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The electronic, structural, and cohesive properties of ruthenium in the hexagonal-close-packed
structure are calculated by using a local-orbital ab initio pseudopotential method. We determine the
lattice parameters, Poisson’s ratio, the cohesive energy, and the bulk modulus by calculating the to-
tal energy of the solid-state system as a function of the lattice parameters ¢ and a. We also predict
the value of the ¢ /a ratio up to pressures of 1 Mbar. We find that as a function of pressure the ¢ /a
value approaches the ideal value. Overall, the agreement with the observed lattice parameters is
quite good. The largest structural error is in the ¢ lattice parameter and is approximately 2%. The
cohesive energy is larger than experiment by approximately 15% and is consistent with other local-
density calculations for transition metals. The calculated band structure is in accord with photo-

emission measurements.

I. INTRODUCTION

A number of methods has been developed to calculate,
from first principles, the total energy of solid-state sys-
tems.'~!> A common element of many of these methods
is to incorporate the use of ab initio pseudopoten-
tials.>”12=!>  Ab initio pseudopotential methods using
plane-wave bases have been applied to a number of simple
metal, semiconductor, and insulating systems with good
success, e.g., these methods have accurately predicted
phase transitions, structural properties, bulk moduli, pho-
non dispersions, and elastic constants.’>~1¢ Extending
these methods to incorporate Gaussian bases has made
them applicable to a variety of solid-state systems includ-
ing not only the semiconductor systems, but also
transition-metal systems.'> !’

In this paper we will use a pseudopotential description
of the electronic properties and a Gaussian basis to exam-
ine the structural, electronic, and cohesive properties of
ruthenium metal. We have chosen to examine ruthenium
metal for several reasons. First, the band structure of the
material is fairly well known from a variety of different
calculations.""'#=2!  Thus, we can readily compare our
method of calculation with other methods. Second,
ruthenium metal is an efficient catalyst for methanation
and it is often used in combination with other metals as a
commercial catalyst.?>~2% It would be useful to establish
a theoretical framework for its bulk structural properties
in order to examine more closely its surface properties and
compare to other transition metals. Third, ruthenium in
its ground state has a noncubic structure, i.e., hexagonal
close packed. The hexagonal-close-packed structure is the
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most common among the transition metals, yet most cal-
culations on transition metals have concentrated on cubic
bulk materials. These calculations have been very suc-
cessful and one would expect similar results would be ob-
tained for a noncubic material.

II. METHODS OF CALCULATION

Our calculations are based on determining the total en-
ergy of the solid-state system through a solution of a self-
consistent-field single-particle ~Schrédinger equation
within a local-density approximation for exchange and
correlation. The details of our approach have been dis-
cussed elsewhere;'* 317 here we briefly review our method
and give computational details.

The first step in the calculation is to construct an
ab initio ionic pseudopotential for ruthenium. Our con-
struction follows the work of Hamann et al.?® The only
input into this calculation involves the atomic number
and a core length scale which delineates the transition
from “corelike” to “valencelike” regions of the atomic
species. Outside of the core we demand that the pseudo-
potential and the all-electron potential yield identical
wave functions for the atom. Inside the core, we demand
the pseudo wave functions are nodeless and contain the
same amount of charge as the all-electron wave functions.
The real potential and pseudopotential atomic eigenvalues
are fixed to be identical. The atomic configuration for the
pseudopotential construction was taken to be 5s'4d’. The
core length scales for s, p, and d components were taken
to be 1.7, 1.7, 0.7 in atomic units.

