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A resummation procedure is presented which allows one to include the contribution of virtual

multiphonon exchange in the T-matrix element for the intensity of the specular beam. This pro-
cedure uses the exact- T-matrix elements of the one and two virtual-phonon processes as the starting

point, quantities which have been calculated previously by the authors. Results are given for the
scattering of helium, molecular hydrogen, and neon by the flat (100) face of copper. The intensities

yielded by the resummation always lie between those given by the one-phonon and the one- plus
two-phonon processes. It seems that the addition of an even number of phonon events increases the
intensity, whereas an odd number yields the reverse effect. The minima observed on the intensity
versus crystal-temperature curves are shifted to higher temperature with the inclusion of an increas-

ing number of phonon events. The curve shape cannot be fitted by the usual Debye-Wailer relation,
a result in agreement with experimental results. However, the calculated intensities are in many
cases greater than the measured ones. This can be due to the deficiencies of the chosen potential in-

teraction or to an increase of anharmonic effects in the surface plane with respect to bulk anhar-
monicity.

I. INTRODUCTION

In the scattering of a particle by a solid or by the sur-
face of a solid the intensities of the diffracted peaks are a
decreasing function of the crystal temperature. For the
case of neutrons or x-ray photon scattering, the evolution
of the intensities with this parameter is well known and
characterized by a so-called Debye-Wailer factor. Due to
a short-range-potential interaction, this evolution is ob-
tained theoretically within the Born approximation.

For the scattering of neutral atoms or molecules by sur-
faces, the interaction potential is not very strongly local-
ized on scattering centers as in the preceding case. The
potential is periodic on a perfectly ordered surface and its
thermal fluctuations are closely related to the thermal agi-
tation of the crystal atoms. Therefore the Born approxi-
mation could not give good values of the intensities, and
the T matrix must be calculated more exactly.

We have recently reported a new and a simple method
which allows one to obtain an exact-T-matrix integral
equation, the solution of which gives the T-matrix ele-
ments for the different diffracted beams' and allows one
to calculate exactly the cross section of inelastic events.

This method has been applied to the case of scattering
by a flat surface, and the intensity of the specular peak as
a function of the crystal temperature has been obtained.
However, as the T-matrix equation is solved by an itera-

tive process the calculation thus far has been limited to
the effect of one-' 3 and two-phonon virtual exchange
yielded by the second-„ third-, and fourth-order expansion.

The results indicate clearly that the events involving
three, four, etc. virtual phonons are not negligible even at
medium crystal temperature. Thus, it appears necessary
to include these events in order to recover the complete
evolution of the scattered elastic intensity. The number of
terms (or diagrams) which contribute to the T-matrix ele-
ment of a process with n virtual-phonon exchange in-
creases more rapidly than an exponential of n. Therefore,
it is practically impossible to calculate their contribution
term by term.

However, it is possible to construct a procedure which
yields resummation of certain classes of the different con-
tributions, starting with the matrix elements of the one-
and two-phonon virtual exchange. This resummation pro-
cedure and the calculated specular intensity including
many-phonon processes are presented in this paper.

In Sec. II the method giving the exact-T-matrix equa-
tion and the results concerning the one- and two-phonon
processes which are necessary in order to build the resum-
mation procedure are briefly recalled. The resummation
is presented in Sec. III. The calculated intensities for the
scattering of He, Hz, and Ne by the flat (100) face of
copper are given in Sec. IV, and the results obtained are
discussed in the last section.
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II. T-MATRIX EQUATION: ONE- AND
T%'0-PHONON EXCHANGE

Levi and Suhl have shown that the diffracted peak in-
tensities are proportional to the square modulus of the T-
matrix element averaged over all crystal phonon states
((T)). These quantities are solutions of the following T-
matrix equation: *

(( T)) =(( V(R,z, u) —U(z)»

VRzut —Uz

X exp[i (c +i a)t/fi]T ))dt, (1)

where V(R,z,u) is the interaction potential in which, as
usual, R and z label, respectively, the parallel and normal

components to the surface of vector space, and U(z) is a
distorted potential. u is an operator which depicts the po-
tential thermal agitation, and u(t) is the same operator
taken in the interaction picture. c =E;—Ho where E; is
the particle incident energy and Ho the distorted Hamil-
tonian

Ho ——— V +U(z) .
A' I

2727
(2)

It contains the incident particle mass m.
In this work, we restrict ourselves to the study of the

thermal attenuation of the specular peak yielded in the
scattering by a fiat surface. Putting

V(R,z,u) —U(z) =u(z, u),
the integral equation is solved by iteration and the pertur-
bation expansion is given by

((;T; )) =((uu)) ——f dt((u{u(t))exp[(ic —a)t/Ill]u(u)))

l Co 00

+ — dtl dt2(( u(ll(tl +II ))exp[(lc —)at /2l])1{u(ut )l) epx[(lc —a)tl /A]u(u) ))

T 3

f dtl f dtI f dtI «u(u(tl+tz +t )3)e px[(ic —a)tI/A']u(u(tl+t2))

Xexp[(tc —a)tI /Ill]u{ u(t l ) )exp[(ic —a)t I /fi]u (u) )) + (4)

The introduction of projectors built with the eigenstates
of Hu, in the thermal average brackets, leads to c values
which depend only on particle coordinates. Then the
thermal average can be carried out, and after that the in-
tegration over t variables can be carried out. In this way,
all order of expansion can be calculated exactly.

