Chen and
Lander. '

Sections II—IV of this article are devoted to a discus-
sion of the incommensurate phases which produce satel-
lites at q=(+a, +P, +y), Sec. V describes the relevant
commensurate phases which produce satellites at
q=(+ —,',0,0), and some conclusions are noted in Sec. VI.

II. SYMMETRY CONSIDERATIONS AND FREE
ENERGY FOR THE INCOMMENSURATE PHASES

Basal-plane projections of the C-centered orthorhombic
structure of a-uranium and of the associated Brillouin
zone are shown in Figs. 1(a) and 1(b).

The wave vectors qj (j =1,2, 3,4) are defined by

qi=(~P y» qi=(a 73y»—
q~=(iz, —P, —y), q~=(a, P, —y),

(2.1)

ii OIO

where (a,p, y) =aa'+pb'+yc". At temperatures below
43 K, diffraction experiments have observed satellites

with wave vectors qj relative to the a-uranium
reciprocal-lattice vectors. The parameter a= —,

' to within
experimental error.

The form of the normal-mode distortion for a given qi
has b n dete~in~ by Ma~eggi et al s However, it is
important for this work to establish definitions which re-
late the normal modes with different qi to one another
and to show how the different normal modes transform
into one another under the operations of the space group
Cmcm (Dii, ).

The column vectors

&(q & +) ~—1/2 geiq Ril, s)&(7 &

I
(2.2)

are a convenient set of basis vectors for a description of
the normal modes of wave vector q. Here 7 labels the par-
ticular primitive unit cell, s [=1 or 1, see Fig. 1(a)] labels
the two atoms in the primitive unit cell, and a=x,y or z.
R(7,s) is the position of the atom labeled by 7 and s, and
e(7,s,a) is a column vector with unity in the row labeled
by (7,s,a} and zero elsewhere; the crystal is assumed to
contain 7t7 unit cells, so all column vectors have N X 2X 3
rows. In a translation of the crystal by a Bravais lattice
vector R(7 ) =7 i a, + 72'+ 73a3, these basis vectors
transform according to

I E
I R(7)je(q,s,a)=e ''i' ' 'e(q, s,a) . (2.3)

The basic normal-mode eigenvectors for this work are de-
fined to be

e(qi)=i ga [e' 'e(qi, l,a)+e '
'e(qi, T,a)),

e(q2)= —i g(oza~)[e 'e(qq, l,a)+e 'e(q2, 1,a)],
(2.4)

e(qi)= i g(C—2„a )[e e(qi, l,a)+e 'e(q&, l,a)],

IOO e(q4)=i g(cr, a )[eoe(q~~, l,a)+e e(q~4, 1,a)] .

Here the qj are given by Eq. (2.1) with a= —,
' and the a

and 8~ are real Also . o&(a„,az, a, }=(a, —az, a, ),
Cz„(a„a„,a, }=(a,—a~, —a, }, and o,(a„a~,a, )

=(a~,ay, —ag).
The transformation properties of the eigenvectors under

a set of generators of the space group Cmcm are

II IOIe(qi)=e'(qi),

I C2„ I OIe (q~. ) = —e(Ci qi),
Io, I

—,'cIe(qi)=exp(i' c/2)e(o, qi) .

(2.5)

FIG. 1. (a} Basal plane projection of the C-centered
orthorhombic unit ceB of the a-uranium structure. The vectors
al, a~, a3 and a,b, c are basis vectors describing the primitive and
conventional unit cells, respectively; the vectors a3——c are nor-
mal to the plane of the paper. The open and solid circles
represent uranium ions in the planes z =e j4 and z= —e/4,
respectively. 4,

'b) Basal plane projection of the Brillouin zone
showing various reciprocal lattice vectors; a3 ——c is normal to
the plane of the paper.

Since the little group of a given wave vector qi contains
only the identity element, only time-reversal symmetry re-
stricts the form of the eigenvectors. The consequences of
time-reversal symmetry are refiected in the first of Eqs.
(2.5), which fixes the phases of the eigenvectors. The four
eigenvectors e(qj) together with their complex conju-
gates, form a basis of an irreducible corepresentation of
Cmem.