The ionic pseudopotential determined as indicated
above was expressed as follows:
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1
ViD=V, (D+ 3 [V(1) =V (D] 1) ], (1
=0

where angular momentum components up to /=2 were
considered, i.e., V;—V; and ¥, —V; are used as nonlocal
“corrections” to the local potential V; =V;. To initiate
the calculation, atomic pseudocharge densities were super-
imposed to form an approximate crystalline charge densi-
ty Perystals from which a Hartree potential V5 and an
exchange-correlation local-density approximation poten-
tial V,. can be constructed. These two potentials are
decomposed into a linear combination of on-site effective
screening potentials which are summed with the ionic lo-
cal potential to form a neutral local potential:

Viee (P) = VL (F) + Vi (0l ystas )+ Ve (plrystars?) - (2)

The total crystalline potential consists of a sum over these
atomic centered potentials plus the nonlocal terms. For
many materials, the superposition of atomic charge densi-
ties is not a bad approximation to the self-consistent
charge in a crystal and V), is a reasonable starting poten-
tial.

In order to expedite the evaluation of matrix elements
required for a solution of the single-particle Schrodinger
equation, we express both V. and V;—V; in terms of
Gaussians of the form

Vir)=3 ciexp(—pB;r?) . (3)

This expansion allows us to express all two- and three-
center integrals in terms of analytic summations. The
determination of the coefficients and Gaussian decay con-
stants is nontrivial as it involves a nonlinear, multiparam-
eter optimization process. We used a Monte Carlo simu-
lated annealing technique;®’ the fitted values for ¢; and j3;
are given in Table I. We note that these initial potentials
yield a reasonable band structure, e.g., within 0.5 eV of
the self-consistent band structure.

Our basis consisted of a Bloch sum of Gaussian orbitals
which has the form

Ok, 1) = —= 3 exp[ik(R+7,)]faim(r+R+7,)
Va2

4)

where i ={/mua} is a composite index, (2 is the crystal
volume, R is a lattice vector, 7, is a basis vector, and f(r)
are Gaussian-type functions of the form

Faim(D) = A gmexp( —ar®)r'K,,(6,6) , (5)

where A4,,,’s are normalization constants. “Kubic har-
monics” [ K}, (0,4)] up to /=2 (s,p,d) are included. To
determine the decay constants (a), we minimized the total
energy of the system. We found that four constants were
necessary to achieve reasonable convergence, i.e., the total
energy converged to within 0.1 eV in absolute magnitude.
The decays we used are a=0.25, 0.5723, 1.3104, and 3.0.
In optimizing these decays, we altered the shortest and
longest decays and constrained the middle two to be even
tempered.'* These decays are somewhat similar to those
used for W and Mo.!” The Hamiltonian matrix sizes are
8080 for the hexagonal-close-packed structure as we
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TABLE I. Coefficients (¢;) in rydbergs and exponential de-
cays (f;) in a.u.~? for the Gaussian expansion of the local and
nonlocal components of the ruthenium potential [see Eq. (3) and
text].

Ci ﬂl
Vloc
—1.65295 0.206 06
—0.71121 0.56186
—14.68993 0.84649
89.44192 2.00001
—302.718 53 2.63232
377.77770 3.70162
—95.40590 4.96774
—118.84195 5.28692
57.936 63 6.973 35
1.076 06 47.70755
V,— V1
38.86179 0.84391
—44.92577 1.28821
171.07063 2.64773
—115.60520 3.609 55
—156.706 23 4.15618
154.301 46 5.62370
—210.993 65 11.956 07
226.11115 13.43778
—49.62542 16.784 50
—0.28287 69.54027
V,—V,
—23.048 85 0.62329
64.007 33 0.77237
—93.10525 1.500 66
49.384 65 1.88528
130.275 35 2.40737
—219.24891 4.003 88
167.388 59 5.84821
—80.71093 8.697 84
22.976 39 11.586 17
—1.96357 35.61035

have two atoms per unit cell and 40 Gaussian-like orbitals
per atom.

