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Lattice dynamics of fcc and bcc calcium
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The phonon-dispersion curves of Ca in the fcc and bcc phase have been derived from inelastic-
neutron-scattering measurements of polycrystalline samples. The elastic constants were determined
from the low-frequency part of the spectra. No pronounced softening of the elastic shear constants
towards the martensitic phase transformation could be observed within the accuracy of the measure-

ment. The high-frequency part of the neutron spectra was analyzed in terms of Born —von Kirman
models and pseudopotential models. Even though pronounced phonon anomalies are absent in both
phases, the results sho~ that a simple pseudopotential picture is inadequate.

I. INTRODUCTION

It is interesting to compare the lattice dynamics of one
and the same element in two different structural modifi-
cations. The comparison provides a much more stringent
test for simple phonon models than the phonon dispersion
in a single structure. In this paper we report on measure-
ments of the phonons of fcc and bcc calcium. The pho-
non dispersion has been determined from the coherent in-
elastic neutron scattering of a polycrystalline sample.
%ithin this method the dynamical matrix is parametrized
in terms of Born —von Karmin (BvK) models. The free
parameters are determined by a fit to the inelastic time-
of-flight spectrum which was measured over the entire to

range and in a Q range covering the first five to six in-
equivalent Brillouin zones. The method has been previ-
ously applied to Ba and Sr, ' and to room-temperature Ca.2

The reliabihty of these results was proved later by triple
axis neutron measurements on fcc Ca and bcc Ba which
agreed with maximum deviations of 10%. ' The method
allows one to measure the same sample in the two dif-
ferent crystalline structures simply by recording the
scattering at two temperatures just above and below the
transition temperature (in the case of calcium the transi-
tion from the high-temperature bcc phase to the low-
temperature fcc phase takes place at 721 K).

The question whether one can give a consistent descrip-
tion of the phonons in bcc and fcc calcium cannot be
answered by a comparison of the Born—von Karmin pa-
rameters. The simplest scheme which allows the calcula-
tion of the phonons with the same parameters for both
structures is a local pseudopotential. ' Though the appli-
cability of this scheme to Ca is doubtful because of the
proximity of the d band to the Fermi surface, it is still
in use for Ca (Ref. 8) and its homologues (Ref. 9). There-
fore, we extended the method to the use of local pseudo-
potential models. For our calculations we chose a model
pseudopotential adequate for simple s pmetals. ' The re--

suits will be discussed and compared to those obtained
with BvK models.

II. EXPERIMENTAL DETAILS

Calcium is a reactive metal. As a consequence, in com-
mercial quality this metal can contain a lot of nonmetallic
impurities, especially hydrogen and oxygen. For this in-
vestigation calcium was purified by ultrahigh-vacuum dis-
tillation. In order to avoid recontamination with nonme-.
tallic impurities, the purified metal was always handled in
a controlled atmosphere of argon. More details of the
purification and handling procedure described below are
reported elsewhere. " Calcium grains (purity with respect
to metallic impurities &99%) prepared by Koch-Light
I.aboratories, England, were used as starting material.
The distillation was performed in a molybdenum crucible
with a column of molybdenum foil which was outgassed
at 1500'C at high-vacuum conditions before use. Calci-
um was distilled for 6 h with a temperature of 880'C at
the bottom of the crucible and 700'C at the top of the
column. The vacuum steadily increased to 10 mbar at
the end of the distillation. After cooling, the distillation
tube was transferred into the glove box where the slightly
yellow colored calcium was cut from the molybdenum
column.

The experiment was done on the time-of-flight spec-
trometer SV 5 at the cold source of the DIDO reactor at
Julich (wave vector of the incoming neutrons k;=1.314
A, range of scattering angles 20'—160'). For the 100-K
and room-temperature measurements, about 38 g Ca were
sealed in a thin-walled aluminum container. For the high
temperatures (680, 705, 726, and 750 K), we used a
stainless-steel container. The 100-K measurement was
done in a closed-cycle cryostat and the high-temperature
measurement in a eater-cooled furnace. In order to en-
sure a good orientational average, the samples were rotat-
ed around an axis perpendicular to the scattering plane
during the measurement.
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FIG. 1. Inelastic intensities obtained from polycrystalline fcc
Ca between —0.22 and —0.45 THz (energy gain of the neu-

trons) at 705 K. The line is a fitted curve with the elastic con-
stants of Table I.