In this work, I consider distortions from the basic a-
uranium structure which have the form of a liner com-
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u =Re g QJ(r}e(qJ) (2.6)

where the order parameter QJ(r) is a complex slowly vary-

ing function of r to be determined. The atomic displace-
ments u (I,s,a) for the state described by Eq. (2.6) are

bination of the normal modes given in Eq. (2.4). The dis-

torted state is specified in terms of the coluinn vector

OJ(r) =
I CJ I

e ' (2.7)

and the ath component of the displacement of atom (l,s)
&s given by

found by taking the scalar product of e(l,s,a) with u and
evaluating the result at r=R(l, s). For example, in a case
considered below, QJ(r) has the form

u(l, s,a)=a
~ f& ( cos[qi R(l,s)+s8 + —,'m+((}&]p (osa }

~ $2 ~
cos[q2 R(l,s) —s8 —,'mr+—P2]

+«z aa}
I 43 I

cos[q3'R(l, s}—$8a —117+0'3]+(o.aa) I 6 I cos[q4 R(l.,s)+s8.+ ,'n+—p,]

where, as above, s is 1 or 1=—1 and

0qj=qj+P .

(2.8)

(2 9)

Given Eq. (2.6) and the transformation properties [Eq. (2.5)] of the normal-mode eigenvectors, the transformation
properties of the order parameter can be determined (for example, under the inversion operation {I

~
0},gJ ~g~'). The

Ginzberg-Landau free-energy density which must be invariant with respect to the transformations of the Cmcm space
group, can now be shown to be

4 4 2

+=gyJ'«)A;( 1'~}y;«—)+&i g l@J I' +&1(lij'il' I%I'+ IN&I' l@4I')

+&3(lit1I' l@2I'+ Ii}'il I@I }+&« li}l11 I@41 + 1@21 1@iI }+1&s(it'i&3&2@4+cc )

+ ,' C[($1/1+—p1p~)+c.c.]+ , D($1$1$3$—&+c.c.), (2.10)

where c.c. stands for the complex conjugate of the other
terms inside the same bracket.

The quantities AJ (p) are assumed to have their
minimum at p=5a', independent of j. Furthermore, at
temperatures T close to the assumed second-order phase-
transition transition temperature T, =43 K, Aj will be as-
sumed to vary as

AJ(5a') =k ( T —T, ), (2.11)

where k is a positive constant. Thus, just below the tran-
sition temperature, the distorted state will be character-
ized by an order parameter of the form of Eq. (2.7) (some
of the

~ pJ ~

's may be zero} and wave vectors of the form
given by Eq. (2.9) with p=5a'; i.e., the q's have the form
given by Eq. (2.1) with a= —,

' +5. In all experiments to
date, a was found to be —,

' to within experimental error.
However, there is no symmetry argument which requires
5 to be zero; therefore it must be assumed to be nonzero.

III. POSSIBLE MODULATED STA'rES
OF O.-URANIUM

As pointed out at the end of the preceding section, im-
mediately below the transition temperature T, the order
parameter has the form given by Eq. (2.7}, with one or

characterized by the wave vectors qJ of Eq. (2.1) with
cz= 2 +5 alld 5+0. S11lcc 5+0, thcsc states al'c 111co111-

mensurate in the a-axis direction. For such states the

terms proportional to C and D in the free-energy density
of Eq. (2.10} give zero contribution to the free energy,
since they average to zero when integrated over the entire
crystal. On the other hand, if states for which pJ is in-
dependent of r are considered, i.e., states characterized by
wave vectors qj which are commensurate in the a-axis
direction, it can be shown that the terms in C and D give
a negative contribution to the free energy if the relative
phases of the gJ are appropriately chosen. When the tem-
perature is lowered sufficiently below T„ the fourth-order
terms in the fry energy have the dominant effect in deter-
mining the equilibrium state, and one can show that for
appropriately chosen values of the model parameters (the
8 s, C, and D) a phase transition to an a-axis commensu-
rate state can occur so as to take advantage of the terms
in C or D (or both) in the free energy.

