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General expression for the Coulomb interaction in the presence of a surface
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A general expression is presented for the Coulomb interaction between two test charges in the
presence of an interface. The cases of planar and spherical geometry are considered. The potential
is given for the two test particles outside, inside, or on either side of the interface, and appropriate
limits are investigated.

I. INTRODUCTION

The tremendous variety of phenomena occurring in
solid-state physics is a consequence of the Pauli principle
and the Coulomb interaction. This paper will focus on
the influence of the geometry on the effective Coulomb
interaction. InitiaBy, solid-state physics was concerned
with the interaction between the charged particles of a
bulk (infinite) medium. However, during the last decade
we have witnessed an additional interest in the description
of properties in the surface region of a material. In most
cases we communicate with a sample through its contact
with the surroundings, and it is of great importance to
know the interaction potential between external test
probes, such as light, electrons, atoms, ions, or molecules,
and the responding medium. Electron scattering from a
target, as is done in spectroscopies such as low-energy
electron diffraction (LEED), electron-energy-loss spec-
troscopy (EELS), etc. , has been utilized in recent years to
provide a wealth of data. In order to extract as much
valuable information as possible, it is essential to know
the interaction potential, i.e., the form of the interaction
itself as weil as the response properties of a medium
which is not infinite in extent. The former geometrical
considerations have such profound effects that new modes
appear in the excitation spectrum which are not present
for the infinite solid. An example of this is the surface
plasmon excitation at a vacuum-metal interface. This
mode exists at the interface irrespective of the microscop-
ic description of the response properties of the inetal.

It is thus a general property of all models. However,
they do differ in their predictions for the frequency and
dispersion of the mode. This is then the detailed, local in-
formation. We develop a theory which incorporates the
condition for the existence of such a surface localized ex-
citation while at the same time being sufficiently general
that the results are valid for more than the particular con-
ditions of a specific approximation scheme for the elec-
tronic response of the solid. The present work is thus a
theoretical formulation of the screening problem at an in-
terface which, from the start, has the main features of the
geometrical situation built in. This geometrical influence
generally enters on two levels.

—
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and the integration in Eq. (1.1) is parallel to the surface.
In the presence of the semi-infinite solid the interaction is
modified by the polarizability of the surface as shown in
Fig. 1(b). Requiring that the potential and the normal
component of the D field are continuous across the sur-
face yields the classical results:
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where V;„, is the total interaction between the two parti-
cles and e=e(to) is the classical dielectric function which

Provided one properly includes the presence of for ex-
ample, an interface, one can go very far in using a
response function as calculated from an infinite solid to
explain experimental data. This is the global geometrical
influence. However the response function itself also con-
tains information about the geometry. This local gmme-
trical information then enters as a correction in most
cases (in some situations it is crucial) to the calculation
based on the bulk response function. In order to illustrate
this point consider the interaction of two electrons in the
presence of a solid surface. For simplicity assume transla-
tional invariance parallel to the surface. The solid is in
the region z g 0. The interaction between two electrons in
the absence of the solid as illustrated in Fig. 1(a) is

2 2
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where
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FIG. 1. {a)%e can easily ~rite the expression for the interac-
tion of two charges in empty space. {b) In the presence of an in-
terface one can formally write down a very general expression
for this interaction, for the two charges outside, inside or on ei-
ther side of the interface. For simplicity we will assume a
translationally invariant surface for the medium, occupying the
half-space z y 0.

is independent of kII. The condition that I+a(co)=0
yields the surface plas mon frequency. Quantum-
mechanical corrections of the type we are concerned with
will modify e and change the analytical form of the z and
z dependence of VI„,. In the classical approximation the
dielectric function is not modified by the presence of the
surface but the form of the interaction is greatly changed.
The classical case will serve as a point of reference in the
present work.

Whereas much effort has been devoted to the screened
Coulomb interaction for the infinite solid only recently
have more careful treatments been made of, e.g., the
semi-infinite solid. This is of course directly related to
the increased complexity, associated with the symmetry
breaking which a surface introduces. One has been forced
to use various kinds of models to describe the electronic
motion responsible for the screening of external probes,
and it is not always clear which results are general or
model dependent.

We have therefore developed an approach in which we
derive a closed form for the effective dynamical interac-
tion between two electrons in the presence of a planar in-
terface between a solid and vacuum, with as few assump-
tions as possible. This is achieved by using the wave func-
tions of the solid as a basis set, but in no way specifying
them except for the requirement that they should vanish
at a certain point that defines the start of the vacuum.
Thus all questions of how the wave functions approach
zero, as determined by the random-phase approximation
(RPA) or some other type of approximation, have no
bearing on our final result. Instead this is a task to be
dealt with in carrying out numerical calculations, where
the reqmred accuracy is set by the experimental demands
and available computing power. Naturally our final re-
sults are rather complex for an immediate application in a
particular situation. However our purpose is to clearly
display the structure of the effective interaction, in the
presence of an interface, starting from first principles. In
doing so it is our firm conviction that this will not only

greatly facilitate any numerical undertaking but also make
it possible to understand why various model calculations
differ or even overlook crucial physical elements.

