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Impact of ion-host interactions on the 5d-to-4f spectra
of lanthanide rare-earth-metal ions. I. A phenomenological crystal-field model
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Dielectric crystals doped with Ce +, Eu +, Sm2+, and Ybi+ display broadband 5d-to-4f emission,
and are candidate solid-state tunable laser materials. The absorption and emission wavelengths,
however, are very host sensitive, and a better understanding of 5d crystal-field interactions is needed
in order to design lasing materials. This paper focuses on the 5d energy levels of Ce'+ in an octahe-
dral complex. A phenomenological model is proposed for the bond-distance dependence of these
levels based on first-principles expressions derived by others for contributions to the crystal-field en-

ergies. The magnitudes of these contributions are estimated for the CeF6 complex.

I. INTRODUCTION

In recent years there has been a growing interest in
solid-state tunable lasers based on impurity-doped dielec-
tric crystals. For example„crystals doped with
transition-metal ions such as chrysoberyl doped with
Cr +, ' MgF2 with Ni +, and with Co + (Ref. 3) have
been lased. The iron-group transition-metal ions display
vibrationally assisted optical transitions within the 31
shell and generally lase in the red or near-ir region.

The lack of tunable solid-state lasers at shorter visible
wavelengths has motivated investigation of the 51-to-4f
optical transitions of lanthanide rare earths, particularly
Ce+, Eu +, Srn +, and Yb+. Optical transitions be-
tween the 4f ground state and the first excited configu-
ration 4f '51 are parity allowed, and because of the
large spatial extent of the 51 wave function, they are vi-

brationally broadened much more than the forced
electric-dipole transitions which occur within the 4f shell.
51-to-4f emission bands in crystals are typically several
tens of nanometers in width. By the same token, the peak
wavelength of the emission band varies greatly from host
to host, and the choice of host is a critical design parame-
ter. For example, Ce +:LiYFq and Ce +:LaF3 have been
lased, ' but the lasing wavelengths are in the near uv near
300 nm. Ce +:YAG emits m the visIble, but laser action
seems to be frustrated by excited-state absorption losses.
The lowest 51 level of Eu + and of Sm + often lies close
to excited 4f levels ( P7&2 in Eu +, and Do in Sm +).
Unless the crystal field lowers this 51 level to below these
excited 4f levels, it will be completely depopulated by ra-

pid relaxation, and there will be no broadband emission.
Even if broadband emission occurs, there may be excited
4f levels at twice the energy of this emission, leading to
allowed excited-state absorption transitions. Thus a 1000
wave number change in the 5d crystal-field splitting, the
51 centroid, or the Stokes shift could "make or break"
tunable laser action. Thus, in order to "design" good tun-
able lasers, we must be able to predict the spectroscopic
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FIG. 1. Ce + energy levels.

effects of parameters such as site size, site symmetry, and
coordination number. This requires that we study trends
that occur when the host is varied in systematic ways.

In this paper, the crystal-field effects which determine
the 51 levels of the Ce + ion are surveyed, and their mag-
nitudes are estimated. A phenomenological model is syn-
thesized which describes the dependence of the 51 levels
on bond distance in an octahedral complex. It will be as-
sumed that the ligands are very electronegative donor ions
(e.g., F or 0 ). A key issue is the adequacy of a purely
electrostatic description of the crystal field. In a follow-
ing paper, this is tested by application of the model to
Ce +-doped fluoride elpasolites.

The Ce + ion is singled out for consideration because
its single-electron configuration yields a simple energy
spectrum. Figure 1 shows a typical energy-level diagram
for the Ce + ion in a fluoride host with cubal coordina-
tion. The 51 splitting is proportional to the fourth-rank
crystal-field parameter and can be deduced from inspec-
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tion of the absorption spectrum. Eu + and Sm +, on the
other hand, have very complex energy spectra arising
from Coulombic and exchange splittings of the free ions,
which in turn are effectively modified by the host. This
makes it difficult to extract crystal-field parameters from
an examination of optical spectra. Ce + is also attractive
as a lasing ion because its photoionization threshold is
higher than in the divalent rare earths.

For Ce + in an octahedral complex, two parameters are
of interest for prediction of absorption spectra. First, the
center of gravity of the Sd configuration is lower in a po-
larizable matrix than in the free ion (using the 4f centroid
as the zero of energy) by an amount which we label b, .
Second, the 5d level is split by a cubic crystal field into
two levels separated by a gap 10Dq.