Following the above argument, the specular intensity is
given by

Owing to the lack of ab initio potential calculations, in-

cluding the crystal atom thermal motion, we are led to
represent the neutral particle surface interaction by a
model potential. We choose the soft potential

V =D I exp[ —2X(z —u ) —2X (( u )) ]—A (z)], (6)

where;F~ is the dimensionless ((;T, )) matrix element.
With the help of the inverse energy factor AI =2m/fiX
we define the following dimensionless quantities.

matrix element

frequency
energy:

continuum state
bound state

2 2eq~q =A 8q
eg~Qs A'~ es ~——

AA
time

where u is the operator which describes the thermal dis-
placement of the repulsive potential part normal to the
surface. The attractive part is stationary with respect to
thermal agitation.

For such a model potential the incident particle can
gain or lose energy, but its component of momentum
parallel to the surface is conserved. Because of this, the
description of the physical reality is not complete. How-
ever, it can give realistic calculated intensity as discussed
in detail in Ref. 4. This is mainly due to the fact that ma-
trix elements of the potential decay rapidly for large pho-
non exchange. They act as a cutoff limiting phonon ex-
change largely to those of low frequencies, which are also
those having low parallel momentum. Therefore the ex-
change of parallel momentum can be small.

Taking U(z) equal to the thermal average of the poten-
tial, u (II ) is equal to

2X is the damping coefficient of the repulsive part of the
distorted potential. In this way, q; is the dimensionless
normal component of the incident wave vector k;, name-

ly, k,'/g.

u {u ) =Dexp( —2Xz)[exp(2Xu —2X (u ) )—1],
alld the first-ordel terII1 1n the perturbatlon expalls1on (4)
is equal to zero.



THERMAL Ax-zENUATION IN ATOM-SURFACE SCATTERING: . . . 6629

We examine now the shape of the different matrix ele-
ments yielded by the T-matrix expansion. For a given or-
der of expansion p, one will see that the ((; Tt~')) matrix
element is a sum of terms, each of them involving a virtu-
al exchange of n phonons:

«T;"'))= i «;T,"""'»
n=n

Due to the choice of the distorted potential, the minimum
value of n, n is equal to p/2 or (p+ 1)/2 for p even or
odd, respectively. This statement will be justified by ex-
amination of the different orders of expansion. As this
has been done up to p=4 in Ref. 4, we give in the follow-
ing a brief account of the analysis.

For p=2, after performing the thermal average one
gets

(!;T&' '}}= D e '
d; f dtexp( —2Xz)exp[(tc )te/ ]([(IV(t,0)—1]exp( —2Xz) d;e '

)

with
~
E;

~
=k;sin8&z k; the incident wave vector, and 8;

the incident angle. ()(); is the eigenfunction Pq of Ho for
qr. , an

W(t, O)=exp[4X ((u(t)u ))] .

The correlation function is given by

(( u (t)u )) = I p ((n (ro) ))exp(itot)dt,

where ((n (to})) is the Base-Einstein factor, p(to} the spec-
tral density of u, and M the mass of a crystal atom.

In order to perform the t integration, W(t, O) is expand-
ed in powers of the correlation function. The different
matrix elements ((;T '"')) can be easily calculated. For
n= 1 corresponding to the first term 4Xz((u (t)u)), one
gets in dimensionless quantities

t

'F '=4(AD) 'J qfq G[ ' ](cq T)qfq dq.
gqlb G[ ](cb T)blq

b

(cqz T) +ti (Q)

e

Cq

+0+is.
Cb

c~=q; —q, cb ——q; +Qb. T is the crystal temperature
and qfq and b Iq, respectively, the matrix element

(dfxq ( exp( —2XZ)
~
dt&q)and , ((I&b

~
exp( —2xz)

( yq ). The

diagrammatic representation of,F(2 i) is given in Fig. 1(a).
The diagram is composed of two vertices which represent
the f or l tnatrix element, located at the end of the bubble
which account for the G' "function. This last quantity
contains a dressed propagator (cq or cb+Q+ie). There-
fore the diagram supposes an integration over the frequen-

cy Q (bubble) and an integration over continuum state and
a summation over bound states (vertices).

The matrix element ((;T '"')) coming from the nth
power of the correlation function is similar to the preced-
ing one. The G' '"' function contains a dressed propaga-
tor (cq or cb+ g" ]Qr+ie) ', and consequently n in-

tegrations over the Qr variables with the product of n fac-
tors p(Qr)/Q„((n (Qr))). ((;T,' '"')) is therefore propor-
tional to (1/n!)(m/M)". Due to this factor and then n

integrations, one can expect that the ((;T '"')) values will
be negligible compared to ((;T '")) value. This has been
confirmed by numerical calculation. For all the systems
considered in Ref. 4 (He-, Ne-, H2 —Cu) the ((;T,' ' '))
values are negligible compared to ((;T ")) and also
compared to ((;T~' ')) for p=3 and 4; that is to say,
compared to the other matrix element giving the totality
of the two-phonon events. The diagram for ((;T ' ')) is
given in Fig. 1(b).

