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Self-consistent image potential in a metal surface
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Electron densities and effective potentials at a jellium surface are calculated using the local-
density I;LD) approximation inside the metal and a physically based interpolation to the image po-
tential outside. The image-plane position zo is also determined self-consistently, and me find only a
slight contraction of zo w'ith respect to the LD values of Lang and Kohn. %'e also provide an

empirical criterion to determine zo from the local density.

Since its development some twenty years ago, density-
functional theory' has undoubtedly become the most ver-
satile and powerful scheme for calculating the electronic
structure of atoms, molecules, and solids. Within this
framework, a crucial key to practical calculations has
been the local-density (LD) approximation (LDA) to the
exchange and correlation energy which, despite some
well-known limitations, has proven to be very realistic in
an enormous variety of problems. One of these limita-
tions is the failure of LD effective potentials to reproduce
the correct —1/r image behavior outside atoms and
—1/z outside metal surfaces. As pointed out by Lang
and Kohn, the image potential has very little influence
on such properties as work functions and surface energies,
because it affects only regions of space which are classi-
cally forbidden to the electrons (and consequently, which
possess very small electron densities). However, the intro-
duction of the image potential is crucial in two problems
which have attracted recently much interest: The ex-
istence of image states at some metal surfaces and the
tunnel current across the vacuum gap in scanning tunnel-
ing microscopy. In both cases the exact behavior of the
effective potential near the surface is not as important as
the correct asymptotic limit for z~ oo.

A number of approaches have been tried for going
beyond the LDA (Ref. 3). The achievements have not
been very satisfactory for two kinds of reasons: on the
one hand, the computational effort generally increases
dramatically and, on the other hand, the resulting magni-
tudes of some physical quantities are worse than with the
LDA, and sometimes even become divergent. One of the
most successful approaches to nonlocal exchange and
correlation is the modified version of Gunnarsson and
Jones of the weighted-density approximation. This ap-
proximation clearly improves exchange-correlation ener-
gies over the LDA in atoms and solids. ' In the case of
surfaces, it also approaches the correct —1/4z potential
as the distance to the surface z~ca. Very recently, this
scheme has been applied by Ossicini et al. to calculate
self-consistently the electronic density and effective poten-
tial at a jellium surface. " One of the most striking results
of this calculation is that the image-plane position zo is
about one Bohr closer to the surface than in the LD calcu-
lation of Lang and Kohn. However, it should be men-
tioned that the method of determination of zo is quite dif-
ferent in the two calculations. Lang and Kohn showed

rigorously that the image plane is located at the centroid
of the excess charge induced by a uniform electric field
perpendicular to the surface. It would be necessary to ap-

ply this criterion to the calculations of Ref. 11 to see
whether the resulting image-plane positions are consistent
with those calculated from the asymptotic behavior of
V„,(z). In this respect, it should be noticed that, although
the weighted-density approximation used gives the correct
asymptotic behavior, —1/4z, this behavior arises from an

image charge distribution which is not asymptotically
correct: it is not confined to the surface, but goes deep
into the bulk and is too narrow in the direction parallel to
the surface. Therefore, there is no reason in principle for
this approximation to give the correct value of zo in
——,(z —zo)

—1

Here we will adopt a less rigorous, but simpler and
much faster, approach to calculate self-consistently the
electronic charge distribution and effective potential at a
metal surface, including the image potential also self-
consistently. In particular, we will try to shed some new
light on the determination of the image-plane position,
which is very important for calculating image state ener-

gies and tunnel barriers. It should be kept in mind that
our intention is not to improve the LDA in the bulk and
surface regions, but rather to complement it by including
the image potential as realistically as possible in the vacu-
um region.