II. THE ELECTROSTATIC CRYSTAL-FIELD MODEL
AND ITS LIMITATIONS

The crystal-field interaction for a localized state of an
impurity atom is generally expanded in spherical harmon-
ics. For the ith electron at position r;,

V(r;)=QBkqCi (r;),
k, q

where r; denotes the angular part of r; and the radial
dependence is in the crystal-field parameter Bk . The Ck
are the spherical harmonics. If the crystal field arises
from fixed classical electrostatic charge distributions in
the lattice, it must obey Poisson's equation. If the charge
distributions do not overlap the 4f or 5d wave function in
question, the field must obey Laplace's equation. The
solution to Laplace's equation in spherical coordinates is
(1), provided that

k
Bkq =Akqr

where Ak is a constant, and the subscript i is dropped. If
the lattice charge distributions are expanded in multipoles,
it is found that a 2&-pole moment located a distance R
away contributes a term proportional to R ' +~+" to the
Ak parameter.

In Oi, site symmetry, (1) becomes

V(r) =gg)+A40r j C4O(r)+5[C44(r)+Cqq(r)]/~701 .

For d electrons the matrix elements vanish for k ~4. The
300 term is the Madelung potential, and for negatively
charged ligands this quantity is positive, raising the 4f
and 5d energies by the same amount. The A4o term splits
the d level into eg and t2g levels with energies

E(eg ) =E„„,„„d+6Dq, .

«r2s) =Ec..troid 4De . —

The point-charge contribution to Dq for an octahedral
(CeF6) complex is positive because the lobes of the ee
wave function point toward the repulsive I' ligands, and
the lobes of the t2g wave functions avoid them. (Note:
The parameter 10aq is often used as a purely experimen-
tal parameter quantifying a splitting. In this work, it is

also strictly identified with the parameter Bzo. For the d
electron, B4O =21Dq. )

The ligands also possess permanent multipole moments
induced by the crystal field. This "lattice-induced" mul-
tipole field inust be self-consistently solved; that is, the
point-charge field induces multipole moments on all the
atoms, and the field due to these moments induce more
moments, and so on. For a highly charged cation like
Ce + in an isovalent site, lattice-induced multipole mo-
ments would tend to make the ligands more repulsive to
the 5d electron. Another effect which contributes to the
multipole moments of the ligands is the field due to the
instantaneous displacement of the 5d electron. This gives
rise to a correlation crystal field, to be discussed in Sec.
III, but also causes the ligands to look more attractive on
the average. The latter effect is called the "self-induced"
multipole field. ' As long as the ligands are modeled as
point multipo!es, both lattice-induced and self-induced
fields obey (1) and (2).

So far we have insisted on a crystal field that obeys
Laplace's equation. Such a model predicts that the Sd-4f
centroid difference should be unchanged from the free ion
value (neglecting configuration mixing by the crystal
field). It further predicts a cubic Sd splitting whose lead-
ing contribution goes as 1/R, where R is the metal-to-
ligand distance.

The model can be refined by solving Poisson's equation,
that is, by regarding the ligands as delocalized charge
clouds obtained by summing the squared magnitudes of
ligand orbitals, and then calculating the crystal field clas-
sically. We will refer to the resulting correction as "clas-
sical overlap, " although in the absence of actual metal-
ligand overlap, it is equivalent to including all terms in a
ligand multipole expansion.

Experimentally, there are deficiencies in the electrostat-
ic crystal-field model, even for 4f electrons. Morrison
points out that corrections must be introduced for screen-
ing and covalency. Furthermore, the 5d-4f centroid
difference decreases quite significantly for rare earths in
crystals. In Ce:YLF, for example, the shift is 6000 cm
with respect to the free-ion value.

The inclusion of classical overlap in the calculation of
splittings does not lead to a better model. Such calcula-
tions were done by Kleiner" on 3d electrons and by Gar-
cia and Faucher' on 4f electrons; the delocalization of
the ligand electron clouds in this model causes the positive
ligand cores to become more "visible. " As a result, F
Cl, or 0 ligands are predicted to be more "attractive"
than they are experimentally. The magnitude of the error
is greater for the higher-rank crystal-field components be-
cause of the r" weighting, and in many cases the calculat-
ed splitting is of the wrong sign.