To achieve self-consistency, we use a momentum space
scheme.!” The first step in this process is to evaluate the
overlap matrix, I1;;(k,G):

;(k,G)=(k,j | exp(—iG-1)/Q | k;i) ©

where . is the volume of the unit cell, G are reciprocal-
lattice vectors, and |k,i) are the basis orbitals given in
Eq. (4). These overlap matrices are used to compute the
charge density and the changes of the Hamiltonian matrix
elements, 8H,;(k), at a k point for an arbitrary change in
the crystal potential 8V, e.g., 8§V =V (out)— V. (in)
where V., is the sum of the Hartree and exchange corre-
lation potentials. More specifically, we can write

p(G)= Yh (K, Gy (7)
nk

and
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8H;(k)= 3 8V (G)I}(k,G)Q, , (8)
G

where we use matrix notation in (7); ¥, is the column
vector in the basis space corresponding to a wave func-
tion. In this formalism, there is no need to fit the poten-
tial to Gaussians during the self-consistency iteration pro-
cess and the final self-consistent potential has no special
shape constraint within the chosen basis.

As for other computational details, the local-density ap-
proximation for exchange and correlation is taken from
Hedin and Lundqvist.”® The number of k points used to
determine the charge density and the Fermi level was tak-
en to be 18 points over a uniform grid in the irreducible
Brillouin zone. We have also tested a grid of 40 points
and determined that the total energy varied by less than
0.02 eV, and with respect to changes in structural energies
the errors are estimated to be an order of magnitude
smaller. Gaussian weighting in the occupancy of the elec-
tronic states near the Fermi level was used to increase the
stability of the total energy with respect to the number of
k points sampled.? Iterations were carried out until the
Fourier components of the potentials were self-consistent
to at least 0.1 mRy. For a given set of k points, the total
energy is stable to within 10> eV. As far as computing
the matrix elements in real space, i.e., overlap and three-
center integrals, typically we included up to the tenth-
nearest-neighbor shell.

To evaluate the total energy of the system from a
knowledge of the wave functions and the eigenvalues, we
use the momentum space formalism of Ihm et al.!! In
this method, the Gaussian wave functions are expanded
into plane waves and the relevant reciprocal space sum-
mations formed. We included all reciprocal-lattice vec-
tors whose magnitude is less than 8.0 a.u. For the known
lattice parameters of ruthenium, this criterion produces
sums which include 1497 plane-wave terms.

III. STRUCTURAL AND COHESIVE
PROPERTIES

The structural properties of hexagonal-close-packed
ruthenium are more complicate than cubic materials as we
must optimize both the ¢ and a parameters to establish
the lowest-energy configuration. To perform this task we
constructed a grid of points in ¢ and a space and evaluat-
ed the total energy over this grid. We then fit a simple
quadratic expansion of the total energy in this space to
determine ¢ and a. Similar procedures have been fol-
lowed for other hexagonal-close-packed metals.!® The
form of our expansion is given by

E(c,a)=Eqo+ala —ay)*+Blc —cp)?
+v(la —ag)c —cy) , 9)

where E, is the equilibrium energy; ¢, and a, are the
equilibrium lattice parameters; and ¢, 3, and ¥ are param-
eters which control the relative compressibility along the ¢
and a axes. We evaluated the energy E(c,a) over a grid
of nine different values of ¢ and a to determine the six pa-
rameters in (9). As a reference energy we considered the
energy of the isolated pseudoatom. The difference be-

tween this energy and our solid-state system will yield the
cohesive energy. The energy of the atom was calculated
to be —447.16 eV. This value included a spin polariza-
tion correction®® of 1.80 eV. Since ruthenium is not mag-
netic, we did not consider spin polarization corrections to
the solid. In Table II we present the grid in ¢ and a
space, the calculated values of E(c,a) and the resulting
values for E, ay, ¢, @, B3, and y. Our fit over the given
range of ¢ and a lattice parameters was better than 0.01
eVv.

While the bulk modulus for ruthenium can be extracted
from (9), we do not expect this value to be especially reli-
able, since we have assumed no terms in (9) which corre-
spond to anharmonic deviations of E (c,a) and the grid
spacings in ¢ and a space which we used are fairly large.
In order to evaluate the bulk modulus, we examined E(Q)
as a function of volume, (), where for a given volume we
took the lowest-energy values of ¢ and a as estimated
from (9). In Table III we list E(£) as a function of
volume. We fit this curve to a Murnaghan equation of
state,’! and in Fig. 1 we illustrate the accuracy of our fit.