The basic idea underlying our approximation is that of
electron-hole separation, which is illustrated schematically
in Fig. 1. Within the metal, the exchange-correlation hole
is essentially centered on the electron and the LDA ap-
proximation is adequate for most purposes. But as the
electron crosses the image plane and moves outwards, the
hole cannot follow, and rather it spreads laterally along
the image plane. Our basic approximation is to assume
that the hole shape remains unaltered, except for this la-
teral spreading. Thus, we write the exchange-correlation
hole density as a convolution,

n„,(x',z';z)= f dx "n,)(x";z)n„,(x' —x",z', zo),

where x ' and z' are coordinates parallel and perpendicular
to the surface and z is the position of the electron [we take
x=O in (1)]. n„,(x',z';zo) is the hole density when the
electron is on the image plane position zo and we assume
that this hole is spherically symmetric, as described in the
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nonlocal (NL) potential has the form

1 —[1+b (z —zo) /4]e
V„, (x)=— (6)

FIG. 1. (a}—{c) Schematic representation of the exchange-

correlation hole shape for different electron positions (solid cir-

cle). The solid line marks the end of the electron density and the

dashed line marks the image plane, where electron-hole separa-

tion begins. Before separation, the hole follows the electron, and

after separation, it remains on the image plane and spreads la-

terally. (d)—(f) Schematic electron density profile at the surface,

and hole density profiles, showing the same effect.

m Q„, (r;n(zo))
V„,(z) =(z —zo) z dr,

r
(4)

where P„, (r;n (zo)) is the spherical potential produced by
n„", (r;n(zo)). By construction, V„,(z) matches the local
exchange-correlation potential V„, (z) at z =zo and satis-
fies the asymptotic behavior V„,(z)~——,

' (z —zo) ' when
z~ ao. In this work, we will not try to use the best possi-
ble choice for the local hole density but rather we want
simply to use the present scheme to find a reasonable in-
terpolation procedure between the LD potential in the
bulk and the image potential far outside. Therefore, we
will also circumvent at this stage the need of calculating
the functional derivative to find the potential from a
well-defined energy functional. One of the simplest
analytical forms that one can use for the local hole density

LDA. Thus

n„,(x',z', z, }=n„'D(r;n (zo)),

where r =[(x') +(z' —zo) ]'i. The other factor in the
convolution n, I(x ";z) is the classical surface charge densi-

ty induced by a point charge on a conductor surface,

z zo
n, I(x";z)=

2Ir[(x "}+(z —zo) ]

Notice that n„, is always normalized because both
terms of the convolution are already normalized. It is not
difficult to show by integration that the electrostatic po-
tential produced by the hole charge density at the position
of the electron is

Our exchange-correlation potential is then defined as

V„,(z)=V„", (z) for z&zo and Eq. (6) for z)zo. The
Wigner expression is employed for local correlation. The
parameter b is chosen to match continuously V„, (z) at
the image-plane position zo. This gives the condition
b = ——", V„, (zo). The value of zo is calculated self-

consistently as follows.
At every iteration to self-consistency we solve Kohn-

Sham' equations for a neutral jellium slab of sufficient
thickness (100—160 Bohr) and for a slab with a small
charge excess. The centroid of the excess charge in a sem-
ilab is then used as zo to calculate the potential for the
next iteration. In this way we not only obtain the self-
consistent density profile but also a self-consistent effec-
tive potential whose asymptotic ——,

' (z —zo) ' behavior is

consistent with its own linear response.
As expected, most surface properties are nearly unaf-

fected by the use of the nonlocal potential. Thus, the
work functions change only by -0.05 eV with respect to
the LDA. But we are now interested in the asymptotic
behavior of the effective potential for calculating image
state energies and tunneling currents. Figure 2 shows the
resulting self-consistent effective potential for r, =5, to-
gether with the local-density potential and with the image
potential. Notice that no kink is observed for V„, at
z=zo. Notice also that the slope V„', =dV„, /dz is not
adjusted at zo by using the one-parameter form (6). It is
therefore very significant that the resulting mismatch of
V'„, is less than 1%. In fact, the' condition for per-
fect matchin~ with the potential (6) is that
V / V 9 1 .78 at zo. %e have checked that the
potentials calculated self-consistently by us, as well as
those calculated by Lang and Kohn verify, in atomic units