The resulting potential has a wide variety of applica-
tiotis, particularly in surface science. Together with an
appropriate Green's function it can be used to calculate
self-energies for various kinds of external probes of the
solid. Since small particles have received increasing atten-
tion in recent years we also give the potential for a spheri-
cal particle in vacuum.

In the next section we derive the effective interaction
between two electrons for the so1id/vacuum system,
which is the main aim of this paper. Then in Sec. III we
discuss our result for all possible locations for two test
particles interacting via the derived potential. This leads
to the definition of a surface dielectric function, and we
also make contact with the corresponding classical results.
The main mathematical steps in this section are given in
Appendix A. In Sec. IV our procedure is repeated for a
sphere in vacuum, making contact with the planar inter-
face in the appropriate limit. All mathematical details are
given in Appendix B. In Sec, V our scheme is used to cal-
culate the energy loss that an electron experiences in
traversing a planar interface. The paper concludes with a
short discussion of our findings in Sec. VI. In Appendix
C we give the main results obtained from our procedure
utilizing the double cosine transform.

II. THEORY: PLANAR INTERFACE

In this section we derive a closed form for the effective
interaction between two electrons; W(x, x', co). It is a
dynamical interaction because of the time scales involved
in the electronic response of the solid. However, retarda-
tion effects are neglected. Unlike the bare Coulomb in-
teraction W(x, x', co) is not only a function of the distance
between the particles

t
x—x'

t
but also of their location

with respect to the surface (x+x'). We have chosen to
treat a semi-infinite medium extending in the positive z
direction in contact with vacuum, defining z=0. Fur-
thermore, we assume the solid has translational invariance
in the surface plane (x-y plane), leading to a conservation
of parallel momentum kII. It is therefore convenient to
work with the Fourier transform of W(x, x', co);

W(k) I,z,z', co).
It is a straightforward matter to take into account a real

lattice structure by summing over the appropriate recipro-
cal lattice vectors. An ion interacting with the medium
can also be described, substituting the electronic charge
with the ionic one. For the sake of clarity in our presenta-
tion we comment upon these matters when pertinent.
With u (z —z') denoting the bare Coulomb interaction [Eq.
(1.2)] and X(kII,z,z', co) the density-density response func-
tion of the solid, the effective interaction can be calculat-
ed fion1

IV(1,2)=u(1-2)+ f 13 f d4u(1-3)X(3, 4)W(4, 2),
(2.1)

suppressing the (kII, co) dependence and 1,2,3,4 stands for
the spatial z coordinates.
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This equation has previously been solved for the case
when z and z' are outside of the solid (&0), using the
double cosine transform as an expansion basis for the spa-
tial dependence inherent in X(k~~,z,z', c0). However, we
find it both unnecessary and unappealing to specify a par-
ticular basis set when solving Eq. (2.1) in the presence of a
surface. If the true spatial dependence is very far from
the cosine description one will be faced with an enormous
number of terms. Instead we work with the wave func-
tions of the semi-infinite solid which are also required to
calculate X(k~~,z,z', co). X(k~~,z,z', cu) can be written in the
following way

4m.e

kII+q
2k

II

kII+q

d p , XF F+q(k, k+k((, co)
(2~)

R„kll,co,dp

where q=(k~~, q) and A denotes Ip,p+qI. The first two
terms in the iteration of Eq. {2.1) are now explicitly
evaluated because they contain the necessary functions
which must be defined and which appear in all higher-
order terms. Iterating once leads to the following term

uRu = dz, dz, e X(k((,zi, zz, c0)
—

kII ls —z) I

0 0

X(k)),z,z', t0) = g 2 XFF (k,k+ k~), ei)gFF (z)gFF {z'),
(2i)' " —

kII I s2 —z'
I

II
(2.7)

where the electron-hole pair amplitude

(2.2) Use of Eq. (2.2) and Eq. (2.5) in Eq. (2.7) yields

»u =uk,
~

Xf~(z)~~f~(z'),

gFF {z)=fF (z)PF'(z) (2.3)

is our basic spatial unit. QF(z) is a ground-state electron
wave function for the system. The vanishing of QF(z) and
thus gFF (z) at z =0 defines the boundary with the vacuum
and in what follows we will write gq(z} for gFF (z) where
A stands for Ip,p') . The summation over p and p' in Eq.
(2.2) is symbolic for an integration over continuum states
and a summation over bound states. It is restricted by the
Fermi functions, f(E~), contained in the polarization bub-
ble XFF, which is defined as

f(EF) f(EF)—
XFF (k,k+k~(, tu) =

EF EF +%co—+i5
(2.4)

where f contains the spin and electron energy level statis-
tics and EF (EF ) is the electronic energy eigenvalue for
the motion both parallel

+{k+k(()'
2' 27tl

and perpendicular to the surface.
In what follows we will make use of the polarization

entity

which only depends on the conserved quantities kII and ~
that result from translational invariance in the surface
plane and energy conservation, respectively.