A. [1},[2},[3},and [4} a-axis incommensurate states

The parameter 8& will always be assumed to be suffi-
ciently positive to assure an absolute minimum of the free
energy with bounded

~ 1(J ~

's. If, in addition to 8& ~0,
the parameters 82, 83, and 84 are positive, and 85 is suf-
ficiently small, the minimum fry energy is obtained when
only one of the

~ t/rJ ~

's is nonzero. Such a state is called a
single-q state and is denoted by {1 },{2}, {3 },or {4},de-
pending on whether gi, Pz, A)3, or Pz is nonzero. The
single-q states must always be a-axis incommensurate be-
cause the terms in C and D in the free energy which stabi-
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lize the a-axis commensurate phases do not exist if only a
single g~ is nonzero.

C
I fi I

'
I 6 I

' eos2(41+ 43) ~ (3.1)

If C &0, the minimum of Eq. (3.1) is obtained for
{()&+Pi ——n n with n an integer whereas for C & 0,
Pi+Ps (n+ —,

'——)m. For representative states for each
case, I make the following choices: for case (i),

B. [1,3} and [2,4} states

A [ 1,3} state has gati and f3 nonzero and pz —/~=0.
An a-axis incommensurate [1,3} state can be shown to
give the minimum free energy if 82 &0, 83)0 8$)0,
Bs is sufficiently small, and T is sufficiently close to T, ;
the minimum occurs for pi and 1t3 having equal magni-
tudes, i.e., ( g, ~

=
~ gs (; as always for a-axis incommens-

urate states the r dependence of 1tj is given by Eq. (2.7)
with p=5a'. The phases {()J of PJ [see Eq. (2.7)] are un-

determined by the free energy and will be written

Pi ———qt ro and Ps ———qs ro where the vector ro is re-
stricted to lie in the plane containing q] and q3, note that
ro thus has only two independent components correspond-
ing to the two independent phases P& and Ps. %%en the
phases {ttj are written as {{tj= —qj"ro, the arguments of the
cosine functions in Eq. (2.8) ean be seen to contain the
terms qj"[R(l,s)—ro], thus showing that a change in the
vector ro by an amount 5ro corresponds to a translation of
the modulation pattern by 5ro. An identical interpretation
of ro applies to all cases considered below. The [2,4}
state is defined in an analogous manner and is degenerate
with the [1,3} state.

The term in C in the free-energy density can stabilize
the a-axis commensurate [1,3} state at temperatures suf-
ficiently below T, . For this state the QJ (j=1,3) are
given by Eq. (2.6) with p=O, the QJ for j=3,4 are zero,
and the free energy contains a term proportional to

in the free energy which would stabilize an a-axis com-
mensurate state. The two independent phases are written

PJ =—qj"ro, j=1,2 where ro is confined to the plane con-
taining both q& and qz. The [3,4} state is degenerate
with the [1,2} state. These are the lowest energy a-axis
incommensurate states if 83 & 0 Bp & 0 84 )0, aild Bs is
sufficiently small.

E. The [1,2, 3,4} states

The [1,2, 3,4} states have g~&0 for all j. It can be
shown that a minimum of the free energy is obtained for
the case where the magnitude of QJ, ~ f~ ~, is independent

j, and model parameters can be found for which this is an
absolute minimum. The free energy for an a-axis incom-
mensurate state contains the term

85
I fi4243A l

cos(0i+4s —42 0'4) ~

If Bs & 0, the minimum of Eq. (3.4) is obtained for

4i+4i =6+4+2n~

whereas for 85 &0,

Pi+Ps=$2+$4+(2n +1)~ .

(3.4)

For representative states for each case, I make the follow-
ing choices: for case (i),

8 &0, P = —q"ro,
and for ease (ii),

(3.5)

D. The [1,4} and [2,3} states

The [1,4} state is always a-axis incommensurate, has
phases QJ

———qj".ro, j= 1,4 (where ro lies in the plane con-
taining qi and q4) and is degenerate with the [2,3} state.
These are the lowest energy a-axis incommensurate states
if 84 & 0, 82 & 0, Bi & 0, and Bs is sufficiently small.

C&» Pi+{t)s=O
0

{ 1
—qi ro, 03 'q3'ro

(3.2)
Bs&0, pj=qj'ro if j&1,
f)=K—qj ro .

(3.6)

and for ease (ii),

C )0, pi+ps 2n, ———

1 O 0
{()i = i ir —qi'ro 4i= —qi'ro .

(3.3)

Here ro is a three-dimensional vector and its three in-
dependent components correspond to the fact that there
are three independent phases.