In order to clarify and classify what is missing from
electrostatic crystal-field theory, consider a simple
quantum-mechanical model. Let r& be the coordinate of a
5d electron on a Ce + ion and r2 the coordinate of a
ligand electron. Let both electrons be moving in a com-
mon background potential V(r). Let us write the wave
function as a Slater determinant.

0'(ri, r2) = [p~(ri )pL (r2) —pl. (r, )QM (r2)]/V'2 . (5)
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The first-order energy of the system is

@—~.1. ~.M)&4M41. l
«'«(2)

I 4~I. &S & ~

The first two terms are the eigenvalues for the metal and
ligand orbitals, respectively, in the absence of the
Coulomb repulsion. The third term is the Coulomb repul-
sion and the last term is the exchange. In the product
bras and kets, the first orbital is a function of the coordi-
nate of electron 1, and the second orbital, electron 2. m,L

and m,M are the spin projection quantum numbers for the
ligand and metal eigenstates, respectively.

If we assume that
~
((}I& and

~ PL & are nonoverlapping
atomic orbitals, then

~ P~& diagonalizes the one-body
Hamiltonian,

8 =F2/2m+V+ f d'i2 ~pl. (r2) ('e'jr(2.

The effective ligand field obeys Laplace's equation, and
(2) is valid. If there is overlap, but the e~chang~ term in
(6} is ignored, the third term in (7) obeys Poisson s equa-
tion. In either case, (7) is a quantum-mechanical
equivalent of classical crystal-field theory which includes
the classical overlap field due to one ligand electron.

To go beyond electrostatic crystal-field theory, several
of the following refinements in the model are possible.

(1) The improvement of
~ /sr & and/or

~ Pi & by allow-
ing configuration mixing by the crystal field.

(2) The inclusion of the exchange term of (6) in the
Hamiltonian.

(3) The improvement of ~()(M & and
~ Pi & by allowing

for covalency. That is, admix
~

()}L, & and
~ P~ & to form

bonding and antibonding orbitals.
(4) The inclusion of correlations between the orbital

motions of the ligand and metal electrons.
Most crystal-field calculations start by using the best

available free-ion wave functions and neglecting addition-
al configuration mixing entirely. Sugano and Shulman'
have done covalency calculations on Ni + in KNiF2, in-
corporating improvements 2 and 3 above. They obtained
3d splittings that are close to experimental values. We
will discuss this approach to ligand field theory in detail,
but first let us examine correlation crystal fields.

other electrons. In the case of Ce +, the self-interaction is
most important because it explains the 4f Sd-centroid
shift. In the case of many-electron configurations, as in
the divalent rare earths, the two-electron crystal field is
also important.

Referring to Fig. 2, let there be a ligand at R and two
electrons at r& and r2 with respect to the metal ion. R&
and R2 are the vectors from electrons l and 2, respective-
ly, to the ligand. The electrostatic potential at the ligand
due to the field of electron 1 is expanded in spherical har-
m oIllcs.

P(R, +x)= —g E„'.(R, )x"C„(x},
n, m

Q„=a„E„
The potential of electron 2 in the field of the nth rank
multipole is

U'"'= —& g Qnm( —1}"Cnm«2}/R2"+'

Substitution yields

U'"'(ri, r2)= —e a„+C„(R()C (R2)/R i+'R2+' .

The self-interaction is obtained by setting Ri ——R2 and
introducing a factor of —,

' to account for the disappear-
ance of the second electron.

U(n)(r ) &2& /2R 2n+2 (12)

Next, (12) must be expanded in r(. The leading two
spherically symmetric terms turn out to be

U(n)(p ) e2~ [ 1/R2n+2

+(n+1)(n +2)ri/3R2" +~]/2 . (13)

E„=e(—1)"C„(Ri)/R i+'

Each term in the above sum induces a multipole moment
Q„on the ligand given by

III. CORRELATION CRYSTAL FIELDS

In the special case of dipoles ( n = 1) this is

U'"(ri)= ea(1/R—+2ri/R )/2 . (14)

Regardless of how much we embellish the functions P~
and PL in (5), our quantum-mechanical model still cannot
incorporate explicitly coupled orbital motions of the metal
and ligand electrons. The original motive for investigat-
ing correlation crystal fields was the observation of host-
induced shifts in the Coulombic repulsion parameters of
rare earths. Morrison gives a semiclassical analysis of
this mechanism, which we summarize here. The term
"correlation crystal field" is used here in a different way
than it is by Newman, ' who uses the term to denote any
interaction which can be parametrized by two-electron
crystal-field parameters.