In the case of free-electron-like metals which play a
crucial role in the development of solid-state physics„and
for zero temperature where f( EF ) =28(EF—E& ) with 2
for spin and EF is the Fermi energy, one can evaluate Eq.
(2.5) directly. Since we will not be using this explicit
form, Rz suffices for our purposes, the interested reader
is referred to a paper by Hertel for more details.

However, in the case of an infinite solid we can write
down the following form relating R~ in the free-dectron
case with the Lindhard dielectric function, viz. ,

d k
RFF (k~~, co) =Rz(k~~, tu) =uk—

(2~)' "XFF (k, k+k((,co),

(2.5)

where f„(z) is the Coulomb matrix element:

'
Ip&

(2.9)

It is convenient to rewrite Eq. (2.9) in the following
fashion for the case that z is inside the solid (z ~ 0):

f,(.)= f dz, Ie
' ' "+.

II &&O (2.10}

by adding and subtracting a Coulomb term in the in-

tegrand of Eq. (2.9), e ~~
~'+" ~, which is the mirror im-

age of zi in the dividing plane z =0. For z ~ 0,

'Il'fg(z) =lge ', lg =fg (0) . (2.11)

The procedure in Eq. (2.10) leads to a separation of
f„(z) into a part which is characteristic of an infinite
medium and a part which dies away from the dividing
plane. If the potential which is used for calculating f~(z)
is extended by mirroring it in the s=0 plane we can
choose QF(z) even or odd with respect to z =0. In this
process gz(z) does not change sign and we can rewrite the
first integral in Eq. (2.10) as an integration over all space,

f CO —k (g —aildzie ~~ gz(zi), with a kernel which is charac-
teristic of a bulk medium; it depends only on the distance
between the points z and z, . This term will henceforth be

designated a bulk term and the other one, Ize II in Eq.
(2.10) a surface term. With this global definition of
bulk —surface we have removed the mere existence of a di-
viding line in the bulk term though on a loca/ level it still
contains the information about the actual surface profile
through gz(zi}. We have therefore taken account of the
fact that the dividing plane must be model independent
whereas g„(z) is not. Finally, notice that the kernel in
Eq. (2.9) is the Coulomb interaction. From physical con-
siderations it is therefore only the functional form

I & —&'
le ~~ with appropriate ranges for z and z' which

can be used to single out the dividing plane. As we will
see later the separation chosen in Eq. (2.10) ensures that
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uRvRu=uk g f„(z)R„DABRBfs(z'),
II

(2.12)

we retrieve the classical result discussed in the Introduc-
tion.

The next iteration of Eq. (2.1}yields

The surface part is seen to be separable in A and B and is
related to IA (Is), i.e., fA (fs) evaluated at the dividing
plane.

Using DAB from Eq. (2.14) the URuRU term can be writ-
ten

DAg ——BAg —

IAIDO,

where the bulk term BA& is

(2.14)

XgA'(Z2)ga(z3) . (2.15)

where fA and RA are defined above for the first iteration.
A,B stands for Ip,p'I, Iq, q'I and the new entity D„a is
given by

DAB = dZ2 dZ3 gA (Z2)e gs(Z3 )
I

II
I'2

0 Z2gA Z2 8 Z2 (2.13)

DAB is the Coulomb matrix element for two interacting
electrons, scattering from (p, q) to (p', q'). Using our
division of f„(z&0) into a bulk and a surface part [Eq.
(2.10}]in Eq. (2.13), we obtain

uRuRu=uk g f„(z)R„R„BRsfs(z')
II

A, a

g IAf A (z)RA
II

g IBRsfs(z')

(2.16)

The separability of the surface term in Eq. (2.14) results in
the separability of the surface part in Eq. (2.16) with
respect to z and z'. In analogy with the scattering of elec-
trons by a localized perturbation there is a bound state as-
sociated with the separable term and in our case this is a
surface plasmon localized at the surface region of the
so11d.

Comparing Eqs. (2.8) and (2.16) we see that fA(z) and
fs(z') describe the z and z' dependence. This will be true
to all orders in the iteration and, before summing up the
series, we give the next-order iteration for completeness:

' " ' "=
k,

~

X fA(z'RABAaRBBacRcfc(z'} vk QfA—«)RABABRBIa QICRcfc(z')
A, B,C A, B C

vk g IAfA(z)RA p IBRBBscRcfc(z')+ vk g I„'f„(z)RA I g IBRBIB J g ICRcfc(z') .
II

B,C
II

A 8 C
(2.17)

Figure 2 shows a dictionary to be used in later figures to
facilitate an easy inspection of the various orders of itera-
tion. If we first assemble all terms which contain only the
inseparable bulk kernel BA&, we obtain

RAB RA 5AB+RABABRB + g RABACRcBCBRB +

= (R I 1 BR )
'—)As, (2.19)

F(Z,Z') —= I VRU+ URVRU+ .
I Ivk

II

= g fA(z)RAsfa(z'),
A, B

(2.18)

Ag AB A 8

which defines the nonlocal function F(z,z') in terms of
RAB (see Fig. 3):

where BAB is given by Eq. (2.15). 5AB is short for 5~5& q
when summing over A and B. The series in Eq. (2.19)
formally corresponds to an inverse dielectric function EAB,
and is seen to be a renormalization of the polarization
function R„.