For p=3, just after the thermal average evaluation one
gets

e2

((.2!z'» — 2& (e' '
t('t,. f dtt f dtzexP( —2Xz)exP[(ic )et zt]t)e Px( ——2Xz)

—iK "R
Xexp[(ic —e)t]/]]i]exp( —2Xz) W(t2 t]) e '

dt&i )

with

W(t, , t i )=[W(t, ,O) —1][W(t[,0)—1]

+ [W(t„O)W(t [,0)—I][W{t[+t„O)—1] .

As in the case p=2, we expand the different W functions
in powers of the correlation function. The contribution of

the lower order term to the t& and t2 integration is com-
posed of three terms:

exp[i{a)]t]+~2t2)] z

exp I i [co]t[+(co]+coz)t2]}],

expI i [a)2tz+(co2+co])t]] J .
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The integrations yield two types of propagators with

one or two phonons, each of them located between two
exp( —2Xz) factors.

The calculation is carried out by introducing two ap-
propriate projectors which transform the factors
exp( —2Xz) into matrix elements f, i, or j with

j=
& pi, ~

exp( —2Xz)
~ pb &. Clearly these terms depict vir-

tual two-phonon processes. The corresponding diagrams
I

are given in Fig. 1(c).
For illustration and completeness, we write the matrix

element corresponding to the sum of the two symmetric
diagrams. It is composed of four terms describing the
transition via continuum-continuum states, via continuum
and bound states and vice versa, and via bound-bound
states. We illustrate for the first case. One gets

«;F'"»=4(&'D) f J J' f„[G' ' '(c,c„,T)+G' ' '(c„c,, T)],„f dqd

+Q
G""(C„C,, T) =4 y

~
&& n (fl) &&M —"~ Q can+0+i e

As expected, there are two integrations over 0 variables
and the matrix element value is proportional to ( m /M) .

For @=4, the same procedure as above yields three ma-
trix elements depicting a two-phonon virtual exchange.
Their diagrams are given in Fig. 1(d) in the order "bub-
ble, *' "exchange, "and "direct."

Their matrix elements are given in Ref. 4. It is, howev-

er, interesting to write here the one relevant for the bubble
diagram. One has

T

00

;F ' '= — dqF' "(q;,q) . F' '"(q,q;)
1

4 0 Cq+lE

+ y F'~' "(q;,b) F""(b,q; )
1

Cy

term of expansion is p/2 or (@+1)/2 for p even or odd,
respectively. Always, with this rule, one can draw recur-
sively the different diagrams corresponding to a (p, n)
given process. Let us consider the set of (6,3) diagrams.
There are six vertices and three phonon lines. If we con-
nect two vertices with one phonon line, there remain four
free vertices which one can connect with the remaining
two phonon lines. The number of different possibilities is
equivalent to that of a (4,3) diagram. Thus, for each pho-
non line, we have three (6,3) diagrams and on the whole
27 possibilities. One should, in fact, eliminate the dupli-
cation, and finally there remain 15 different diagrams
(Fig. 2).

For p large, for example, greater than 8, this procedure
is also length and not practicable except if it can be
achieved on a computer. However, it can be sufficient to
know the total number of diagrams belonging to the set
(p, n). This number is given by the expression

c„'(—1)'(p —i)"(p i —1—)"
(9)

i=0 2"(n!)

(2,1.1)

(2,2,2)

(3,2, 2)

(3,2,3)

(4,2,2)

(4,2,4)

(4,2, 4)

FIG. 1. Diagram representation of (a) one- and (b)—(d) two-

phonon virtual process. d I, d2, and d3 are called the bubble, ex-
change, and direct diagrams, respectively.

where F' "(q,q;) and F' "(b,q;) are, respectively, the
matrix elements of the second order and one phonon pro-
cess, between initial state q; and final state q or b Be-.
tween two F' " quantities there is a free propagator.
Then it is evident that this kind of diagram leads to T-
matrix elements which can be obtained by the linkage of
two simpler ones, through a free propagator.

To higher order, terms in the expansion in powers of
the correlation function for @=3 or 4 correspond to the
matrix elements «;T~ '"'&& and &&;T '"'&& with n&2.
One could write their expression using the above pro-
cedure, but this leads to lengthy calculations. It is more
convenient to draw first the different diagrams which
compose the (p, n} process, and then for each diagram
write its T-matrix element. The rules which allow one to
achieve correctly this procedure are given in the general
case where p is greater than 4, as follows.

For p&4, all the «;T,'~'"'&& matrix elements which
have been calculated (p &4} can be represented by a dia-
gram in which there is no vertex that is not connected to a
phonon line. This is a consequence of our choice of a dis-
torted potential which is the thermal average of the total
interaction potential. All elastic matrix elements vanish
in the averaging process.