The instantaneous displacement of a 4f (or 5d} electron
induces multipole moments on the ligands, and the field
due to these moments reacts back on the electron or on

The first term is a "self-induced" contribution to the
Madelung potential which is not really correlation. It
could have been incorporated into our quantum-

Ligand

Metal .-..
(on

FIG. 2. Notation for the analysis of correlation crystal field.
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mechanical model (5) by admixing excited ligand orbitals
into Pt.

The second term of (14) is an isotropic parabolic poten-
tial with a maximum at r =0, a violation of Laplace's
equation. This term arises purely from correlation. It
causes the effective one-electron potential of the metal ion
to be "less steep, " which decreases energy differences be-

tween configurations. In particular, the 5d 4f ce-ntroid

difference changes by the amount

b, = —ae ( & r & 5d
—

& r & 4f ) /R (15)

where & & denotes the expectation value with resptx:t to
the subscript eigenstate. If there are many ligands with
different values of R and a, we sum them.

Similarly we can treat the fourfold field, obtaining a
self-induced 84 proportional to &r &/R, '0 and a corre-
lation 8& proportional to & r &/R ' .

This semiclassical approach yields the same results as a
more rigorous quantum-mechanical analysis, ' as long as
it is understood that the polarizability used is the in-
crystal value rather than the free-ion value.

IV. COVALENCY

(16)

where P; is a metal orbital, and I; a ligand-complex orbi-
tal. ¹ and X are normalization constants. Orthogonali-
ty of the antibonding and bonding wave functions imposes
the constraint A.; =y;+S;, ~here 5; is the group overlap,
&P I

X&. The i subscript in (16) includes an Ot, symmetry
group representation and partner index. So g; is a linear
combination of ligand s or p orbitals which transforms
like P;.

The phase factors of the orbitals P and X are such that
they constructively interfere in the bonding region. Thus
the parameters S, y, and k are positive, and the algebraic
signs in (16) are physically significant, indicating charge
buildup in the bond region for the bonding orbital, and a
node in the bond region for the antibonding orbital.

The calculation of Sugano and Shulman is equivalent to
a variational approach, minimizing the energy of the sys-
tem with respect to the parameter y. The Hamiltonian of
the system is written with a one-body potential which has
the full symmetry of the complex.

So far we have considered a strictly ionic model, that is,
one not allowing for any electronic excitations which in-

volve transfer of charge between the ligand and metal

ions. There is good evidence that such effects have im-

portant spectroscopic consequences for 3d electrons.
Sugano and Shulman' performed NMR and optical mea-

sureinents on KNiFi, and showed that their results fit a
covalent model in which the F 2s, 2po, and 2pm orbitals
display different amounts of mixing with Ni2+ 3d orbi-
tals. We will review their method and results in detail in

order to guide us in the formulation of a model for Ce +

5d orbitals. They performed a calculation of the 31 cubic
splitting using a Hartree-Fock potential which was the su-

perposition of free-ion Hartrm-Fock potentials. Their tri-
al wave functions were

&t =Ei —
I
S'&&

I
VM I

&& —&O'
I

VM
I
&&

I

where

and

(T+VM)4=EM'

(T+ Vg)7=Et X .

Sugano and Shulman measure the "amount of covalen-
cy" by the parameter y, not A, or S. This is physically
reasonable because y & 0 indicates bonding. If y =0, how-

ever, there is still "antibonding" needed to ensure ortho-
gonality. That is, we have

Thus & ql,
I
H

I

0', & contains a term of the form
—S&X IH I P& which is ascribed to "nonorthogonality"
rather than to "covalency. " The normalization coefficient
in (16) introduces a term of the form
(2AS —S )&P I

H
I P& which is termed "renormalization. "

Sugano and Shulman reserve the term "covalency" ex-
clusively for contributions arising from nonzero y.

