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It is shown that there are two different electrical-conductivity tensors which may be defined
naturally by the relation J=o'E. The cr~„bo given by the standard Kubo formula is different, in

general, from the 0 appearing in Maxwell's equations, although they do agree if the electric field
is transverse (q 8=0). It is also shown how the Kubo formula may be modified to give o. ,„when
the field is not transverse.

I. INTRODUCTION

Consider a material in the presence of an electric field
(in the long-wavelength limit}

E(x,t) =Roe'q'* ""e"',
where ri is a positive infinitesimal to turn on the field adi-
abatically from time t = —ao. The Fourier transform of
the ensemble average of the resulting current density is
given by (to first order in Eo)

J (q', co') =5q q5(co' —co) Q o' p(q„co)Epp,

where crap(q, co) is the frequency- and wave-vector-
dependent electrical-conductivity tensor (a and P are
coordinate indices). This conductivity tensor is then given
by the well-known Kubo formula'

will be indicated with an overhead, double-ended arrow)
In the remainder of this paper, these two conductivities
will be referred to as the Kubo conductivity crx„b, and the
Maxwell conductivity cr,„, respectively. It will also be
shown how the Kubo formula may be modified to give
crm». Finally, we will see that, for transverse fields
(q EO=O), which is the case in which the Kubo formula is
generally used, oK„b,=cr,„. Thus, this modified formula
for cr,„may be viewed as an extension of the Kubo for-
mula from transverse fields to fields of arbitrary polariza-
tion.

There has been some previous work along these lines.
Kubo himself was aware of this difference, and, for longi-
tudinal fields, he showed that cr,„is given by

&'4& n ++
cr,„(q, )co= 1 — q crK„b,(q,co).q

67

X(rzubo(q~co) ~ (1.6)

X ( [&p(q, r),J (q, O) ]), (1.3)

where the square brackets denote a commutator, and the
angular brackets denote an ensemble average in the ab-
sence of the electric field. Here J(q,~) is the Heisenberg
operator

i qXB+ E= (J,„,+o"E)
C C

(when coordinate indices are not used explicitly, tensors

(1.4)

with Ho the Hamiltonian of the system in the absence of
the field. This Kubo formula is discussed in more detail
in the next section.

In this paper it will be shown that the conductivity ten-
sor given by this formula is not, in general, the same as
that appearing in Maxwell's equations

VXB—— = (J,„,+J;„,},1 BE 4n.

c Bt c

where Q denotes a unit vector along q. Even earlier, for
cubic crystals, Ambegaokar and Kohn obtained results
very similar to the ones presented in this paper. However,
they included only the electronic contribution to the con-
ductivity, and they relied heavily on the fact that, for cu-
bic materials in the long-wavelength limit, the conductivi-
ty tensor must have the special form

crap(q, co)=5apcr (co)+pa(lpcr (co), (1.7)

where cr'"(co) and cr'2'(co} are scalar functions. The re-
sults presented in this paper will include the contributions
from all of the charge species, including the ions, and they
will be valid for conductivity tensors of any form (i.e., for
crystals of any symmetry).

Also, note that, for the special form (1.7), the conduc-
tivities for transverse and longitudinal fields are given,
respectively, by the scalar quantities

~(T)(~) ~() )(~)
~(L)( ) ())( )+~(2)( )

Therefore, in this case, one can construct the tensor o
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for fields of arbitrary polarization from a knowledge of
F~„b, using only the simple relations already mentioned:

~(T) (~) ~(T) (~) (1.10)
r

where Qo ——Ho —pN is the grand potential.

III. EXTERNAL AND LOCAL CONDUCTIVITIES

However, we will see that it is easier to find o','„(to)
directly than to find o~„'b,(co) in the first place (this is
true for both this paper and that of Ambegaokar and
Kohn}.