FIG. 2. Inelastic intensities obtained from polycrystalline bcc
Ca between —0.29 and —0.54 THz (energy gain of the neu-

trons} at 726 K. The line is a fitted curve with the elastic con-
stants of Table I.

III. RESULTS AND DISCUSSIONS

A. Elastic constants

The elastic constants c'=(c» —ci2)/2 and c~ for both
structures of Ca were determined by fits to the low-

frequency part of the spectra near the Debye-Scherrer
rings' with an energy gain of the neutrons. Such fits are
presented in Fig. 1 (705 K; fcc) and Fig. 2 (726 K; bcc).
The resulting elastic constants are compiled in Table I.

As seen from Table I, the accuracy of the determination
is highest for the smallest shear constant c'. This result is
understandable, because a low transverse elastic shear con-
stant leads to a high density of sound wave states and thus
dominates the signal at low frequencies.

The values st room temperature sre compared in Table
I to the single-crystal results of Stassis et a/. While c~
agrees with the single-crystal value within the accuracy of
our measurement, there is s discrepancy in c', our value
being about 40% lower. We believe that our value of c' is
more accurate than the one of Ref. 3. In their work, c'
was taken from the Born —von Kirmin fit of the mea-
sured frequencies. The elastic constant c' determines the
slope of the T2 branch along the [110] direction. From
their lowest measurixl phonon frequency of that branch at

0.8 Thz and at [0.20.20] in the reciprocal lattice, one cal-
culates c'=3.8 GPa, much closer to our value of 3.4 GPa
than to their value of 4.8 GPa. Moreover, our measure-
ment extends down to 0.2 THz, a factor of 4 lower than
the single-crystal data. Since the branch has an
anomalous dispersion, measurements at lower frequencies
are expected to give more accurate results for its initial
slope.

As seen from Table I, the elastic shear constant c' is
fairly small in the fcc phase and in the bcc phase as well.
In the limit of small deformations, c' provides the restor-
ing force against the Bain deformation' in both phases.
The Bain deformation is a conceptually simple way to
pass from the fcc to the bcc structure and vice versa by
appropriate elongations and contractions along the cubic
axes. Though the detailed mechanisms in real martensitic
fcc-bcc transformations seem to be more complicated'
and are probably different in different systems, they in-
volve as a rule s major shear strain component against the
elastic constant c'. Thus the smallness of c' could be con-
nected to the existence of two neighboring minima of the
free energy in configuration space corresponding to the
fcc and bcc structures. However, within our accuracy
limits the temperature dependence of c' shows no
anomalous features near the martensitic phase transfor-

Temperature

(K)

TABLE I. Measured elastic constants of Ca.
1

(GPa) (GPa)

3.6+0.3
3.4%0.3 (4.79')
2.2+0.2
2.2+0.2

15+3
14+3 (16.3')
10+3
10+3

22.8b (27.8')

1.6+0.2
1.6+0.2

'Values determined on single-crystal data (Ref. 3).' C» has been calculated from a, =18.3 GPa (Ref. 13).



TABLE II. Born —von Kirmin force constants of Ca.

Neighbor
and 1ndlces

Force constants (N/m)
293 K 680 K 705 K

Neighbor
and 1ndlces

Force constants (N/m)
726 K 750 K

1xx
1ZZ

1xy
2XX

23'3'

3XX

3N'
3/z
3XZ

4.472
0.293
4.180

—1.000
—0.112

0.020
—0.042

0.021
0.041

fcc calcium
4.223
0.236
3.988

—0.902
—0.190

0.056
—0.028

0.028
0.056

4.321
0.153
4.168

—0.472
—0.430
—0.040
—0.069

0.010
0.020

4.267
0.064
4.202

—0.506
—0.464
—0.027
—0.051

0.008
0.016

lxx
1xy
2XX

2'
3XX
3ZZ

3'

bcc calcium
4.014
3.503
1.443

—1 ~ 182
0.042

—0.108
0.150

3.936
3.582
1.441

—0.926
0.062

—0.104
0.166

mation like those observed in fcc-fct transitions of In al-
loys. ' Especially there seems to be no increase of c' with
increasing temperature above the martensitic transforma-
tion temperature.