Sugano and Shulman determine an experimental value
for 10Dq by measurinII the absorption from the ( t e ) A i
ground state to the (t e ) Tz excited state of Ni +. This
experimental value was 7250 cm '. The calculated value
was 6350 cm ', and the breakdown of the contributions
to this are shown in Table I. This calculation does not in-
clude lattice-induced and self-induced dipolar contribu-
tions. The former is zero because the fluoride ion site has
inversion symmetry. For a= 1 A, the self-induced dipo-
lar contribution to the splitting is —759 cm

TABLE I. Calculated contributions to 10Dq of Ni + in
KNiF3 (cm ') (Ref. 13).

Point charge
Classical overlap
Exchange
Renormalization
Nonorthogonality
Covalency

1390
—2080
—2880

900
3730
5290

Total
Experimental

6350
7250

H=gT+VM+VL .

The summation is over the electrons, T is the kinetic ener-

gy operator, V~ is the metal-ion potential, and VI is the
ligand-complex potential.

For each value of the label i, which we drop, the bond-

ing and antibonding orbital energies are
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Neglect of metal-hgand wave-function mixing

(S=y=A, =O) leads to a crystal-field splitting of the

wrong sign because of the attractive exchange and classi-

cal overlap interactions. The other terms are all repulsive.
The covalency contributes over 80% of the total splitting.
The calculated Iiiixillg is also quite lalge. A, fof pir is
0.396, for example. The mixing coefficients agree quite
well with those deduced from Sugano and Shulman's

NMR measurements.
Several methods of approximation have been applied to

(18). The extended Huckel method' yields for the anti-

bonding orbital energy:

E.=EM+~'E" /(E~ E'-) (20)

The antibonding energy is proportional to the square of
the group overlap integral, and therefore should show a
roughly exponential dependence on the metal-ligand dis-
tance. For an octahedral CeF6 complex in a fiuoride crys-
tal, S is on the order of 0.1, EL, (2p) is about —150000
cm ', and E~(5d) is about —50000 cm '. ' These
values in (20) yield an antibonding energy of 2250 cm
Therefore, significant covalent contributions to the 5d
splitting and centroid should be expected. Equation (20)
includes the last three terms of Table I, which we will
refer to as "antibonding" contributions. The classical
overlap and exchange will be referred to as "overlap" con-
tributions.

The 5d splitting of Ce + in an octahedral field would
have a covalent contribution equal to the difference be-
tween the es rr and s antibonding energy and the tis n an-
tibonding energy. This contribution should have the same
sign as the point-charge contribution. A degeneracy-
weighted average of these antibonding energies gives the
centroid shift.

V. CONFIGURATION MIXING

In this work the term "configuration interaction" will

be used to denote admixture of atomic configurations by
the Coulombic repulsion interaction of the free ion.
"Configuration mixing" will denote an additional admix-
ture introduced by the crystal field.

Configuration interaction is a spherically symmetric in-
teraction in the product space of all the electrons, mixing
states with the same values of l., S, and other quantum
numbers indicating Lie group representations. The quan-
tum number l is not valid, but for a lone 4f or 51 electron
plus closed shells, I mixing is negligible. The principal ef-
fect is n mixing, which arises from the spherically sym-
metric interaction with the closed shells and leads to
wave-function expansion with respect to hydrogenic wave
functions. In multielectron configurations (like Pr + 4f )

I mixing is significant and leads to an I. and 5 depen-
dence of the phenomenological crystal-field parameters.
This effect has been parametrized by Newman' as a
two-electron crystal field ("correlation crystal field" in his
terminology).

Configuration mixing, on the other hand, is a departure
from spherical symmetry which has several potentially
important consequences for Ce +. First, the crystal field
acting on the (Xe) core mixes excited configurations into

the Ss -5p state, which in turn alters the effective crystal
field on the 4f or 5d electron. For 4f electrons in the rare
earths, this effect shields the crystal field. Sternheimer'
calculated reduction factors for 4f" crystal-field parame-
ters, and found that Aqq is reduced by about 65%, Aq by
9%, and A6 by 4%. For 5d electrons this effect will lead
to less shielding because the 5d wave function extends
further outside the (Xe) core, but quantitative values for
the shielding parameters are not known. This effect does
not alter the range dependence of the crystal field, that is,
a shielded point charge 840 still has a 1/R dependence.
Experimentally, however, this effect would manifest itself
in a difference between the phenomenological Ak ob-
tained for 4f electrons and those obtained for 5d electrons
(assuming the (r ) values used are valid).