II. KUBO FORMULA

There are two different electrical conductivity tensors
which may be defined naturally by the relation

J=0 P. ,

depending on whether E is the applied field or the local
(screened) field. Kubo has called these the external and
local conductivities, respectively:

In this section a brief discussion of the Kubo formula is

given. Consider a system with Hamiltonian

J=+ext'~app

1oc' Bloc

(3.2)

(3.3)

H(t) =H()+ V(t),

where the perturbation V(t) has the form

V( t ) V e i'(e—v t

(2.1)

(2.2)

To first order in this perturbation, the change in the en-

semble average of an operator I is given by the linear-

response function' H(t) =H, + V(t), (3.4)

Since Maxwell's equations involve the local fields, then
the Maxwell conductivity is the local conductivity

&max =O'Ioc

In Sec. II it was shown that the electric field which ap-
pears in Eq. (1.2) is the one which appears in the perturba-
tion (2.8) and (2.9). The Hamiltonian was written as

I (t) i (ru+iv)—tI r(~) (2.3) (3.5)

(2.4}

with Vo(r) being the Heisenberg operator

ie (Hor —iii )Hor
(2.5)

The angular brackets in (2.4) denote an ensemble average
in the absence of the perturbation V(t}

It will now be shown how Eq. (1.3) follows from this.
A gauge may be chosen with

P(x,t}=0,
A(x t)=A()e'q'* ""e"'

The perturbation is then given by

V(t}=——f d x J.A=Voe ' 'e"',
C

with c denoting the speed of light and

(2.6)

(2.7)

V()
————J(q).A0 ———g Jt)(q)Eop,

1 (2.9)
C QP p

where use has been made of E= c'BAiBt =i—toc 'A
to relate Ao and Eo. Using (2.9) in (2.3) and (2.4) with
I =J and then Fourier transforming yields (1.3). The
important thing to note here is that the electric field ap-
pearing in the perturbation (2.8) and (2.9) is the field that
app(mrs in Eq. (1.2). We will see in the next section that
this point is very important.

Finally, let me comment that, for simplicity, this paper
deals with the canonical ensemble. However, aB of the re-

sults presented here are also valid for the grand canonical
enseinble if Eq. (1.4) is replaced by

where Ho is the Hamiltonian in the absence of the field.
Thus, Ho contains all of the interactions which screen the
field (e.g., Coulomb interactions between electrons), so
that the perturbation must contain only the unscreened
(applied) field E,~~. Therefore, the Kubo conductivity is
the external conductivity o K„b,——o,„,.

%e now see why the Kubo and Maxwell conductivities
differ in general It is a.lso clear why they agree for trans-
verse fields, since, for such fields, screening does not
occur, ' so that E, =E„p and 0, =0,„,. In addition, we
can now see how to modify the Kubo formula to give the
Maxwell conductivity a,„=o~ . %%at we need to write
1s

H(t)=H, + V(t),

V(t)= ——f d x J Ai
C

(3.6)

(3.7)

IV. RELATING og b AND a „
In this section it will be shown explicitly that evaluat-

ing (Tx„b with all long-range interactions removed from

Then (1.3) will give F,„when the ensemble average is
taken for a system with Hamiltonian Ho. However, Ho is
just Ho with all of the long-range (screening) interactions
removed (this will be shown more explicitly in the next
section). Therefore, in evaluating (1.3}, simply leave out
all Feynman diagrams which contain long-range interac-
tions (this statement is made more precise in Sec. V).

Finally, we can now see why less work is involved in
finding F than in finding oz„b„since the former in-
volves summing only a subset of the diagrams appearing
in the latter.
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the unperturbed Hamiltonian does indeed yield Pr,„(in
the next section it is shown how this is done in practice).
%e may write

Eloc=aapp+Escr i (4.1)

where E„,is the screening field set up by the interactions
in Ho. Let the part of Ho which contributes to E, be
denoted by HLR (these are the long-range interactions},
and let the remainder of Ho be denoted by Hsa (these are
the short-range interactions). This yields