The free energy for the a-axis commensurate states con-
tains a term proportional to

Here, ro is taken to be a one-dimensional vector parallel to
d'=Pb'+yc {for comparison recall q~

———,
' a" +d' and

q3
———,a' —d'). That ro has only one component is con-

sistent with the fact that {()~+Pi——const so that there is
only one independent phase. Furthermore, note that ro
cannot have an a' component (since P, +Pi ——const) and
that any component of ro perpendicular to both a* and
d' does not enter Eqs. (3.3) and thus need not be con-
sidered. The atomic displacements are given by Eq. (2.8)
with qj replaced by q& since this state is a-axis commens-
urate.

C. The [1,2} and [3,4} states

The [1,2} state has $~~0, j=1,2 and /~=0, j=3,4.
It is always a-axis incommensurate since there is no term

5 (41+{( 3 42 '4) + cos(4'1+{t'2+43+44)

+ 2 C[eos[2(ki+{()i)]+eos[2(02+6)l} (3.7)

/~+$3=(m +n)n, $2+$4 {n'—m)m;——
ease (ii),

4i+Pi (n+m+1)~, P, +——P4 (n —m)~——;

case (iii),

(3.8a)

(3.8b)

Q)+&3——(n+m+ —,')~, p, +$4 ——(n —m+ —,')m; (3.8e)

case (iv),

A minimization of this term with respect to the phases
yields the following possible minima: Case (i),
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0
qj ro .'

For case (ii):

0 . 0
$i ——n —qi ro', QJ

=—qj ro, J%1 .

For case (iii):

0fJ—
2 7T —qj ro~ J —1,2,

0
fJ qj rpp J 3/4

For case (iv):

0 0Pi= T&—qi'ro 6= 2'ir

0
NJ

= —qJ'roi J =»4

(3.9a)

(3.9b)

(3.9c)

(3.9d)

It follows from Eq. (3.8) that ro must be perpendicular
to a', its two independent components correspond to the
fact that there are two independent phases.

States with exactly three PJ not equal to zero could con-
ceivably play a role in the properties of a-uranium. My
(incomplete) investigations did not find any set of model
parameters for which such states gave an absolute
minimum of the free energy and they are thus not con-
sidered in this article. A complete investigation of these
states is hampered by the fact that the three P~ will have
unequal magnitudes.

IV. SUPERSPACE-GROUP SYMMETRY
OF THE MODULATED STATES

For all of the modulated structures considered in the
preceding section, the phase PJ of Eq. (2.7) is written in
the form

(4.1)

(iv)

FIG. 2. The regions of stability of the four different

i 1,2, 3,4 i a-axis commensurate phases are shown.

p, +p, =(n+m+ —,')~, $2+$4——(n —m ——,')m . (3.8d)

Here n and m are integers. For 8~ «0, Fig. 2 shows the
region of stability of the different cases. As representative
states for each case, I make the following choices: For
case (i):

The state vector u of Eq. (2.6) then has the form

u(rp)=Re g I QJ Ie " ' 'e(qJ) (42)

where the a' component of the qj is a& —,
' for the a-axis

incommensurate states and a =—,
' for the a-axis commens-

urate states. The free energy is independent of ro and a
change of ro by 5rp corresponds to a displacement of the
modulation by 5r0.

By operating on u (ro) with one of the elements I P I wI
of the space group Cmcm and using Eq. (2.5), one obtains
a new-state vector describing a state with the same energy.
If this new state is the same as the old state except for a
change of rp, the two states will be said, for the purposes
of this article, to be the same state. Thus, in looking for
transformations which leave the state invariant, one looks
for transformations which satisfy

I P
I w) u([P

I v] 'rp) =u (rp) . (4.3)

Here, the new ro is written in the form of the inverse of a
Seitz space-group operator operating on r0,' square brack-
ets and curly brackets distinguish Seitz operators operat-
ing on rp and on the basis vectors e (q; ), respectively. The
set of transformations satisfying Eq. (4.3} form a group
called the superspace group of the structure, s 'o and the
element of the group corresponding to the transformation
of Eq. (4.3}is written

g =( t P I wj, [P I v]),
so that

(4.4)

gu (ro) =( IP I wI, [P
I
v])u(rp)