This rule is equivalently to saying that there are never
two consecutive free propagators. Consequently, the
mimmum number n~ of phonons involved in a p-order
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In fact, N'I'"' corresponds to the exact value for n =n
Otherwise (n ~n ) the number calculated in this way

may be equal or less than the actual value. Table I gives
the X'p*"' values and those determined by the diagram
construction procedure. One sees that for a given order of
perturbation p the number of diagrams increases very rap-
idly with the number n of virtual phonons exchanged.

A given diagram (p, n) contains p vertices, p —1 propa-
gators, and n phonon lines, each of them connecting two
vertices. In the associated T-matrix element, to each
propagator corresponds univocally an integration over a
given r variable. Each phonon line yields a factor

exp[iQ(r„+r, +)+ . . +rg)]
where R is equal to the number of propagators comprised
between the two vertices. In order to perform the r in-

tegration the different exp(iQrr) at fixed r value are col-
lected and this gives for each r variable an integrand

exp[(ic —e}r]exp ir g Qz
y=l

where s is equal to the number of phonon lines, which on
the diagram are drawn in front of the propagator associat-
ed to the ~ variable. The integration yields a Green opera-
tor,

c+ g Q„+is
y=1

Since each phonon line is associated with an (n-fold) in-
tegration over Q&, Q2, . . . , Q„, the G'&'"'s' function is
given by

2

3
3

4
5

5

5

6
6
6
7
7
7
8

8
8

9
9
9

10
10
10

1

2
3

3
3
4
5
3
4
5

5

6

5

6
5

6
7
5

1

3
8
3

19
30

180
530

15
352

2260
315

5040
35 312

105
6090

86005
3780

126000
1 714230

945
109462

2 876 580

1

3
8
3

22
30

15

105

TABLE I. Number of diagrams for a given order of pertur-
bation expansion p and a given number of virtual phonons ex-

changed n. X'~"' is the number given by Eq. (9). X, is the
number given by the recursion procedure and n is the
minimum number of virtual phonons at a given p.

6 (p, n, s) 4~
M

with

cq+ g Qr+le (10)

The complete expression of the T-matrix element is now obtained by the introduction of p —1 projectors. This pro-
duces the appearance of 2'~ " terms depicting the different possible ways of transition through continuum and bound
states, to which are associated the matrix elements f, I, or j (total number p). At each f there corresponds an integration
over continuum states and to each I or j there corresponds a summation over bound states. In this way the T-matrix ele-
ment associated with a given diagram can be written explicitly. For instance, the term yielding only transitions via con-
tinuum states is given by a [(p —1)-fold] integration over q&, q2, . . . , qz &

as follows:

OC 00 p —2

F ' ' =4(A D)p f ' f pfq fJ fq dq„ f de )6' '(C~ C2, . . . , C
~ T) (11)

r=1

From this point a diagram ~ill be labeled by a triplet of
integers (p, n, S) where p is the order in perturbation ex-

pansion, n is the number of virtual phonon exchanged,
and S is the sum over propagators of the number of pho-
non lines drawn in front of each of them.

III. RESUMMATION PROCEDURE

Let us consider a diagram which contains a free prop&-
gator 6,+. Each vertex of this operator being connected
to a phonon line, the diagram can be decomposed into two

subdiagrams limited by the free propagator. If their ma-
trix elements are known, the total matrix element can be
easily calculated as in the case of the bubble diagram

analyzed in the preceding section. Let;E; and

;F; ' ' ' be the two submatrix elements. The connec-
tion by the G,+ operator yields a new diagram following
the relation

(p&, n&,S, )G~+(pz, nz, Sq)=(p&+pt, n~+n S~2+Sq) (12)

and the new matrix element is given by the equation
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{pl+p2*"I+"2 Si+Sz' f ee Pf

pg
—g +PE,

{pz "2* z'
p;+b b~p,.+X'

2 „z'
b A'+ b

On the other hand, one can define an operator g which has the effect of connecting directly two different subdiagrams.
This yields a new diagram following the relation:

(13)

(pi, ni, Si)g(pz, n2, S2)=(pi+p2 —1, n, +n2, S, +Sz),
and the new matrix element is given by

{pi+p2 —' "t+"z ~+ 2~ " {pi "i Sl' {p2 2S2~ {p),n), S) ) {p2,n2, S2)
p Jq qI'p. dq+ p Jb bEp

b

p1' 1' 1 {p(,n), S))
%herc p.Jq is the matrix element p F&,except

l

that the first matrix element f, I on the right, and the cor-
responding integration or summation has been removed.

Let us now define a new T-matrix element, say Ta,
which is a solution of the equation

Ta ——A+ I'(g +6,+ )Ta, (14)

where A and I are a sum of known matrix elements of
low-order (p, n) diagrams.

The iteration of this equation generates new matrix ele-
ments corresponding to diagrams deduced from that con-
tained in A and I by direct touching connections and by
connection through a free propagator. One has

T{"=A,

Ta ' ——I +1(g+6+)A,

Ta ' A+I (g —+—6,+)A+I (g+6,+)I (g+6+)A .

The successive iterations give the sum of T-matrix ele-
ments of a defined subset of diagrams (p, n, S) obtained by
application of relations (12) and (13). The actual set of di-
agrams is more or less mell reproduced, depending upon
the diagrams matrix elements introduced in A and I .