H =Ho+ V=HsR+HLR+ V, (4.2)

where V contains only the applied field E,».
Now, the material consists of electrons and ions. For

the sake of clarity, the ions will be treated classically with
the displacement of the ith ion from equilibrium being
denoted by u;. However, this approximation is not neces-
sary, and the ions can be given a rigorous quantum-
mechanical treatment (I will return to this point at the
end of this section). The electrons will be given a rigorous
quantum-mechanical treatment using the equations of
motion for the expectation values of the position and
momentum operators of the jth electron:

d' 1 ~~sR
2+i+ ~ =Happ ~

e; dg e; ou;

for which the solution must be

(4.11)

u,' =g;(E,»), (4.12)

with the same function g; as in (4.10) (in this section,
primes will be used to label quantities in the case where
HLR has been removed from Hp).

The electrons are now handled similarly using Eqs. (4.3)
and (4.4). By construction,

(4.13)

(4.14)

where —e is the electron charge, so that

The important thing to notice here is that the form of the
function g; depends only on the left-hand side of (4.9).
The right-hand side of (4.9} affects only the argument of
g;. Therefore, if HiR is removed from Ho, a similar
computation yields

—(x )=—
&p ),1

dt ' m
(4.3)

(4.4) or

d 1 d 1 dH
&x )=——

&p )=-—
m dt ' m Bx)

where m is the electron mass. Here, care must be taken
since the quantity (xj ) is not well defined in the limit of
infinite volume. Thus, I will begin by considering a ma-
terial of of finite volume 0, for which (xj ) is well de-
fined. However, the final results will not involve (xj ), so,
at that point, we may Iet 0—+ ao if we wish.

The force on the ith ion is given by

(4.5}

(4.15}

Again, we know that (xz) is well defined, so that this
equation must have a solution, which will be denoted by

(xj)=GJ(Ei ), (4.16)

where, again, the form of the function GJ depends only
on the left-hand side of (4.15). Therefore, if HiR is re-
moved from Ho, a similar computation yields

However, by construction,

~~LR
=ei~scr ~ (4.6) for which the solution must be

(4.17)

V

Bug
=ei Eapp

where e; is the charge of the ith ion, so that

~~sR
F;= — +e;E)

i3Q;

which yields an equation of motion for u;:

d' 1 ~~sR
E + loc

dt

{4.7)

(4.8)

(4.9)

with the same function GJ as in (4.16).
Now, consider the electric polarization

P= —'g( —e(x, ))+ ge, u,
'

.
1

. j

%ith HLR present, this is given by

P= ——e QG~{Ei )+ pe;g;(Ei )
1

J

(4.18)

(4.19)

(4.20)

u;=g (Ei ) . (4.10)

where M; is the mass of the ith ion.
Since we know that the ion positions u; are well de-

fined, then this equation must. have a solution, which will
be denoted by

To first order in E~~, this must be

P=X E) (4.21)

where X is the (Maxwell) electric susceptibility tensor of
the material.
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Since X is independent of E)~, its value must depend
only on the forms of the functions GJ and g; [remember
that Eqs. (4.20} and (4.21) are valid for any value of the
field Ei, so that their equivalence is an equivalence of
functions]. Therefore, with Hi R absent, we must have

k+ q
g/+ QP

P'= —g ( —e &x )')+ g e;u,'

L

—e+G (E, }+ge;g;(E, )

X Egpp (4.22)

FIG. 1. General form of the diagrams contributing to (1.3).
The solid lines are electrons, each of which is labeled by both a
wave vector and a frequency, and the box represents any possi-
ble series of interactions (see Fig. 2). For o(q, co), the solid
(open) circle is a source (sink) of wave vector q and frequency ~.

with the same value of X as in (4.21). Since

0'= —lN+,

Eq. (4.21) yields (with Hi R present)

0 max

(4.23)

(4.24)

ment proceeds as before and yields the same result. Thus,
we see that, as claimed, the ions can be treated rigorously
without resorting to a classical treatment.