On the other hand if we only sum to all orders those
terms which contain the separable surface parts IAIB in
Eq. (2.14) we find (see Fig. 4)

I = dz I QA(Z)
A

Bulk Terms:

FIG. 2. Dictionary for the diagrammatic representation of
the iteration series for the effective interaction 8'(kII, z,z,m).
D&~ describes the scattering event p ~p' and q ~q' for two in-

teracting electrons. By extending the Coulomb kernel to all
space it can be divided in a part characteristic of an infinite
medium 8&~ and a separable part I~ I~ which incorporates sur-
face information. RA is the ordinary polarization bubble [Eq.
(2.5)] for a momentum transfer k~~ and an energy transfer co

Ras= Ra~ac+ ZRaBacR'ca
C

FIG. 3. Summing up only those terms, which include 8~~, to
infinite order, we can define a renormalized polarization bubble
R&~ to replace the bare R&.
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Surface Terms: All Orders:

&s &s

I ~IS

FIG. 5. This figure shows the results of summing all terms,
bulk as well as surface, to infinite order. It turns out that it
leads very naturally to a replacement of the first term in Figs. 3
and 4, respectively, with their renormalized counterparts, i.e.,
with R&~ instead of R~.

FIG. 4. Separable, so-called surface terms, can also be
summed up to infinite order. This yields a renormalization of
the lowest order diagram.

+IAfA(z)RA QIARAfA(z')

uRu+ uRuRu+ "k
1+ IARAIA

fective interaction between two electrons at z and z':

—i
ii

iz —z', F(z,O)F(O, z')
( 1)

i+go II

which is the main result of our presentation. In Eq. (2.21)
we have defined

(2.20}
FO=F(0,0}=g IARABIB .

A, B
(2.22)

What about the other terms? A careful examination
shows, not surprisingly, that they can be incorporated in
Eq. (2.20) by replacing the RA's by RAB given in Eq.
(2.19); QAIARAIA'~+A BIARABIB. This is shown in

Fig. 5 in a pictorial way. Clearly, from the definition of
RAB, this amounts to dressing the surface part with the
"bulk" screening. As a consequence the surface term can
be expressed in terms of F(z,z') of Eq. (2.18). Including
the zeroth-order term, the bare Coulomb interaction, we
can now write down the following expression for the ef-

8;„d(z,z') = uk F(z,z') —F(z,O) W;„d(O,z'),
II

(2.23)

from which Eq. (2.21) follows directly.
For the convenience of the reader we repeat the defini-

tion of F(z,z'}

W(k~~, z,z', co) is symmetric in z and z' and is of the form
I

8'=uk e ' ' +8';„d, with W;«being the induced
Il

interaction potential. We note that by making use of the
diagrams, it can be shown that

F(z,z') = g fA (z)RABIB (z'),
A, B

RAB RA~AB+RAIIABRB+ gRA~ACRC~CBRB+ RA~AB+ gRA~ACRCB
C C

(2.18')

(2.19')

J dz, te ~~' "'+e ~~
'+"

Ig„(z, ) I„e ~~', z)0—
fA«) =

IAe, Z gOkIIz

(2.10')

(2.11')

g„(z}=gpss (z) = fp(z)tg (z),

IA =fA(o) = I
(2.3')

(2.11')

uk =2~e /k~~ and RA is defined in Eq. (2.5).
li

The vanishing of 1+Fo in the denominator of Eq.
(2.21) is associated with the excitation of a surface
plasmon as will become evident in the following section.
We will also discuss in greater detail the features inherent
in Eq. (2.21) and make connection with the corresponding
classical result, Eqs. (1.3}—(1.5).

Our procedure in this section amounts to an explicit ex-
traction of the presence of a surface in the problem and
the consequent evaluation of a "bulk" problem (RAB).

I

The latter corresponds to the case where all space is filled
up by the medium, with a small perturbation located
where the "old" surface was. In this respect our scheme is
very similar to a calculation for an irn.purity at the origin
of a one-dimensional chain of atoms but in our case the
"impurity" is the charge depletion around the surface re-
gion of our semi-infinite solid. To see this let ~i)
represent the electronic wave function on atom i. Fur-
thermore let
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H = g t,ja aj I—6; p6J p H——p+ V

be the Hamiltonian, V denoting the impurity perturba-
tion. With Green's functions G = (F. H—) ' and g
=(E—Hp) ', we solve the Dyson equation G =g
+gVG. In the base

l
i &, this becomes GJ ——g;i —g;piGpj.

having the solution

irect

giogoj
Gij =gij-

1+goo
(2.24)