B. Born —von Kirmin fits

The measured data were corrected for self-absorption,
multiple scattering, and for multiphonon contributions. '

The phonon dispersion curves were derived from fits of
Born —von Karman models to the experimental data be-
tween 0.3 and 6 THz. The BvK fits were done with the
elastic constants as constraints (additional fits without
constraints reproduced the phonons within 5' and the
elastic constants within 10%). It turned out to be suffi-
cient to use a simple axially symmetric model including
the first three neighbor shells.

The obtained BvK parameters for all measured tem-
peratures are given in Table II. The resulting phonon
dispersion curves are shown in Fig. 3 (293 K; fcc) and
Fig. 4 (726 K; bcc). Figure 3 compares our result at room
temperature to the BvK fit of the single-crystal work.
The overall agreement is very good. Significant differ-

ences occur only at the X and 8' points. From our ex-
perience with different BvK fits, we think that at these
points the single-crystal values may be more accurate.
The only anomalous feature is a positive dispersion in the
Tq branch in the [110]direction (this is also found at the
other temperatures and in the single-crystal measure-
ments ). It has been suggested that this anomaly is caused
by d-band hybridization. '

In the bcc case the Tz branch in the [110] direction is
very low up to the zone boundary. However, no
anomalous temperature dependence of the zone-boundary
modes like that observed in Li (Ref. 19) and Na (Ref. 20)
has been seen in either of the two phases of Ca, neither in
the T2 branch nor in any other branch. There are as yet
no single-crystal results for bcc Ca. However, one can
compare our results to measured phonons in bcc Sr (Ref.
21) and bcc Ba (Refs. 1 and 4) which show a general simi-
larity to the curves reported here. It is especially interest-
ing to compare the branches along [100]. In Ba, the long-
itudinal branch lies below the transverse branch, " an
anomaly which could be reproduced in frozen-phonon cal-
culations by Chen et al. According to these authors,
the anomaly is due to the influence of the empty d band
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FIG. 6. Phonon spectrum of bcc Ca calculated with the Born —von Karman parameters of Table II (T =726 K).

decrease of the phonon frequencies with increasing tem-
perature. This decrease leads to an excess term in the lat-
tice specific heat over the harmonic Dulong-Petit value of
3Nkii (N is the number of atoms per mole and kii, the
Boltzmann constant). In a quasiharmonic approxima-
tion the specific heat is given by (x =hv'/2k~ T)

Cz 3Nks I dv—'—Z(v', T) z
1—

sinh (x)

where

(lnv) =I dvZ(v, T)lnv (2)

(v is the frequency and Z(v, T) the vibrational density of
states at the temperature T). We assumed a linear depen-
dence of (Inv) between 300 and 705 K. Adding a linear
electronic specific-heat term ' with y, =0.003 J/molK,
we obtained the calculated curve in Fig. 7, which is in
good general agreement with the measured specific heat.
The comparison shows that the excess specific heat over
the Dulong-Petit value can be understood in terms of the
decrease of the phonon frequencies with increasing tem-
perature. It seems to be unnecessary to invoke any anom-
aly in the electronic part of the specific heat.

In the bcc phase we have only measured at two tem-

peratures not very distant from each other. Therefore, it
was not possible to determine the excess term of the
specific heat as in the fcc case. What one can do is com-
pare the vibrational part of the entropy in the two dif-
ferent phases. The vibrational entropy was calculated
from this expression

S=3Nks J dvZ(v, T)I —In[2sinh(x)]+x coth(x}J,

(3)

where x =hv/2k' T.
One finds an entropy difference of the two phases of

0.85+0.2 J/K mole. The resulting difference in enthalpy
at 721 K is 610+150 J/mole (the pressure term in the
enthalpy difference can be neglected because the atomic
volume is practically the same in both phases }. Within
the error limits, this value agrees with the latent heat of
920+200 J/mole found by calorimetric measurements.
This shows that the driving force for the phase transfor-
mation is indeed the vibrational entropy difference be-
tween fcc and bcc, which favors the bcc phase at higher
temperatures.