In Table IV we present the calculated structural and
cohesive properties of ruthenium. Overall, the agreement
for the calculated and observed lattice constants are quite
good. The error for the ¢ parameter of approximately 2%
is a bit larger than for cubic other materials, e.g., Mo or
W; however, this error is not so large as to indicate an in-
herent problem with our approach. The -calculated
cohesive energy is not expected to be very accurate as we
must subtract the difference between two rather large
numbers to determine the binding energy. Despite this
problem, the error we make in the cohesive energy of
ruthenium is about 15%. Moreover, the error is on the
side of yielding a cohesive energy which is too large. This

TABLE II. E(c,a) in eV referenced to the free ruthenium
pseudoatom. The fitting parameters are taken from Eq. (9).
The units are such that if ¢ and a are given in units of the ex-
perimental values (ceep=4.28 A and Aexpr =2.71 ‘&), then
E(c,a)isineV.

€ /Cexpt a /Aoy E(c,a)
1.00 1.05 —7.5226
1.00 1.00 —17.6956
1.00 0.95 —7.6535
0.95 1.05 —7.5459
0.95 1.00 —17.7279
0.95 0.95 —7.6105
0.90 1.05 —7.5225
0.90 1.00 —7.5734
0.90 0.95 —17.3561

Fitting Resulting

parameters values
E, —7.7376

a 56.86

B 34.33

4 36.76

Co 0.972

ay 0.990
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TABLE III. E(£),) as a function of atomic volume (£},) in
a.u. The minimum energy value of ¢ and a as determined from
Eq. (9) are also given.

Qa c /Cexp( a /aexpt E(Qa )
72.5 0.945 0.9139 —7.2187
77.5 0.953 0.941 —7.5530
82.5 0.964 0.967 —17.7150
90.0 0.977 1.001 —17.7321
100.0 0.998 1.045 —7.4946

is consistent with the trend observed for a number of
local-density calculations for transition metals involving
different bases and all electron potentials.>> Thus, the er-
ror appears to be an inherent problem associated with the
local-density approach.

The calculated bulk modulus is in good accord with ex-
periment. We note that for the early transition metals, it
has been shown that one needs to incorporate explicit
valence-core contributions to exchange correlation in the
pseudopotential approach.>* This effect arises from a
fairly sizable core-valence wave-function overlap. Here
we do not include these effects and yet our calculation
yields a satisfactory bulk modulus. This is consistent with
previous work suggesting that this correction to the bulk
modulus should only be large for the early transition met-
als.

For Poisson’s ratio,** i.e., the negative ratio of the
transverse strain to the corresponding axial strain in a
body subject to uniaxial stress, we need to compute the
value of a for a given value of ¢. The information con-
tained in Table II is sufficient for this purpose. For three
values of ¢ (0.9, 0.95, and 1.0 in units of ceyy), we fit a
parabola through the energy calculated at three a points
(0.95, 1.0, and 1.05 in units of a.p). The results are
shown in Fig. 2, where we have fit a linear function for a
versus c¢. Expressing Poisson’s ratio o as

=—(Aa/a)/(Ac/c) , (10)

the value extracted from Fig. 2 is 0.315. However, we can
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FIG. 1. Calculated total energy of hexagonal-close-packed

ruthenium as a function of atomic volume. The solid line
represents a Murnaghan equation of state fitted to the calculat-
ed points.