V„, (zo}/V„", (z(I) =1.81+0.04,

n„, (r;ri)= (1+br)eLD

which has no kink at r=O and is already normalized.
The decay parameter b is a function of the local density
n, adjusted to give the correct value for V„", (n}. After
IIlteglatioll of Poisso11 s equation and Eq. (4), tile resulting

0 5
z (bohr)

FIG. 2. Self-consistent exchange-correlation potential for
r, =5, using Eq. {6)as described in the text {solid line). Dashed
and dot-dashed lines show the local-density potential for the
same density and the image potential„respectively, zo is the
self-consistent image-plane position.
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where zo is the image-plane position, taken as the centroid
of the charge induced by a weak electric field. This obser-
vation, valid for all bulk densities in the range r, =2—5

bohr, is very important because it provides a purely local
criterion to determine (with an error of less than O. l Bohr)
the image-plane position, which is a property of the high-

ly nonlocal image potential.
Condition (7) can be understood in terms of electron-

hole separation. %e can consider V„, as the interaction
potential between the electron and its hole and minimize
this energy as a function of the position of the hole. If we
assume that V„, is well represented by V„", before hole
separation and by Eq. (6) after hole separation, the condi-
tions for the point of hole separation are that
V„, (zo —dz) & V„","(zo—dz) and V„, (zo+dz)
& V„, (zo+dz). Since V„, (zo)=V„, (zo) by construc-
tion, we obtain the condition VN"'(zo) = V„", (zo).
Therefore, the condition of energy minimization of
electron-hole interaction is that not only V„, but also its
first derivative must be continuous at zo. The division by

Y„, in Eq. (7) is then just a matter of appropriate scaling
for different electron densities.

The above argument is not rigorous because we have
avoided the problems of functional minimization by iden-
tifying V„, as the electron-hole interaction energy, which
is a simplification. We also assume that electron-hole
separation begins suddenly at zo and this is not quite
correct. ' %'e believe, however, that the argument can be
made more rigorous without changing the basic ideas.
This will be a subject for further work but is beyond the
scope of the present paper.

The results for the image-plane position are compared
in Table I with those obtained with a purely local poten-
tial (which agree with these reported by Lang and Kohn
and with the results of Ossicini et a/. " with the
weighted-density approximation. It can be seen that our
results are very similar to the local-density ones and very
different from those of Ref. 11. We think that this differ-
ence is due to the difference method of calculating zo
rather than to the nonlocality, and we stress that the
values of zo in Ref. 11 are not made self-consistent in the

TABLE I. Image-plane positions for different jellium densi-

ties, as calculated with the local-density approximation (LDA)
and the nonloeal potentials of this work [Eq. 16)] and of Ref. 11

(which used the nonlocal scheme of Ref. 8). In the last case, the
criterion for the image-plane position is different from that used
in the other two calculations.

LDA

1.57
1.35
1.25
1.17
1.10

Eq. (6)

1.49
1.24
1.13
1.08
1.02

Ref. 11

0.85
0.62
0.45
0.26
0.06

same sense as ours are.
It is also illustrative to apply criterion (7) to the poten-

tials of Ossicini et ttl. This gives zo = 1.0+0.3 for
r, =2—5 Bohr, again similar to those of Lang and Kohn
and to ours. Therefore, we believe that the nonlocal
scheme used in Ref. 11 is not very appropriate for calcu-
lating the image-plane position, and, consequently, the po-
tential at large z. Although that scheme may be better in
the transition region 0&z & 2 Bohr, our potential gives the
correct energies for the image states of several metal sur-
faces. '

Finally, two words of caution should be expressed:
first, the contraction of zo might in principle also be due
to nonlocality effects in the surface region and inside the
metal; and second, criterion (7) might be closely associated
with the use by us (and by Lang and Kohn) of local-
density potentials of z &zo. Therefore, a self-consistency
test of the results of Ossicini et al. consisting of the cal-
culation of the centroid of the charge induced by a small
field would be very illuminating.
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