Those of Fig. 1 have been previously calculated. Thus
we take for A, and I the sum

— + - - +X3(r)

+X4(t)

where X3(t) and X4(t) are numbers suitably chosen vary-
ing from one iteration step (labeled by the integer r) to
another. The second iteraction yields the missing two-
phonon diagrams (3,2,2) and (4,2,2) but also generates dia-
grams of (3,3,S) to (6,3,S) and of (4,4,S) to (8,4,S). Gen-
eraHy speaking„ the lowest- and highest-order diagrams

generated at iteration r are, respectively, (r +1, i, t) com-
ing from the direct connection of (2,1,1) diagrams, and
(4t,2t,4t) coming from connection of the (4,2,4) diagrams
through free propagators. In particular, the iteration pro-
cess does not generate diagrams including n phonon
events beyond thc Pith iteration step.
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The set of (6,3,S), (5,3,S), and (4,3,S) diagrams are
reproduced in Figs. 2, 3, and 4, respectively. The dia-

grams which are generated by the iteration process are in-
dicated. Some of them appear independently of Xi and

X4 values, some others are their matrix elements multi-

plied by these numbers. It is clear that the choice
X3(2)=X4(2)=1 does not take into account the contribu-
tion of many diagrams. Thus we have to choose these two
numbers in such a way that the total matrix element given
by the iteration is equivalent to the actual total matrix ele-
ment. This can be achieved if we have an equivalence rule
between two diagrams.

Let us consider the set of diagram (p, n, S) for given p
and n Exp. ression (11) shows that their T-matrix ele-
ments are given by the same number of integrations or
summations over continuum or bound states and that the
integrand differs only by the 6'~'"' ' function. This last
quantity [expression (10)] is given by the same number of
0 integrations in which the products of p —1 Green
operators vary from one diagram to another. For a given
Green operator, the number se of phonons involved can
vary from 0 (free propagator) to n. It yields, after the
difference 0 integrations, a contribution which decreases
as se increases. Thus the efficiency of a diagram is cer-
tainly linked to the sum of the different se value called S
above. %e m.ake the assumption that the T-matrix ele-
ment is inversely proportional to S, a rule useful for com-
paring two diagrams of the same p and n values. This
equivalence rule has been tested with the (3,2) and (4,2) di-
agrams. For all the systems studied (He-Cu, Ne-Cu, H2-
Cu) at different incident particle energies and angles this
rule holds if we do not consider the more or less large
dispersion around the exact value. Thus it will be used
for the determination of the appropriate X&(t} and X4(t)
values.

Another result has been previously noticed which is
relevant for this determinatiori. It has been demonstrated
that the importance of diagrams (4,2,S) is greater than
those of (3,2,S}, which are themselves greater than the
(2,2,2), whatever the S value may be. Furthermore, this
has been proved for any p value (n =const}, where if one
neglects the bound state transitions and the principal
value in the integration over continuum states one can
show that the diagrams having the most important contri-
bution to the intensity are those of order p= 2n

As the (2n+2, n+1, S) diagrams generated by the
iteration are multiplied by X4(t =n), this value will be
determined using the equivalence rule within the order
p =2n +2. After that, the X3(t =n) number wiii be fixed
by applying the equivalence inside the set of diagrams
(2n+1, n+1, S).

Let us consider the set (6,3,S). Taking the reference
5=5, there are 12 diagrams which are not generated by
the iteration process regardless of the L3 and X4 values.
Timey are equivalent to

2 ~ +4—,+69 =8.19 diagrams,

whe«S=5 «0.6825 for each diagram. They should be
accounted f«by 2 Xq(2) diagrams, S=5. Therefore

t=3, 'I X3, Xg

5=2, Y X3, Xg,

5=2 x Xg (2)

FIG. 2. Diagrammatic representation of the set {6,3,S). The
diagrams generated by the iteration procedure are indicated

{iteration step t). Some are independent of X3 and X4 values,

others have their matrix element multiplied by these numbers.

X4(2)= ',"=4.095 .

We take X4(2)=X4(2)=4.
The same procedure applied to the set (5,3,S) (see Fig.

3) gives the following equation for the reference S=4:

2 —,'+2 —', +8—,+6—, +6—, =2 —,X,(2)+2—,X,(2),

which gives with X4(2)=4, X3(2)=4.48.
The left-hand side means that the 24 diagrams are

equivalent to 15.36 diagrams with S=4 or 0.64 for each
diagram.

To complete this analysis of the three-phonon virtual
exchange, it remains to examine the sets of (3,3,S) and
(4,3,S). In the former, there are two diagrams (3,3,3) au-
tomatically generated by the iteration process and five
others equivalent to 3.45 diagrams (3,3,3) which are not
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t=3, 7 Xg, Xg,

t=3, O' X3, Xi,

t=i, V Xp, Xg,

x X (2I
t=2, ()' X3, Xg

t=2, 7 X3, Xg t=2, 0 X3, Xg,

)=2 x Xg )2) + symmetric

+ symmetric

+ symmetric

+ symmetric

+ symmetric

+ symmetric

+ symmetric

+ symmetric

+ symmetric + symmetric

+ symmetric + symmetric

+ s ymmetric + symmetric

FIG. 4. Same as Fig. 2, but for the set (4,3,S).