The second consequence of configuration mixing is that
it acts on the 4f or 5d state directly. A cubic field will
mix 6d, 7d, and 5g (es, t2g) states into the 5d states.
This gives a second-order downward shift of the 51 levels.
For 6d mixing, for example,

bE(tpg)= —
~

(5d(t2g)
~

V
~
6d(tig))

~

'/(E~ E5g)—
(21)

This shift, however, should only be a few tens of wave
numbers because the energy denominator is on the order
of 100000 wave numbers, and the matrix element in the
numerator is no more than 2000 or 3000 wave numbers.
The isotropic overlap and correlation crystal-field terms
will also mix the 51 with 6d and 7d states, again leading
to a slight second-order downward shift of the 5d energy
levels.

A measure of the importance of configuration mixing is
the degree to which ion polarizabihties are altered by the
crystalline environment. Mahan' studied this effect. For
anions, the spherically averaged crystal field rises sharply
beyond the nearest-neighbor distance. This compresses
the potential, which increases the energies of excited anion
configurations and reduces the amount of admixing be-
twmn configurations. For cations, the overlap with nega-
tive ligands expands rather than contracts the potential,
which lowers the energies of excited configurations and
admixes them more. Mahan calculated cation and anion
polarizabilities in alkali halides, and compared the results
to experimental values. He found that while the polariza-
bilities of anions decrease significantly from free-ion
values, the cations show no significant increase.

VI. MODEL FOR AN OCTAHEDRAL COMPLEX

We now construct a phenomenological model for the
5d energies in an octahedral complex. The splitting,
10Dq, will include contributions from the point-charge,
lattice-induced dipole, and self-induced dipole terms plus
a contribution from overlap and antibonding effects. The
centroid shift, b, will include the correlation term (15)
and again an antibonding-overlap contribution.

The antibonding-overlap contribution to the Sd energies
consists of antibonding, exchange, and classical overlap;
the latter two make the ligands look "attractive, " and
therefore give negative contributions to both 10Dq and b, .
In predicting the qualitative behavior of the system we as-
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b, = —6e a((r )5d —(r )4f)/R +Be
(22)

where it is assumed that the tr antibonding energy for the
t2e level and the cr antibonding energy for the eg level
both vary exponentially on the nearest-neighbor distance
8 with the same decay distance b. In the above expres-
sions, o. is the ligand polarizability, E is the axial,
outward-directed electric field at the ligand, and (r")
denotes the expectation value of r" with respect to the 5d
state, or the state indicated by subscript. The electric field
E is given by e /R times a constant on the order of unity
which is computed by lattice sum.

Experimentally the t2g and eg energies can be taken to
be the energies corresponding to the centroids of the ab-
sorption bands to the respective levels. This strategy re-
lies on a semiclassical model of vibrationally broadened
optical spectra: The lattice tends to remain stationary
during the electronic transition, and therefore the absorp-
tion band arises primarily from vertical transitions in con-
figurational coordinate space. The energies of these verti-
cal transitions are the energies which would be observed if
the lattice could be fixed in its equilibrium position.
These are the energies that crystal-field theory attempts to
predict.

A first-principles calculation of the antibonding-overlap
terms in (22) is very difficult, requiring a detailed
knowledge of wave functions both on the metal ion and
the ligands. Even for calculating the other terms, howev-
er, the correct values for a and (r") are not clearly estab-
lished. Morrison shows, for example, that the use of
Hartree-Fock wave functions for the 4f electron underes-
timates (r ) by a factor of 3.

Polarizability estimates for F in NaF vary from
Mahan's' value of 0.69 A to Fowler and Madden's '

value of 1.12 A . %'ilson and Curtis obtain a value of
either 1.56 or 1.83 A for alkali fluorides, depending on
the model used. These estimates are based on isotropic or
spherically averaged crystal fields, and their correctness is
tested by examining refractive index data for cubic crys-
tals. The polarizabilities appearing in (22), however, are