= IP I w]u([P
I
v] 'rp) . (4.5)

A. i 1,2, 3,4] a-axis incommensurate states

For the I 1,2, 3,4] a-axis incommensurate states, rp is a
three-dimensional vector. Also note that the vectors

b2 = —q4~ b3 =q3 ~ (4.7)

The result of applying first transformation gi and then
transformation gz is

g2gl ( IP2 I wzj IPi I
w i ii[Pz I

v 2][Pi I
v i])

Because

([Pz Iwz][Pi Ivi]} '=[Pi I»] '[P2Iv2] '

the use of the inverse operator [P
I v] ' in the definition

of Eq. (4.5) achieves in a natural way the correct result
that in two successive transformations, the transformation
operators are applied to r0 in reverse order.

The analysis of this section allows a comparison of my
results with those of van Smaalen and Haas and also al-
lows a description of the different domains having the
same energy for a given modulated phase.

In this Sec. I follow the ideas of superspace groups of
de %'olff, Janner, and Janssen ' but with a notation
adapted to the needs of this article.
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form a basis of a body-centered orthorhombic lattice in

reciprocal space of which the face-centered orthorhombic
direct lattice has the basis

l a bb= ——+—
2 a P

PJO=O

gi=(II 101 [I Io] '»
g2=(IC~ IoI [C2 I z(bi+12+13)] '»
g, =(Ia,

I
—,
' cI, [a, I

—,
' c]-'),

(4.14)

1 —b c
b =— +-

a
r

1 a 1
b3 ———

2 a P

these vectors satisfy

(4.8)

whereas for the other case [case (ii)] they are

010 ir» 4'j Q 0» J 2»3»4»

g i =( II
I
oI [I

I
ol ' },

g2=(I C2. I oI, [C2. I
—,'bi] '),

g3 =( ta. I 2 cl la. I
T~(c+bi+12)l '}

(4.15)

1; bq' ——2n5,J .

It can now be shown that the translations

(IE la I [E I

—a] '}

(I~I0I [&lb] ') (4.10)

A;=(a;, —a;), i =1,2,3,
A2+, ——(0,1;), i =1,2, 3 .

(4.11)

Here, the two vectors in a given bracket are the transla-
tion parts of the two translation operators defining the
corresponding superspace-group translation of Eq. (4.10).
The A; are said to describe translations in superspace.
The set of all combinations of the A; with integer coeffi-
cients defines the superspace Bravis lattice. A basis for
the superspace reciproca1 lattice is

A =(a,',0), i =1,2,3,
A3+, ——(1,',1,'), i =1,2, 3 .

These superspace vectors satisfy

A; AJ'=2n5;J,

(4.12)

(4.13)

where the scalar product of two superspace vectors is de-
fined by

(rl r2).(ql, q2}=rl.ql+r2 q2 .

To proceed further, a given element IP I wI of Cmcm
is applied to u (ro), as in Eq. (4.3), and one tries to find a
v for which Eq. (4.3) is satisfied. If such a v can be
found, then one has found a transformation which leaves
u (ro) invariant, i.e., one has found an element of the su-
perspace group. If no such v can be found, then the
transformation IP I w) generates a different state of the
same energy; different states of the same energy can coex-
ist and give a domain structure.

In the way just described, the generators of the super-
space group for the case where the PJO

——0 are found to be,
for case (i),

satisfy Eq. (4.3), where i =1,2, 3; the a; are the primitive
basis vectors of the C-centered a-uranium lattice defined
in Fig. 1(a) and the 1; are given by Eq. (4.8). The transla-
tions of Eq. (4.10) can also be represented by the notation

The superspace-group transformations given in Eqs.
(4.10), (4.14}„and (4.15) can be written in the form given
in Eq. (4.4}by using the result

[P lvl=[P 'I —P 'v] ', (4.16)

but are usually more conveniently used in the form given.
Since all of the elments of Cmcm generate elements of

the superspace group in both of the cases described by
Eqs. (4.11) and (4.12), there is only one distinct state in
each case.