FIG. 3. Same as Fig. 2, but for the set {5,3,S).

taken into account. For the latter, the diagrams not in-
cluded in the iteration are equivalent to (see Fig. 4)

2 —', +7—', +6—", +2—', =12.74 diagrams (4,3,4),
with Xi(2)=4.48, approximately nine diagrams are gen-
erated. In order to compensate for these deficiencies
without modifying strongly the equivalence in the (5,3,S)
set, we ascribe to X&(2}the value 5.

The different (8,4,S) diagrams have been enumerated.
There are 105 diagrams of which 3 are automatically in-
cluded in the iterations 3 or 4. If one excludes the last
ones, they are equivalent to 56 diagrams (8,4,6}, and each
diagram contributes an average of 0.55 diagrams (8,4,6).
The iteration provides 2[X&{3)+X4(2)](8,4,6) and 4X4(2)
(8,4,8). Writing the equivalence relation, one finds
X4(3)=18.

The enumeration of the diagrams (7,4,S) is a lengthy
operation as there are at least 315 diagrams (Table I).
However, one can ascribe to X3(3) a realistic value. For
that, me notice in the preceding, analysis that one dia-
grams is, respectively, equivalent to 0.6825, 0.64, and 0.55
of diagrams (6,3,5), (5,3,4), and (8,4,6). Thus the number

of equivalent diagrams for the set (7,4,S) is taken equal to
315X0.515=162 with reference to S=5. The iteration
generates

—2 4[X3(2)+X4(2)] (7„4,7), 4X4(2) (7,4, 8)

r =3,2+2X,(2)+2X,(3) (7,4, 5),
4+4X4(2)+4X4(3) (7,4„6) .

Writing the equivalence relation one gets X3(3)= 19.
The determination of X&(4) and X3(4) values by writing

the equivalence relation, with the sets of diagrams (10,S,S)
and (9,S,S), respectively, follows the same procedure as
those used in the determination of X3(3). Taking each di-
agram equivalent to 0.5 of a (10,5,9) or (9,5,9) we get
Xg(4) =25, X3(4)=0.

As the order of iteration increases, it becomes more and
more difficult to ascribe realistic values to the numbers
X(t). This is due to the rapidly increasing number of dia-
grams in the sets (2n, n, S) and (2n —1, n, S) which
prevent their classification in subsets of given S values.
Also, a small error in the first X numbers like Xi(2) and
X4(2) or X3(3) and X4(3) can be amplified by the succes-
sive iterations. Thus, it seems preferable to stop the itera-
tion process at this point, that is to say, at iteration 4.
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IV. RESULTS

Before performing numerical calculations, one should
ascribe definite values to the potential parameters in such
a way that the potential so defined leads to a good repre-
sentation of the physical interaction. This has been the
subject of a detailed discussion, particularly in Ref. 4.
Here we keep the same potential representation and recall
only its salient features.

The u operator is taken to be equal to the average dis-
placement, normal to the surface, of four atoms belonging
to the unit cell of a (100) copper face (a close-packed sur-
face). The spectral density of u is then

p(&) = —,
' pii(&)+ —,

' pi2(Q)+ —,
' pii(&),

where the subscripts 12 and 13 label, respectively, the
correlated spectral density between nearest- and next-
nearest-neighbor atoms. The different p quantities have
been previously calculated. '

The crystal anharmonicity is introduced through the
quasih;uTnonic approximation. The maximum crystal fre-
quency decreases as its temperature increases, and this
variation is deduced from a nearest-neighbor potential cal-
culation. The frequency values are in agreement with the
corresponding measured quantities in neutron scattering
experiments as discussed in Ref. 4. In this manner, the
anharmonicity in the surface plane is taken to be that of
the bulk crystal.

The shape of the potential attractive part A (z) [Eq. (6}]
is certainly a parameter which has a small influence on
the calculated intensity. For convenience, A (z) is taken
equal to 2exp( —1'z} so that the distorted potential is of
Morse shape. Consequently the thermal displacement of
the potential repulsive part is equal to 2u or u, respective-
ly, for values of the potential equal to zero or infinity. In
order to recover a displacement equal to u in the range of
small incident particle energy the u operator is divided by
2. Consequently, the spectral density is divided by 4.

The remaining parameters D and X vary with the na-
ture of the surface and of the incident particle. For a
given particle, they are taken equal to those which fit the
experimental data in an elastic diffraction experiment.
They are listed in Table II.

The calculated results are presented in Figs. 5—13. The
points represent the experimental data. ' ' They have
been translated along the vertical axis by an amount equal
to the experimental unitarity defect. One can see the re-
sults as follows: for He-Cu scattering, E;=21 meV, in
Figs. 5—7; for He-Cu scattering, E;=63 meV, in Figs.
8—10; for H2-Cu scattering, E; =77 meV, in Figs. 11 and

2,3or I

500
I

'l000 T{K)

FIG. 5. Calculated intensities for helium-copper with E;=21
meV and 8;=73.5'. The curves labeled 1Aw and 2fnu are,
respectively, the intensities given by the one-phonon and the
one- plus two-phonon events. The resummed intensity curves
are labeled by the iteration step number. Experimental data are
from Ref. 12.