TABLE IV. Comparison of the ground-state properties of
ruthenium in the hexagonal-close-packed structure. Experimen-
tal data are from C. Kittel, Introduction to Solid State Physics
(Wiley, New York, 1976); K. Geschneidner, Jr., in Solid State
Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull
(Academic, New York, 1964), Vol. 16, p. 275; and R. W. G.
Wyckoff, Crystal Structures, 2nd ed. (Interscience, New York,

1963). The cohesive energy has been corrected for zero-point
motion as suggested in Ref. 1.
Property Experiment Theory

Cohesive energy (eV) 6.62 7.70

a (A) 271 2.68

¢ (A) 4.28 4.16

c/a 1.579 1.552
Bulk modulus (Mbar) 3.21 3.51
Poisson ratio 0.29 0.31
(8B /3P)p_g 4.42

also extract a value using Eq. (9) and the data in Tables II
and III. This value tends to be a bit lower, i.e., 0.308.
Within the errors of calculation, we feel the agreement be-
tween the estimated value of 0.29 from Gschneidner
(Table IV) and our calculated values is satisfactory.

Another measure of the structural parameters is to ex-
tract the minimum energy value of ¢/a as a function of
pressure. Here we do not have experimental data.
Nonetheless, we expect our prediction in Fig. 3 is accurate
given our relatively small errors for the other structural
properties. The calculated value is plotted as a function
of pressure given by

P(Q)=(Bo/By)[(Qo/Q)—1], (11)

where the values of B, and B, the bulk modulus and
pressure derivative of the bulk modulus, are taken from
Table III. We have plotted the value of ¢/a versus this
pressure with the minimized ¢ /a value for a given pres-
sure (or volume) obtained from E(c,a) as given by Eq. (9).
We do not expect E(c,a) as expressed by (9) to be valid
for very large pressures, or small volumes, as it does not

a(l)

3.9 4.0 4.1 4.2 4.3
c(d)

FIG. 2. The lattice parameter a as a function of c¢. The
lowest-energy value of a for a given value of ¢ has been deter-
mined from the data in Table II for three values of c¢. A linear
relationship between ¢ and a is shown in the figure. From a
knowledge of a vs c, it is possible to determine Poisson’s ratio
(see text).
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FIG. 3. The ratio of c/a versus pressure as determined from
Egs. (9) and (11). The ideal value of ¢ /a is 1.6333.

contain cubic terms in ¢ or a. Thus, we show only the
c/a ratio up to 1 Mbar. The interesting result here, but
perhaps not unexpected, is that the ¢ /a value, which both
experimentally and theoretical is found to be less than
ideal (c/a)igea=Vv'8/3=1.6333... at zero pressure, is
calculated to approach the ideal ratio at very large pres-
sures. Intuitively one would expect that a hexagonal-
close-packed crystal would have a c/a ratio which devi-
ates from the ideal value owing to anisotropic forces. As
one applies a large isotropic force to the crystal, one
might expect the crystal binding to be become more iso-
tropic and for the structure to assume a more isotropic
structure, i.e., an ideal hexagonal-close-packed structure.
It is interesting that our calculation suggests this and,
moreover, it suggests that at very high pressures the c/a
ratio starts to saturate near the ideal value.

IV. ELECTRONIC PROPERTIES OF RUTHENIUM

While we have concentrated on the structural properties
of ruthenium, we have also calculated the electronic prop-
erties of ruthenium in terms of its band structure. The
band structure along the c direction has been measured by
angle-resolved photoemission®® and has been calculated
previously by several workers.!''8~2! We present the band
structure of ruthenium in Fig. 4 along several high sym-

\Q/— /

~_ |

/45
=

r T K T M z r A A

Energy (eV)

k Wave Vector

FIG. 4. Band structure of ruthenium calculated at the experi-
mental lattice parameters.
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metry directions. The band structure we display is at the
experimental value of the lattice constants (cex, and
@eypt). However, we have also calculated the band struc-
ture at the calculated equilibrium values and find only
small differences (the eigenvalues change by less than 0.25
eVv).