The states just described were not considered by van
Smaalen and Haas. I believe that they mould have used
the notation Cmcm(aPy) to describe both superspace
groups; the capital C denotes the fact that the a;,
i =1,2, 3 entering the definition [Eq. (4.11}]of the super-
space Bravais lattice describes a C-centered orthorhombic
Bravais lattice; the mcm part of the symbol describes the
space group generated by the eleinents II

I OI, (C2„ I OI,
and I o,

I
—,
' cJ, which are the first parts of the transforma-

tions in both Eq. (4.14) and Eq. (4.15); the (aPy) part of
the symbol gives one of the incommensurate wave vectors
qi ——aa*+Pb'+yc'. Notice that the two superspace
groups differ in the fractional translations associated with
the elements [P I v] and that this difference is not ac-
counted for in the symbol Cmcm(aPy). It should be em-
phasized therefore that a precise definition of a particular
superspace group is given in this paper by stating the su-
perspace Bravais lattice and the generators, as in Eqs.
(4.11) and (4.14) above; the corresponding label [in this
case Cmcm(aPy)] is not necessarily either unique or com-
plete, but allows a comparison with the work of Ref. 7.

B. t 1,2, 3,4I a-axis commensurate states

For the purpose of this section, I defme

bi ————+—,bi ——Pb +yc1 b e

12=———+—,12 ———pb +yc
1 b c

P

(4.17)

so that 1;.bj =5;J; i,j=1,2. By making use of the form
of u(ro) for the I1,2, 3,4I a-axis commensurate states
given in So:. III E, one can show that sets of basis vectors
for the superspace Bravais lattice and reciprocal lattice for
this case are
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A, =[a,——,'(bi+bz)], & i =(a', 0),
az=(b, —1), az*=(b', 0),
A, =(c,—c), A3 ——(c',0),
A4 ——(O,bi), A4 ——(qi, bi ),
A, =(o,bz), A5 ——(qz, bz) .

(4.18)

with those given by him, if I have understood his notation
correctly. Furthermore, I find that all three structures
have two domains, while he finds that the Pmcm( —,'Py)
structures has only a single domain and that the other two
have two domains. In addition, my case (ii), which I have
labeled P ' l l—( —,'Py)( —,'Py), does not appear to have been
discussed by him.

Note that the C-centering is lost since the vectors a, b,
and c appearing in the A; are a basis for a primitive
orthorhombic lattice.

The generators of the superspace-group transformations
can be found for the four [1,2, 3,4j a-axis commensurate
cases described in Sec. IIIE and are now given, as is a
symbol giving at least a partial description of the super-
space symmetry as described above. For case (i):

((}Jp
——0, Pmcm ( —,

'
Py ),

g, =(II
f Oj, [I f 0] '),

(4.19)
gz=(ICz* I oj [Cz. I

—z(bi+bz}] '»

gz =([~,
I z c j [~. I z c] '} .

A; =(a;, —[a;]), A; =(q,',0), i =1,2, 3,

As+I ——(0,1;), Az+, (b,
*

,b——»'), .i =1,2, (4.23)

where [a;] is the part of a; lying in the plane containing
bi and bz. The generators of the superspace group are

C. 2—q I-axis incommensurate states

To describe the superspace symmetry of the I 1,3 j state,
the vectors bi and bz are defined by bi =qi and bz ——qz.
Also, b, and bz are defined as lying in the same plane as
bi and bz and satisfying b; bj'=2m5;, . The superspace
Bravais and reciprocal lattice basis vectors are then found
to be

For case (ii):

»I},p
—m, »I})o

—0 for j~l,P—' ll( —,
'
py)( —,py)

g, =(II
I oj, [I I

o]-'}, (4.20}

gi ——([(I foj, [I f0] '),

gz =( I Cz
I
oj [Cz. I z (bi+bz}] '» (4.24)

gz =(ICz
I oj [Cz I z bzl '} .

Fof case (ill):

1 1

Nlo=kzp= 2 rr» 03p=040=0» P2cm( z Py)»

g, =(IC foj, [C f

—', (b +b )] '),
gz=(I~, f

—,'cj, [~, f
—,'c+-,'(b, +bz)] ') .

(4.21)

and the group is labeled C—'11(apy). There are exactly
two domains, these domains being the t1,3j and I2,4j
states.