V. DISCUSSION

The results yielded by this resummation procedure are
obviously dependent upon the values ascribed to the num-
bers X&(t) and X4(t). Within the validity of the
equivalence rule between diagrams having the same p and
n orders, the X4(2), X&(2), and X4(3) numbers are deter-
mined accurately. On the contrary, the Xi(3), X4(4), and
Xi(4) values determined in the same way are not so accu-

12; and for Ne-Cu scattering, E;=63 meV, in Fig. 13.
In each figure the intensities given by the one-phonon

and the one- plus two-phonon processes are reported for
comparison (see the curves labeled 1%co and 2fuu, respec-
tively). The resummed intensities are represented by three
superimposed or different curves and are labeled by the
order of iteration: 2, 3, or 4.

TABLE II. Parameter values for the potentials used in the
calculation for the different incident particles. 20r3
Incident
particle

He

D
(meV)

6.35

21.6
12.2

0.97
1.9

Fit on

(110),(113),
(115),(117)

(110),(115)
(110)

Ref.

10
11

10 I

500 1000

FIG. 6. Same as Fig. 5, but for E;=21 meV and 8; =55.5 .
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10

10 I

500

I

1000 TtKj
I

500 1000

FIG. 7. Same as Fig. 5, but for E;=21 meV and (9;=31.8'. FIG. 9. Same as Fig. 5, but for E;=63 meV and 8; =51.5 .

rate, due to the difficulty of the enumeration of the differ-
ence diagrams belonging to the sets (7,4,S), (10,5,S), and
(9,5,S). It appears, then, necessary to perform the calcu-
lation with values for these three numbers differing some-
what from the chosen ones. Such calculations show that
the intensities are not sensibly affected and that the calcu-
lation process remains stable. Thus the correctness of our
choice is supported.

The introduction of the (2,1,1), (2,2,2}, (3,2,3), and

(4,2,4) diagrams in the Tz-matrix equation leads to the
appearance of diagrams of different p and n values in
each iteration step. As a function of this integer, Table
III gives their numbers calculated with the X&(t} and
X4(t) values defined above. The two-phonon processes
are correctly and completely included at iteration 2. But
this iteration step generates also the near totality of the

10

500 1000 T(Kj

FI(G. S. Same as F&@.5, b&t for Z; =63 I+V and e; =71.6 . FIG. 10. Same as Fig. 5, but for E;=63 meV and (9;= 19 .
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200
I I l

400 600 800

FIG. 11. Same as Fig. 5„but for molecular hydrogen on

copper with E; =77 meV and 19;=75.5'. Experimental data are
from Ref. 13.

10 3
I I

200
I I

400
I

600 800 T{K)

three-phonon virtual exchange and approximately 30% of
the (S,4,5) and (7,4,5) diagrams. At iteration 3, the four-
phonon processes is almost complete and an important
number of five- and six-phonon diagrams are generated.
Generally speaking, and as noticed above, the nth step
generates diagrams of n, n + 1, . . . , 2n phonon virtual ex-
change. This fact precludes the possibility of looking for
a temperature at which the three-phonon, four-phonon,
etc., processes become non-negligible. However, one can
define a temperature Tsr for which the multiphonon pro-
cesses become as important compared to the one-plus
two-phonon contributions. Table IV gives the T~ values
which vary from one system to another in the expected
way. In particular, the comparison between the scattering

FIG. 12. Same as Fig. 11,but for E;=77 meV, 8;=31'.

of helium and the molecular hydrogen for the same in-
cident particle energy and angle shows the influence of the
well depth.

For all the systems and conditions studied here the
resummed intensities are comprised between those given
by the one- and one- plus two-phonon process. Moreover,
the intensities of iteration 2 seem to be lower than those
given by iteration 3, itself greater than those yielded by
iteration 4. One can be tempted to say that an even num-
ber of phonon events increases the intensities, whereas an

So-'

8*= 60
I

I

T(K} 0
I

200
I

T(K} 0
I

200
I

T(K}

FIG. 13. Same as Fig. 5, but for neon on copper w'ith E; =63 meV, 8&
——75', 60', 45 . Experimental data are from Ref. 14.
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TABLE III. Number of diagrams generated at each iteration

step for each set (p, n, S).
TABLE IV. Temperature at which the nth phonon process

gives a non-negligible contribution to the calculated intensity.
T2 corresponds to n=2 and T~ is for n &3.