III. DISCUSSION: PLANAR INTERFACE

The general interaction in Eq. (2.21) can be related to
previously defined quantities, such as a surface dielectric
function. When both z and z' are outside the solid ( ~0),
the spatial dependence of the fz's is independent of the
summation, Eq. (2.11), and can be taken outside. The re-
sulting expression for the induced interaction potential,
8';„d, is then

k
( I

(z +2' }
W;„z(k~~,z,z', co)= W —U= —Uk e II

p(k~~ )

where

(3.1)

(3.2)

p(k~~, co) can be interpreted as the strength of the reflected
"signal" from a solid perturbed by a charge distribution
and is the electrostatic analogue of the Fresnel refiection
coefficient in optics, see Fig. 6.

Thus an electron outside a surface will experience the
I

g 4R~aia = g 4«~&~a+R~II~aRa+ )ia
A, B A, B

defining G=IG and g =Ig. This result is clearly the
equivalent of our final result in Eq. (2.21). F is the propa-
gator for electromagnetic disturbances in a medium with
a surface present and G is the propagator for excitations
in a chain having an impurity. The vanishing of 1+gpp
in Eq. (2.24) is the condition for an impurity localized
mode. Kith this comparison to the impurity problem we
end this section with a few general comments.

The overall form for the interaction in Eq. (2.21) has
been achieved without placing any constraints on the
wave functions of the system. Its validity and general ap-
plicability is directly related to how accurately Rz~, i.e.,
ultimately 1(~(z), can be calculated. An interesting
scheme for obtaining an inverse dielectric function, and

R„Ii, in the presence of an interface can be found in Her-
tel. For two particles with different charges Qi and Qz,
Eq. (2.21) remains the same with the replacement
Uk ~(2m Q tQz/k~~). In Appendix C we give a brief sum-

lt

mary of the main steps in this section for the case of the
double cosine transform expansion of X(k~~,z,z', co).

II ll

FIG. 6. If we sit in the point zj, when there is a charge at z~,
we wi11 experience an interaction potential which is composed of
two parts, one is the direct Coulomb interaction and the other
one is the interaction with the induced effects the charge at z2

sets up in the metal. The latter is an "effective" image interac-
tion having a strength given by p(k~~, co) = —Fo/(i+F0), where

Fo ——Q„~I~R~qiq. When 1+Fp ——0, the reflection coefficient

diverges and we have the condition for exciting a surface
plasmon at the interface.

potential in Eq. (3.1) due to the induced polarization it
sets up in the solid. In analogy with the classical result
for the corresponding situation it is illustrative to rewrite
p(k~~, co) in the following form:

e, (kii, co) —1

p(k~~, co) =
e, (k~~, co)+ 1

where

(3.3)

—:1+2Fp ——1+2 g IgRggIg
e( i', c)o A, B

(3.4)

defines a so-called surface dielectric function. For the
situation of a sharp interface between a medium described
by a frequency-dependent dielectric function e(co) (e.g.,
Drude), and vacuum, (e~~k, )co= e(co), and we immediately
recognize the classical image factor (e—1)/(e+1) of Eq.
(1.3) in the expression for the induced potential in the vac-
uum region. In Appendix A all the necessary mathemati-
cal steps are given for extracting the classical limit of our
general result.

In order to make contact with the usual definition of
the dielectric function, Eq. (3.10) below, we make use of
the set Icos(pz)) which is complete in the half-space
z ~ 0. Utilizing this basis we can write

+4&pl~&R~&~ lp'& Ip+4X~p +&pl»R~&~ le& 4iiqq g&q'III&Ra&& lp'& ~p+ . .
us' B

P~P ~f
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where use has been made of

5(z —z') =2f (dp/~)cospz cospz'

we can ~rite this as

f dz(1 —e 'i')5p(kii, z, co)
d, (k, ~,

~)=
kii dz5p(kii, z,co)

(3.14)

I~= f dze "cos(pz)=k, ~/(k', ~+p'),

R„=4+(p ~

a )R„(~
~

p'),
(3.6)

(3.7)

where R„ is given by Eq. (2.5),

( 3 ip) =f dzg&(z)cos(pz),

8~~ = f dz f dz'cos(qz)
I k

y(e ~~ +e ~' )cos(q'z')

=—Iq qq'

From Eqs. (3.4) and (3.5) we have

(3.g)

(3 9)

The quantity

(3.10)

—=1+2+5' R»Is,
A, B

we can rewrite Eq. (3.3) as

(» —1)[1—k~~d, (k~~,~)]
»+ 1+(» 1)k()di (k(),co)—

where the new quantity di(k~~, co) is given by

k(( g 5' R»Is
A, 8

di(k~t, co) = g (5p~ I„)RgsIs-
A, 8

(3.11)

(3.12)