V. FEYNMAN DIAGRAMS

while (4.22) yields (with HLR absent)

O'
K.ufo = (4.25)

Thus, Pr'z„s,—o,„, wh—ich finally shows that the Kubo
conductivity in the absence of HiR equals the Maxwell
conductivity in the presence of HLR, so that the Kubo
formula (1.3) may be used to find the Maxwell conductivi-
ty Pr,„ if all long-range {screening) interactions are re-
moved from the unperturbed Hamiltonian.

Let me now return to the comments made near the be-
ginning of this section about the manner in which the iona
are treated. The classical treatment of the ions which was
presented served as a motivation for the rigorous treat-
ment of the electrons. However, this latter treatment can
be repeated for any charged particle (electron, lattice ion,
impurity ion, etc.). For particle s, one obtains

In this section it will be stated more precisely what is
meant by the removal of all long-range (screening) interac-
tions from the unperturbed Hamiltonian, and this will in-
dicate clearly which Feynman diagrams are to be omitted
in the evaluation of a~,„from Eq. (1.3). Any interactions
which screen the applied field must do so by coupling the
electrons, since they are the only mobile charge carriers.
For simplicity, let us consider just one such interaction.

The Feynman diagrams which appear in (1.3) have the
general form shown in Fig. 1. Specific examples of such
diagrams are shown in Fig. 2. The problem which must
be addressed is that of deciding which occurrences of the
interaction in these diagrams contribute to the screening.
Such a contribution must be long range, so that it must
diverge as q~0. Of the diagrams in Fig. 2, only diagram
(c) contains such a contribution, since, as q~0, all other

& x, & =G,(E...},
&x, } =G,(E.„),

(4.26)

(4.27)

P= —ge, &x, )
1

0
I=—ge G,(E) )

—g.EI

P'= —g e, &x, }'0

where x, denotes the position operator for particle s.
Next, one obtains

k+p+q

A P
i
i

k k+p

k+q

k +p+q

k'+ q

k'

(b)

k+q I '& k+q
+ p+

k

ll
k+p+q ~ k +q

1=—g e,G, (E,pp)0

Egpp {4.29)

where e, is the charge of particle s. From here, the argu-

FIG. 2. Examples of diagrams contributing to (1.3). The
solid lines are electrons, and the dashed lines are interactions be-
tween them (Coulomb interactions, phonons„etc. ). Each line
carries both wave vector and frequency, but, for simplicity, only
the wave vectors are shown. Any wave vector other than q is
integrated over.
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occurrences of the interaction have finite wave vector p
(which is integrated over). Thus, we see that not all oc-
currences of a long-range interaction contribute to the
screening. While short-range interactions are entirely in

HsR, long-range interactions have parts in both HsR and
HLR,

" and it is only these latter parts which are to be re-
lllovecl f1olll HO.

We can now see which diagrams are to be omitted from
(1.3); they are just the diagrams which contain long-range
interactions at the wave vector q. However, these are just
the improper'2 diagrams with respect to these interac-
tions. This is easily seen by noticing (see Fig. 1) that the
wave vector q flows through each diagram from left to
right. Whenever there are two or more parallel channels
for this flow, there will be an arbitrary division of the
wave vector q between them (leading to one free wave
vector per extra channel to be integrated over), so that no
channel will be forced to have wave vector q. Conversely,
if removing a single interaction line leaves two disconnect-
ed pieces, then this line must be carrying the wave vector
q from one piece to the other. Thus, the interaction lines
at wave vector q are exactly those which make diagrams
improper.

It is now possible to restate the modification of the
Kubo formula more precisely. To use this formula to
compute the Maxwell conductivity 0,„, simply omit all
Feynman diagrams which are improper with respect to a
long-range interaction. Notice that, for a transverse field
(q Eo——0), all interactions at wave vector q must also be
transverse, so that all diagrams will already be proper
with respect to all longitudinal interactions. Since long-
range interactions are longitudinal, then the modification
of the Kubo formula has no effect in this case. Thus, we
again see that FK„b,——o,„for transverse fields.