It is interesting to compare the enthalpy difference and
the calculated energy differences between fcc and bcc
phases at 0 K. In principle, these values should be the
same, if one assumes that different temperature effects on
the electronic ground-state energies are the same in both
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pression of Ichimaru and Utsumi. The electrostatic con-
tribution was included by performing the Ewald transfor-
mation and summing up the terms in real and reciprocal
space. ' In both phases, fcc and bcc, it was possible to ob-
tain a reasonable fit of the measured data using only the
two free parameters a and r, of the pseudopotential. In
the fcc case, the sum of squares of the deviations between

theory and experiment was nearly the same as the one ob-
tained in the Born —von Karman ftt. In the bcc case, it
was nearly a factor of 2 higher, which seems still reason-
able in view of the small number of parameters involved.
The two sets of parameters (see Table III) do in fact agree
with each other within the limits of accuracy. Thus, at a
first glance the pseudopotential picture seems to give a sa-
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tisfactory description of the phonon dispersion curves. At
a closer look, however, one finds severe faults. In Figs. 8
and 9, the phonon branches along [110]obtained from the
Born —von Karman fit and from the pseudopotential fit
are compared to each other. In the fcc case [Fig. 8(a)]„ the
agreement is fairly good, but the phonon frequencies of
the lower T2 branch become imaginary at low q values in
the pseudopotential picture. A fit with a different pseudo-
potential or a different screening ' gave the same
result. If the stability condition is enforced by setting the
measured positive c' as a constraint (c' determines the ini-
tial slope of this branch}, the general agreement between
the BvK and the pseudopotential results becomes much
worse [Fig. 8(b)] and the sum of squares increases.

In the bcc case, even the unconstrained pseudopotential
fit shows a strong deviation of the phonon frequencies of
the low-lying T2 branch. The frequencies are by more
than a factor of 2 lower than the BvK frequencies. Since
the zone-boundary value of this branch determines the po-
sition of the first van Hove singularity in the bcc density
of states (see Fig. 6), the BvK value could be checked by a
direct comparison to the data and was found to be correct.
The introduction of a constraint of c' to the measured
value (Table I) alleviated this discrepancy, but led to can-
siderable deviations at the higher branches [Fig. 9(b)].
Moreover, as seen from Table III, the good agreement be-
tween fcc and bcc parameters gets lost by the constraint.
On the whole, the simple pseudopotentials considered here
do not give a satisfactory description of the phonons in
fcc and bcc calcium. It remains to be seen whether more
sophisticated approaches like the resonant model poten-

« the generalized pseudopotential theory, ' ' which
have already been applied to calculate phonons or at least
elastic constants in fcc Ca, give a consistent description of
the phonons in the bcc phase with the same potential pa-
rameters. In that sense, the phonon dispersion determined
in the present work provides an ideal testing ground for

theoretical phonon calculations in metals with a d-
electron contribution.

IV. CONCLUSIONS

Elastic constants and phonon dispersion curves have
been determined for fcc and bcc calcium above and below
the martensitic transformation temperature of 721 K.
The results were obtained by fits of inelastic-neutron-
scattering data from polycrystalline samples. The disper-
sion curves show no pronounced anomalies. The results
for the fcc phase are in good agreement with earlier deter-
minations. ' From the temperature dependence of the
phonon frequencies, one calculates an excess specific heat
which agrees fairly well with calorimetric data.

The bcc phase has a low-lying Tt branch along the
[110]direction and consequently a somewhat higher den-
sity of states at low frequencies than the fcc phase. Thus,
the enthalpy favors the bcc phase at high temperatures via
the vibrational entropy term. The calculated entropy
difference is in quantitative agreement with that obtained
from the latent heat of the martensitic phase transforma-
tion,

Within the accuracy of the measurements (about 5%
for the phonon frequencies}, no precursor effects or mode
softening could be discovered, neither in the elastic con-
stant c' nor in any of the zone-boundary modes. ' '2o

Though a fit with the same pseudopotential in both
phases could reproduce the general features of the phonon
dispersion, there are considerable deviations at some pho-
non branches, especially at low frequencies. In the fcc
phase there is even a violation of the stability condition.
Since this result was obtained for different pseudopoten-
tials, we conclude that the local pseudopotential picture is
too simple for Ca and therefore cannot be used as a semi-
empirical tool to extrapolate from one structure to anoth-
er.

'This work is pari of the Ph.D. thesis of M. Heiroth at the
University of Dusseldorf.
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