%Pith the induced density

(3.13)

is the dielectric function that describes the response of a
model system to a potential of the form cos(p'z). The
model system consists of the metal plus its reflection in
the plane z =0. The influence of the surface is such that
the wave functions are constrained to be zero at the plane
z =0 in the model system. The results of the semiclassi-
cal inflnite barrier model are obtained by the substitution
»~z'~[»c (p)] '5&z in Eq. (3.9), where»L(p) is the Lind-
hard dielectric function. The classical case obtains from

—1

ep~ ~» (co)5p~.
Obviously the classical limit p=(» —1)/(»+1) is the

k~~~0 limit of I'0. The simple form for k~~~0 is a re-
flection of the fact that in this limit the orthogonality be-
tween the wave functions building up Iz and 8» form
simple 5 functions. We will therefore further manipulate
Eq. (3.3) to bring out this feature. When k~~~O, I„ in
Eq. (3.4) becomes 5~. Defining

In the long-wavelength limit it has previously been
shown that the first correction to the classical expression
for p takes the following form:

(»—1)(1—k, ~d, )

»+ 1+(» 1—)k((di
p(k~~, co) =

to lowest order in k~~di, where the length di is defined as

z z P k((~QqQ)
di =

f dz 5p(k~~~0, co)
(3.16)

W(kii, z,z,~)
I

u„e ~~ e ~P+ ' y f„(z)R»I~, (3.17)
l++~ A 8

where e ~~ is from the direct interaction and the rest is
the induced potential. Notice that W(k~~, 0,0,co)

=ui, [1—p(k~~, co)j, i.e., it is automatically continuous
ll

across the boundary without invoking any boundary con-
ditions. Once the microscopic response is specified there
is no need for any macroscopically imposed boundary
conditions. Both Eqs. (3.1) and (3.17) contain a factor
1+», in the denominator. The vanishing of this denomi-
nator indicates an induced potential in the absence of any
external perturbation. This is the condition for an eigen-
mode of the coupled vacuum —solid interface and the van-
ishing of 1+»,(k~~, co) provides a relation between co and

k~~ which is the dispersion relation for the surface
plasmon. This fact then provides additional evidence that
our splitting of the surface and bulk terms is the appropri-
ate one since the scheme retrieves the proper surface
plasmon dispersion relation for the classical case, yielding
co =co&/2 when», (k~~, co) is replaced by its classically de-
rived limit.

From Eq. (3.17) we see that we can conveniently intro-
duce a generalized surface dielectric function», (z) accord-
ing to

and z is measured from half a lattice distance in front of
the outermost lattice plane; the classical surface position. s

di(co) is seen to be the center of gravity of the induced
charge and Eqs. (3.15) and (3.16) are the long wavelength
limits of Eqs. (3.12) and (3.14), respectively. This is obvi-
ous for d i and in Appendix A we show that
»(O, co)~»(co). In the limit of large k~~, di ~1/k~~ and

p(k~~, co) vanishes because» approaches 1 for very large
k~~. The latter fact is connected with the vanishing of
R» for very large momentum transfers.

Having established some useful quantities and concepts
we now turn to the situati'on when z «0 and z'g0; the
potential inside when we have a charge outside. In this
case the total potential is

5p(z) cc g gg(z)R»Ig
A,8

1/»gfz)=e ~~ + g f„(z)R»Is,
A, 8

(3.18)
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dividing fz (z), Eq. (2.10), in the following way:

f~(»=f~(» —I~e (3.19)
W(kii, z &O,z'(O, co)=uk e 1/e, (z),

z' 2&s

ll ]+p,
(3.21)

when z &0, where f„represents the bulk part

f~(z)= I dzgz(z)Ie II +e

Eq. (3.17) can thus be rewritten as

(3.20)

which is convenient to use in, e.g., golden rule expressions
for matrix elements. Equation (3.4) shows that e, —:e, (0),
since f„(0)=2I~.

It is again helpful to use the complete set Icos(pz) I to
reexpress e, (z), from (3.18) and (3.8):

1/e, (z)=2+I&cos(pz)+ +4I~cos(pz) g I {p I
A)R„{A Ip')5„ii+ I2I~

P PP A, B

=2 g I~cos(pz) +2 g I~cos(pz)(ez~' —
5~~ ) =2 g I~cos(pz) e~~', (3.22)

PP P~P

using Eqs. (3.6) and (3.7). The potential at z in the model
system due to a unit charge at z' is

$(z,z ) =4 g icos(pz)epp cos(p z )Uk
ll

'
P~P

thus 2uk /e, (z) is the potential at z due to a charge at the

surface, z =0.
Finally we have the case when both z and z' are inside

the system. This and the other cases given above have
been presented earlier by Flores and Garcia-Moliner using
the semi-classical infinite barrier model when calculating

Radii. Ortuno and Inkson' have made an inversion of
the dielectric function for an infinite semiconductor also
using a real-space inversion scheme as we employ here.
However this is the first time, to the best of our
knowledge, that the more general results have been given.