Perhaps the best analysis of the band structure and Fer-
mi surface of ruthenium is from Jepsen et al.'® They
used a linear muffin-tin-orbital method and a Slater-type
exchange. Thus, it would not be unexpected to have some
significant differences in our band structures. However,
the two calculations agree quite well in terms of overall
band dispersion shapes. For example, the detailed band
shapes along the T direction which show very dispersive
and nonmonotonic band configurations are in very good
agreement. In addition, although we have not done a de-
tailed calculation of the Fermi surface, the placement of
our Fermi level and energy-level crossings are nearly iden-
tical with that of Jepsen et al.'® One significant differ-
ence is the overall bandwidth. The calculation of Jepsen
et al.'’ yields a conduction bandwidth of approximately
8.2 eV as contrasted with our calculated width of 7.2 eV.
This is not a large discrepancy in the sense that we did not
include relativistic effects which are known to increase the
valence bandwidth by about 0.5 eV. Moreover, Jepsen
et al. used a different exchange-correlation local-density
approximation. Compared to relativistic pseudopotential
calculations using the same exchange-correlation approxi-
mations, we are in better agreement. The calculation of
Holzwarth and Chelikowsky'® yielded a bandwidth of ap-
proximately 7.7 eV.

With respect to experiment, our bands are in good ac-
cord along the I'-A4 direction as measured by Himpsel
et al. using angle-resolved photoemission. In particular,
the measured valence bandwidth is approximately 7.6 eV
and the width of the bottom two bands is about 1.5 eV at
I'. Our calculation yields a width of 1.1 eV. The separa-
tion of the lowest two bands from the higher band com-
plex at A is about 3.0 eV as measured and 2.6 eV as per
our calculation. At A4 (at —3.0 eV relative to the Fermi
level) we find a slight splitting between a fourfold degen-
erate level ( 43) and a twofold degenerate level (A4,). This
splitting appears to be a function of the deviation of the
¢ /a ratio from the ideal ratio and the details of the poten-
tial. For the measured c /a ratio (1.58), we find a splitting
between A;— A, of about 0.2 eV. For the calculated ratio
(1.55), we find a splitting of 0.6 eV. However, the split-
tings are not directly attributable to the deviations of ¢ /a
from its ideal value. In particular, it has been observed
that this splitting is different for relativistic and nonrela-
tivistic potentials for the same c /a ratio.>

One notable discrepancy in our calculation as compared
to the work of Himpsel et al.>® is their placement of a
bulk band near the Fermi level. Specifically, they suggest
the existence of a nearly dispersionless bulk band along
the A direction which is within 0.3 eV of the Fermi level.
This suggestion is a variance with our present calculation,
a previous relativistic pseudopotential calculation using a
mixed basis'® and the work of Jepsen et al.!® At present
we have no explanation for this disagreement between
theory and experiment.



V. CONCLUSIONS

In summary, we have examined the electronic, cohesive,
and structural properties of hexagonal-close-packed
ruthenium metal. We used an ab initio pseudopotential
method with Gaussian orbitals to solve a single-particle
Schrodinger equation and obtain the crystalline total ener-
gy. By varying the lattice parameters (¢ and a) we were
able to determine the equilibrium lattice constants, the
cohesive energy, bulk modulus, derivative of the bulk
modulus with pressure, and Poisson’s ratio. Moreover, we
were able to predict the c/a ratio as a function of pres-
sure up to 1 Mbar. We expect that the ¢ /a ratio which is
less than the ideal value at zero pressure will approach
and saturate at the ideal value as a function of pressure.

With respect to experiment, we find that the calculated
values for the lattice parameters are in good agreement
with experiment. The largest discrepancy is on the order
of 2% for the ¢ value. The cohesive energy is about 15%
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larger than the measured value, but is in line with other
local-density calculations for transition-metal cohesive en-
ergies. The bulk modulus and Poisson’s ratio are both
about 5% larger than experiment.

Our band structure at the experimental lattice parame-
ters is in accord with previous calculations for ruthenium.
We find our bands are within 0.5 eV of relativistic pseu-
dopotential calculations and, although our bandwidths
may be different, we find similar dispersions to previous
muffin-tin calculations.!® With respect to angle-resolved
photoemission work,*® we find ourselves in agreement
with experiment with the possible exception of a measured
bulk band near the Fermi level.
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