The idea of retaining only the proper diagrams is not
entirely new. As an example, Izuyama' has obtained the
same result for metals. However, as in Ref. 4, only the
electron contribution to the conductivity was considered,
so that the only long-range interaction was the Coulomb
interaction between electrons. In addition, Izuyama con-
sidered the case of a purely longitudinal electric field,
leading to the same results obtained later (and more gen-
erally) by Kubo. The point of the present paper is that
these results can be extended to systems with many long-

range interactions, including long-range interactions be-
tween different charge species. In a separate publica-
tion„' this formalism has been applied to a doped, polar
semiconductor. There, in addition to the Coulomb in-
teraction between electrons, one has the long-range
Frohlich interaction between the electrons and phonons
(which arises from the Coulomb interaction between the
electrons and ions). In this case, one must omit all dia-
grams which are improper with respect to either of these
two interactions.

VI. CONCLUSIONS

There are two different electrical conductivities which
may be defined naturally by the relation J=cr E, depend-
ing on whether E is the applied field E,~~ or the local
field E, :

J=0K..b. E.IP
=+max'~joe

(6.1)

(6.2)
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In general, the Kubo formula for the conductivity yields
0K„t . However, it has been shown that simply omitting
all diagrams from this formula which are improper with
respect to a long-range interaction yields o. ,„. Since
o~„b,——cr,„ for a transverse electric field, then, for the
purposes of calculating cJ,„, this modification represents
an extension of the Kubo formula from transverse fields
to fields of arbitrary polarization. Also, it was noted that
finding cr,m„cat ulal yrequires less work than finding
c7K„b, (i.e., it is easier to include screening than to ignore
it}.

A subsequent publication' will present applications of
this formalism to concrete physical situations. The pur-
pose of this paper is to present a general discussion of the
central issue in a form that leads to results which are
applicable to a wide range of diverse systems.

*Present address: Los Alamos National Laboratory, University
of California, Los Alamos, NM 87545.

'R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
This is the same as writing 7'~8 —e 'BD/Bt =J,„„with

D=F.E and 2=1+(i4m/m}cr.
3R. Kubo, Rep. Prog. Phys. 29, 255 (1966}.
4V. Ambegaokar and %. Kohn, Phys. Rev. 117,423 (1960).
5For transverse fields, there is no charge density to screen the

field, since p=(1/4m)V-E=(i/4m. )q.E=0.
In Sec. III, Hsa was denoted by Ho, and H«was Ho —HO.

Exanlllllng Eqs. (3.4)—(3.7) sllows that the actllal dcfllllltlolls
are HqR ———c d x J (AI —A,„p) and HsR ——Ho

—I 3

+c ' d x J (A1~—App).

7Any dependence of g on E~ would give corrections to (4.21}of
higher than first order in EI

SFrom D=E+4n.p, we have V=1+4m+. Combining this with

the relation V= 1+(i4m/co)0 from Ref. 2 yields (4.23).
This includes any interaction of an electron with another entity,

since such an interaction yields an indirect electron-electron
interaction via this entity.
Of course, it is also necessary for the strength of the interac-
tion itself to diverge as q ~0, but this is exactly what it
means for the interaction to be long range.
Remember that the division of Ho into HLR and Hs~ in Sec.
IV was not actually a separation of the long- and short-range
interactions, but, rather, a separation of the parts of Ho



R. EYKHOLT 34

which do and do not create a macroscopic electric field E,
(see Ref. 6). The notation was chosen because only the long-
range interactions contribute to HLR.

~2An improper diagram is one which can be separated into two

disconnected pieces by the removal of a single interaction line.
A proper diagram is one which is not improper.

~3T. Izuyama, Prog. Theor. Phys. 25, 964 (1961).
~~R. Eykholt and D; L. Mills, Ann. Phys. 171, 386 (1986).