In terms of e, (z) the rather complex expression for W
when both z and z' are inside can be written in the alter-
native form

2&s 1 1
W(kii, z,z', co) =uk e, (z,z')—

1+e, e, (z) &,(z')

(3.23)

With

e, (z,z') =e —
kll [z —z'

l
—kll(z+z')+e

+ g fw(z)R&afa (z'} (3.24}

I

1/e, (z')=e ' + QI„R„iaaf~ (z') .
A, B

(3.25)

Notice that e, '(z, O)=2e, '(z), e, '(Q,z')=2e, '(z'), and
e, '(0)=e, '(0)=1/e, [1/ (e)zcan also be expressed as
1/e,'(z', —co)].

In the basis set I cos(pz) ), we find

e, '(z, z') =4g icos(pz)e~~'cos(p'z') .
P~P

cal hmit e '=e '(co)5, e, '(z)=e '(co)e

This concludes our formal manipulations and discus-
sions for the planar interface. In the following section we
will repeat our scheme for the spherical interface, giving
the main steps.

and

IV. THEORY: SPHERICAL INTERFACE

The derivation for a spherical geometry is in many
ways similar to our treatment in Sec. III for the planar
surface. We will therefore be very brief and only state the
main steps. In Appendix B we make contact with the cor-
responding classical result as well as results based on the
semiclassical infinite barrier model. It is again convenient
to define a "refiection coefficient" and express this in
terms of a surface dielectric function. Having those in-

gredients, a number of physical properties pertinent to the
interaction between charged particles and a small solid
particulate can be calculated.

There are two features which make the results in this
section fundamentally different from the ones for the pla-
nar case. The sphere is overall neutral and therefore has
no excitations with monopole character, i.e., there is no
response for / =0. Instead the dipolar (I =1) symmetry is
the important one; when calculating the planar response
the surface screening charge could come from the "other"
side of the metal or from the outside if the metal is
grounded. The other main difference between the sphere
and the semi-infinite medium is the size of the system.
Whereas for the solid occupying the half space it is
reasonable to talk about a bulk limit which is not always a
valid description of a small particle, especially as it gets
smaller and smaller. This will have some bearing on the
way in which we construct the division into bulk and sur-
face terms. However, for large radii the sphere response
must resemble that of a planar interface and we are there-
fore guided by the planar result in making this separation.

We write the Coulomb interaction in spherical coordi-
nates in the following manner:

The surface term in Eq. (3.23) which is proportional to
(1+e,) ' is very similar to Eq. (3.21), the only difference

k)Iz'
is that e ~~ is replaced by 1/e, (z'} which represents the
potential at z' due to a unit charge at z =0. In the classi-

e e
U = = g Wi pi(cosQoi)

I ro —ri
I

(4.1)
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Pi(cosQoi)= g Yi (Q,,)Yi' (Q,, )21+1

Ir(
8'I ——R

r + r =min f ro, r
& ), r =max f ro, r

& I

(4.2)

(4.4)

4 being the radial solution to the Schrodinger equation
and Xzi corresponds to the polarization bubble Xz in the
planar case, Eq. (2.5). The subscript A is now short for
Ii,j ) corresponding to P,P' before, and / plays the role of
k~~. The first-order iteration of Eq. (2.1) in the spherical
case gives

R being the radius of the sphere. As in Sec. II we make
use of the wave functions used in the density-density
response function and we have:"

X(r,r')= g Xqig„(r)gq(r')Y(~(Q, )Y(' (Q;), (4.3)
I, m, A

Xg~(r)ga(p ) . (4.12)

respect to the surface. Thus, for a classical charge distri-
bution, gz (z) ~5(z —d), the resulting part of f„(z}is even
around the surface with zero derivative. The same argu-
ments lead to Eq. (4.10), which has the following proper-
ties. It reduces to the planar case when R and I~ (x}, the
factor I+1/I ensures the vanishing of the derivative
demanded by the symmetric placing of the charges and fi-
nally Eq. (4.10) guarantees that our treatment will pro-
duce the classical result in the appropriate limit. See Ap-
pendix 8 for further details about the last point.

The next order in the iteration yields the amplitude

Wl gfA(rp)RAI+4BRBlfa(&& ), (4 11)
A, B

where DA& is the scattering matrix element

R
DAg= dr r

0

I

)& f dr'(r')
&+ir & r =minfrr'I, r =maxfrr'I

uRu = g Wi "Pi(cosQpi);
r

(4.5) Using the division into bulk and surface parts we write

using R„I=utXat, we have
f

Wi"'= gfA(ro)Reify(&i) . (4.6)

ui =4ire R/21 +1 and approaches uk in Eq. (1.2) as R
II

and i~00, in such a way that their ratio is equal to k~~.
This defines the limiting procedure for approaching the
planar case. The spatial function f„(r) in Eq. (4.6) is
given by

I+1
DAZ ——BA~ — IAI&,

I
(4.13)

where Iz fz(R) [Eq. (4——.7)] and

8 8
Jza =—f dr r f dr'(r') G(r, r')gz(r)ga(r') .