The superspace Bravais and reciprocal lattices of the
t1,2j a-axis incommensurate state are described by Eq.
(4.23), provided that bi and bz are defined by bi ——qi and
bz =qz. The generators of the superspace group are

For case (iv):

1 1 1ip= T~»»}}ZO=—
z ~» p~O=»} 4p=o» P222i( z Py)

g, =( II f oj, [I,o]-'),

gz =(t~y I z cj [~y I

—
z [c]—z (bi+bz}] ')

(4.25)

gi =(IC~ I oj, [C~ f
-'. bi+-.'bz]-'}

gz=(IC» I zcj [C» I Tc—z(bi+bz)]

(4.22)

Since IE f
at j, where ai is defined in Fig. 1, is an ele-

ment of Cmcm but does not generate an element of the
superspace symmetry group for any of the above four
cases, [E f ai j operating on u(rp) must generate a new
distinct state in each case. Since Itr, f

—,cj does not gen-
erate a superspace group symmetry element in case (ii),
Io, f

—,cj operating on u(rp) gives a state which is dif-
ferent from that described by u(ro}; this new state is,
however, the same as that generated by operating on u (rp
with [E f ai j. Detailed study shows that in each of the
above four cases there are exactly two distinct states with
the same energy (i.e., two domains), differing froin one
another by a translation of ai.

van Smaalen lists structures having superspace groups
labeled Pmcm ( —,Py), P2cm ( —,Py), and P222, ( —,

'
Py)

which would appear to correspond to my cases (i), (iii),
and (iv}. However, I find that the displacements given by
my Eqs. (2.8) for these structures are not in agreement

There are exactly two domains corresponding to the I 1,2 j
and [3,4j states and the group is labeled C 1—1(aPy).

For the I1,4j state, if 1i and bz are defined by bi =qi
and bz ——q4, then Eq. (4.23) is valid, and the generators

gi ——( II
f Oj, [I,O] '),

(4.26)

There are exactly two domains, these being the I 1,4j and
I2, 3j states.

van Smaalen has noted the existence of states similar
to the second and third cases studied in this section, but
not the first.

D. The I1,3j —t2, 4] a-axis commensurate states

To analyze the I 1,3 j states, d* is defined by
d' =Pb'+ yc*; d is parallel to d* and satisfies
d.d'=2m. . Bases for the Bravais and reciprocal lattices
are then
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A i
——(a, ——,

'
d), & i

——(a',0),
A =(b, —Pd), A' =(b', 0),
Ai=(c, —yd), Ai =(c',0),
A4 ——(O, d), A4 ——(qi, d*) .

(4.27)

The two energetically different cases of {1,3 j states are
discussed in Sec. III B. The generators are

e4 =e(q, l,x) —e (q, l,x)+ig [e (q, l,y)+e (q, l,y)],
(5.1)

where g is a real constant. The X4 eigenvector of Crum-
mett et al. ' contained an additional phase factor not con-
tained in Eq. (5.1) (possibly due to a neglect by them of
time-reversal symmetry). The transformation properties
of e4 under a set of generators of Cmcm are

bio=((l3o=0 P—' l l{ i A'»

g, =({I
1
oj, [I l

0)-'),
g2={{C2.Ioj [Cz I zd) '};

(4.28)

{C2*10je4=—e4

o., —,'c e4 ——eq,

{I~0je4 ——e4 .

(5.2)

in case (i), and

»}}'io=Y~ir» ((}so=0 P211( i A')

g=({ Cz l0j [Cz I
—.'dl ')

~

{4.29)

E. The single-q states

in case (ii).
Each of the above cases represents a state for which

there are exactly four domains. Starting with a given
{1,3j state, one can translate it by ai to get a second

{1,3j state, operate on it with {o,~
—,'cj to get a {1,4j

state, and translate the {1,4j state by ai to get the fourth
doIQMn.

van Smaalen also finds states which he labels by
P—„' ll( —,'Py} and P211(—,'Py) but he is in disagreement
with us in asserting that the P ' ll(-,'Py) —state has only
trvo domains.

This section focuses on modulated phases described by
the column vector

tt =Re(t(ie4) . (5.3)

F= i''A ( i V )P+—8
~ f ~

+8'(P +P' ), (5.4)

where a detailed knowledge of A ( —i V} is not necessary
in this section.