sume that the net antibonding-overlap contributions to
both 10Dq and 6 are positive. The justification for this is
provided by Phillips, who pointed out that even without
covalency [y=0 in Eq. (16)], metal-ligand overlap gives
rise to the "nonorthogonality" and "renormalization"
terms shown in Table I. Using the wave function of Eq.
(19), Phillips argues on general grounds that these terms
give rise to an effective repulsion which approximately
cancels the classical overlap and exchange. Physically,
this is Pauli repulsion, since the necessity of orthogonaliz-
ing %b and ql, is a reflection of the Pauli principle.
Indeed, in Table I, the sum of the classical overlap, ex-
change, renormalization, and nonorthogonallty terms is
—330 cm ', or 5% of the splitting. Although Phillips
applied this argument to the splitting, the cancellation of
terms affects the energy eigenvalues of the individual lev-
els, and therefore applies to the centroid as well.

For an octahedral complex we write

10Dq = 5e (r )/3R +25eaE(r )/3R

—145e a(r )/21R +He

dominated by the axial polarizability in the octahedral
complex, whereas the crystal refractive index reflects an
average of the axial polarizability and two transverse po-
larizabilities. Thus, in addition to the great uncertainty in
the isotropic value for a, anisotropic components of the
crystal field at the ligand may enhance the axial polariza-
bility at the expense of transverse polarizability, or vice
versa.

Therefore, it is best to express (22) in phenomenological
form

10Dq =C, /R'+C, /R'+~e

a = —C, /R'+Be -'" .
(23)

In effect, (r ), (r )5d —(r )4f, a, 3, B, and b are
phenomenological parameters adjusted to fit (23) to the
measured dependence of 10Dq and b, on R in a series of
isostructural hosts. At least three hosts are required to
determine the parameters, and more are desirable.

This quantitative approach can be supplemented by a
purely qualitative approach. Figure 3 shows the depen-
dence of the 5d levels and their centroid on bond distance
for an octahedral CeF6 complex as given by (22) for plau-
sible values of the unknown parameters. The range of
bond distances shown in Fig. 3 is divided into three re-
gimes, which are distinguishable in terms of qualitative
dependence of the levels on the lattice constant.

O 45-
Ld

0

4

00

.."Centroid

.'I~ li l & l

1.8 2.0 2.2 2.4 2.6 2.8
R(A)

FIG. 3. 5d energy levels in a CeF6 complex using Eq. (22)
with (r )=3.7904 A, (r )qd —(r )~f=1.2439 A (Ref. 23),
a=1 A, b =0.1 A, A =M/7=3. 58&10'~ cm '. The sum of
the lattice-induced and self-induced dipolar contributions to
10aq are neglected.
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(1) Covalency negligible: In this regime the tzs level

and the 5d centroid are both decreasing as the lattice con-

stant decreases.
(2) Covalency intermediate: The 5d centroid has begun

to rise with decreasing lattice constant, and the t2g level is
near the minimum of the curve in Fig. 3, and is therefore
insensitive to the lattice constant.

(3) Covalency dominant: The tts level rises with de-
creasing lattice constant due to overwhelming antibonding
and exclusion effects.

we do not know the overlap as a function of nearest-
neighbor distance. However, for both Ce + 5d and Ni2+

3d orbitals, the square root of (r ) is roughly equal to the
ionic radius of the ion. This indicates that the two ions
should have roughly equal overlaps with a given ligand.
Ce + is much more electropositive, that is, the energy
denominators used in (20} are two to three times larger
than for Ni +.' ' Thus for S =0.1, which is close to the
value calculated by Sugano and Shulman, the covalency
entry for Cei+ would be 2000—3000 cm

Thus even if data can only be obtained for two or three
isostructural hosts, the movement of the 5d levels with

changes in nearest-neighbor distance or lattice constant
can be used to classify the system into one of these

categories with respect to covalent effects.
If we constructed a table of contributions to the IODq

of Ces+ in a fiuoride host (e.g., Rb2Na YF&} analogous to
Table I, the entries would differ as follows. The point-

charge term would be an order of magnitude greater than

for Ni + because the (r ) value is 15 times as large,
whereas the R s value is only 35 percent larger. A similar
argument applies to lattice-induced or self-induced dipolar
contributions; however, where these are both important
they tend to offset each other. The classical overlap, ex-
change, renormalization, and nonorthogonality terms are
difficult to calculate, and we will assume the validity of
Phillips's claim that their sum is a negligible contribution.
The covalency term is also difficult to calculate because
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