(3,3,3)
(3,4,S)
(4,3,S)
(4,4,S}
(5,3,S)
(5,4,S)
(5,5,S}
(6,3,S)
(6,4,S)
{6,5,S)
(7,4,S)
(7,5,S)
(7,6,S)
{8,4,S}
{8,5,5)
(8,6,S}
(9,5,S}
(9,6,S)
{9,'7,'S)
(10,5,S)
{10,6,S)
(10,7,S)

16

1

3
2

56
106

1

149
771
142

2084
2702

46
2640
6202
1600
8440

3
62

3
258

1232
1

442
6096

338
15 162
57478

96
18 836

161 632

21 meV 73.5
55.5
31.8

71.6
51.5
19

450
300
250

800
600
500

5SO

350
250

H2-Cu

Ne-Cu 63 meV

75.5
31

150
100

100—150

measured intensities are not very precise, particularly for
the highest temperature, where the specular intensity
emerges from a large diffuse foot. In the latter case the
large incident angle excludes the possibility of an impor-
tant exchange of energy, and the agreement is not con-
vincing. This argument holds in the scattering of helium
at 73.5' where disagreement is obvious. But in many
cases, the measured intensities are lower than the

odd number yields the reverse effect. This particular
behavior has been exhibited within the framework of ener-

gy shell approximations and the present calculation,
which do not make this approximation seem to confirm
this statement.

The intensity versus temperature curves exhibit a
minimum except in the case of low energy exchange (He-
Cu at 8; =73.5'). The minima are located at approximate-
ly the same temperature for the one-phonon and one-plus
two-phonon processes, and this indicates that well before
this temperature the higher order phonon events yield a
non-negligible contribution to the calculated intensities.
The resummed curves confirm this interpretation. They
do not exhibit such a minima in Figs. 5—8, an indication
that for these systems and conditions the order of virtual-
phonon exchange included in the calculation is sufficient
to describe the evolution of the intensities. On the con-
trary, minima appear on the resumrned intensities on Figs.
9—13; that is, for systems and conditions in which the ex-
change of energy between the particle and crystal is th
greatest. Its appearance indicates that the diagrams of
larger numbers of phonon events could not be neglected in
the calculation in the high-temperature range. However,
the results obtained here are certainly valuable up to a
temperature at least equal to those of the minima ob-
served on the one- plus two"phonon events.

The measured and calculated intensities are in good
agreement for the neon-copper system and for the molecu-
lar hydrogen-copper at incident angles of 75.5 (Figs. 13
and 11, respectively). However, in the former case, the

resummed ones in the medium- and high-temperature
range, and are rather well reproduced by the qne-phonon
process alone. This disagreement may be due to the defi-
ciencies of the model of the potential and could be due to
two effects.

(i) The thermal displacement of the potential repulsive
part which has been related to the thermal displacement
normal to the surface of four atoms belonging to the (100)
unit cell. This certainly accounts for the main influence.
However the contribution of atoms surrounding the unit
cell and the parallel displacement to the surface of all
atoms may not be negligible. This yields a slight increase
of the u operator correlation function and, consequently„
a decrease of the intensities, especially in the high-
temperature range.

(ii) The exchange of parallel momentum in our poten-
tial model. As discussed in Ref. 4, this deficiency seems
to be acceptable since the exchange of the virtual phonon
proceeds mainly from the phonons of low frequencies;
that is, with those having the smallest parallel momen-
tum. However, this effect could be accounted for here in
an arbitrary way, by a modification of the value a= —,',
which multiplies the spectral density and which is chosen
in order to recover the correct thermal displacement. The
decrease of calculated intensities could be obtained in this
way by an increase of a, the amount of which increase has
been difficult to appreciate.

On the other hand, the observed disagreement could be
due to an increase of anharmonic effects in the surface
plane. The calculation takes account of anharmonicity
but supposes that such effects are identical in the surface
planes and in the bulk. If the nearest-neighbor potentials
used to determine these effects quantitatively are modified
in the first few surface planes, the surface anharmonicity
could be different. To recover the measured intensities, it
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would be necessary to increase the surface anharmonic ef-
fects. This variation is certainly in the expected direction.

VI. CONCLUSIONS

Starting with an exact procedure which gives the T-
matrix elements for the one- plus two-virtual-phonon ex-
change, we have built a resummation procedure which in-
cludes multiphonon events. The adequacy of the calculat-
ed intensities thus depends only upon the chosen interac-
tion and the method can be used to test the validity of a
given potential.

The calculation has been performed in the case of a
particle scattered by a flat surface. The potential which
models the interaction is of a one-dimensional type and
consequently precludes the exchange of parallel momen-
tum. With a good representation of the phonon spectral
density and anharmonic effects, the results compare very
favorably with experimental data.

The evolution of the specular intensity with crystal
temperature is definitely not represented by a usual

Debye-Wailer factor. The three- and higher-order phonon
processes become important at a crystal temperature
which for copper is comprised between 100 and 800 K,
depending upon the particle and the incident conditions
(see Table IV). Furthermore, events involving more than
five virtual phonons seem not to be negligible at high tem-
perature. This high-temperature value varies from one
system to another depending on the incident conditions,
but could be estimated to be approximately equal to 200
K for neon and 650 K for the molecular hydrogen system.
For helium its value depends strongly upon the incident
energy and angle but roughly speaking is of the order of
the copper melting point for incident energy of 21 meV.
At an energy of 63 meV it could be as low as 800 K near
normal incidence.

The results presented in this paper outline the impor-
tance of multiphonon processes in the scattering of atoms
and molecules by surfaces. The agreement obtained with
the available experimental data indicates that the most
important contribution to energy exchange for these in-
cident conditions is through phonon processes.
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