In the commensurate phase, f is independent of r and
is written

~

it»
~
exp(ii)}). The phase-dependent contribution

to F is then

F& ——28'
~ f ( cos(4»}}),

which is minimized by

(5.5)

A knowledge of the transformation properties of the order
parameter f follows from Eq. (5.2) and allows the con-
struction of the appropriate Ginzburg-Landau free-energy
density, which is

There are four domains associated with the {1 j, {2j,
{3j, and {4j states, the generator of the superspace group

+=2nir for 8'&0,
Q=(2n+1)m for 8'~0. (5.6}

g ={{II oj,[1 I oj

and the group is labeled C 1(aPy).

(4.30)

V. THE LO%'-TEMPERATURE
COMMENSURATE PHASE

Following the observation' of a pronounced dip at ap-
proximately q=( —,',0,0) in the X~ branch of the phonon
dispersion relation, Smith et al. ' observed weak superlat-
tice reflections at positions ((ii + —,

' )(1—b), k, l). These
reflections correspond to reflections from a superlattice
which has space group Pmnm and whose a-axis lattice
constant a, is shghtly larger than twice the fundamental
lattice constant a. I assume that these weak reflections
arise from domains which occupy a certain fraction (prob-
ably small for the samples used in the neutron experi-
ments since the reflections are weak) of the sample, and
that within these domains, there is a modulation which is
commensurate with the underlying lattice of the domain.
The lattice constant of this commensurate phase will of
course be different from that of the incommensurate
phase which occupies the rest of the sample.

In terms of the basis vectors defined by Eq. {2.2},the Xq
eigenvector at q=( —,',0,0) is written

The space groups of the structures corresponding to these
solutions are Pmnm and Pbnm, respectively. Thus, the
solution corresponding to 8' ~0 gives a structure with a
space group in agreement with that of the superlattice as
determined by Smith et al. '

A description of the incommensurate phases of a-
uranium could be attempted in terms of the free-energy
density of Eq. (5.4) and an order parameter having the
form

g(r)= g g;oe

where k, =(5,P,y), k2 ——(5„—P,y), k3 ——(5, —P, —y), and
k4 ——(5,P, —y) but will not be carried out since this ap-
proach is less general than that pursued in Sec. IV.

VI. CONCLUSIONS

The Landau-type models described in this article were
shown to give rise to modulated phases which are incom-
mensurate in the a-axis direction (as well as in at least one
of the directions normal to the a-axis direction), phases
which are commensurate in the a-axis direction (but in-
commensurate normal to the a axis) and to phases which
are purely commensurate.
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The observations of Chen and Lander ' indicate that
the phases which occur between 43 and 37 K and between
37 and 23 K are both 2—q states which I call I1,3I states
(or equivalently I2,4I states). My analysis says that the
initial transition at T, =43 K must be to an a-axis incom-
mensurate state, but the model contains an interaction
which, for a I 1,3I state, allows a lock-in phase transition
to an a-axis commensurate state at some temperature
below the initial transition temperature. This suggests
that the 37-K phase transition is a lock-in transition, and
high-resolution diffraction studies to see if the satellite
wave vectors have an incommensurate I component be-
tween 43 and 37 K would be a useful test of this sugges-
tion. The evidence' that the state which exists between
37 and 43 K is a 2—q state is perhaps not conclusive, and
other a-axis incommensurate possibilities should also be
considered.

There are two different a-axis commensurate I1,3)
phases. These are labeled P ' ll( —,P—y) and P211(—,Py),
lack the C-centering as indicated by the initial capital P
(primitive) in the label, and differ by the presence or ab-
sence of a center of inversion symmetry. Which of these
two occurs in an a-uranium between 23 and 37 K remains
to be determined.

Finally, it is suggested that the so-called nearly com-
mensurate phase which produces satellites near

q=( —,',0,0) may be simply a commensurate phase with an
average lattice constant slightly different from that of the
incommensurate phase. The observations of Chen and
Lander' show that the nearly commensurate and the in-
commensurate phases coexist; also, these phases must
have different lattice constants since they are different
phases; the remaining question is the quantitative one of
whether or not the difference in lattice constants is big
enough to account for positions of the nearly commensu-
rate satellites. The fact that one of the two commensurate
phases obtained from the model of Sec. V has the correct
Pmnm space group required to account for the observed'
superlattice reflections favors the interpretation of the
nearly commensurate phase as an ordinary commensurate
phase.
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