R 0 0

(4.14)

Summing up the inseparable "bulk" terms to all orders,
we get the result

I

fq(ro)= f drr
r =minfrO, rI, r =maxfro, rI

(4.7)

Fi(&o &i}=(% +% + ' ' ' )b.u
(1) (2)

= g fA(rp)RAB1fa(&l } (4.15)

and can be written as follows [Iz ——fz (R}]:

(R/rp) +', ro)R

f~("o)=Ia X f dr r G(ro r)ga(r)/I„

(4.8)

where

RAgg ——RA) 6Ag +RAIBAgR gI +I

RA l~ A B + g R A I ~&cRcal ~

I (4.16)

(&o/R), rp &R
1+1

I
(4.9)

I
r&

G(ro, r}=r+
(ror)'

=mlnfro, r I, r =maxfro, rI I R 2l+ r

splitting up the "inside" part in a bulk and a surface term.
ig =fg(R) aiid the divisioil ls achieved by defining the
function G(ro, r) as F)(rp, R)Fi(R, r, )

WI" =Fi(ro, r, )—
I/(I +1)+For

In Eq. (4.17)

(4.17)

the series corresponding to Eq. (2.19) for the planar case.
Summing all separable terms we again find that they be-
come dressed by the "bulk" screening in Eq. (4.16) and we
can finally write for the induced potential Wi "d:

(4.10)
Fpi=Fg(R, R)= g I„R„a(la,

A, B
(4.18)

It has the same purpose as the addition of the mirror im-
age of the Coulomb interaction in Eq. (2.10). For the pla-
nar case this meant that we formed a kernel which gave
the potential from charges placed symmetricaHy with

which is the crucial quantity for the dispersion of surface
modes;

In analogy with the planar case a surface dielectric
function is defined by considering the potential when both
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ro and r, are outside of the sphere. In that instance the
spatial dependence of fA(r) is independent of A and can
be taken outside of the summation, yielding

/I'0l g 2

Wi" (ro, r, )R)=
1 + I + 1 Foi ror i

Es 1 g2 1+1

e,'+(I +1)iI ror i

and a surface dielectric function e,' is defined by
' —1

21+1
I'0l

I

(4.19)

(4.20)

The classical result for Foi is (sm Appendix B)

l 1 —e
2I +1 (4.21)

leading to what we would expect; ,'e"= (ego). Notice that
as 1~00, Foi approaches the planar surface result cf. Ap-
pendix A, Eq. (A9). In Appendix 8 we give a detailed
derivation of the steps we have gone through in this sec-
tion, using a particular basis set in making contact with
the classical result as well as some recent work. Finally,
we make the remark that for /=0 one can show the
correspondence between Eq. (4.18) and the integral over
the 1=0 component of the induced density. Since the
latter has to vanish for an isolated sphere this assures Foo
and thus W0" are zero.

Because of translational invariance along the surface

1 ik p
+a,c= e "

1(p,p'(z)
2m

and the matrix element can be written as

(5.2)

(5.3)

d k
(c,d

~

W
~
a,b) =—f 2

5(k, —k, +k~~)PA(k~~)Uk
(2n. )' II

'

(5.4)

with

PA(k~, )—= f d'x q,'(x)y, (x)e '"l~'

X f dz'gA(z') W(k~~, z,z', co)/Uk . (S.5)
II

Introducing the general form for W from Eq. (2.21), and
defining

fA = f d x ge(x)p&(x)e ' f„(z),
we can rewrite Pz as

(5.6)

Rewriting 5(E,—E, —Ace) as Im(E, E—, —fico —i 5)
and adding Im(E, E—, +Rco+i5) ', which does not con-
tribute for positive co, we can write P~ in the more sym-
metric form:

Pbd ———Im —g I (c,d [ W
[ a,b )

/

=2 f. f. —
Ec Ea

V. ELECTRON ENERGY LOSS

In this section we give a derivation of the transition
probability, per unit time, that a particle decays from a
state b to d exciting an electron from a to c in a semi-
infinite solid, transferring an energy co and momentum
k ~~, as shown in Fig. 7. The golden rule gives

PA«)()=fA+ gfa~acDCA
B,C

gfa~acIc+ 0 B,C
g IB~BCDCA

Pbe= g f, (1—f, ) I (c,d
I

W ~a, b) I

We inanipulate this expression further by splitting DAB
into BAB and I„'Ia, according to Eq. (2.14), yielding

X 5(E, E, fico), —— (5.1)

f, and f, being occupation factors, W our general in-
teraction, Eq. (2.21), and the energy transfer Ace= Eh Ee. —

PA =fA + g fB~BCBCA
B,C

1
IA+ g IB~BCBCA+ 0 B,C

Now

gfa~acIc
B,C

(5.8)

CO, kii 0

%(d = E~- ED where A is short for a summation over p,p' and spin.
Equations (5.2) and (S.4) then give the following compact
expression far the transition probability:

FIG. 7. Schematic picture for calculating the deexcitation of
a charged particle from 8 to D %hile exciting an electron from
A to C. The latter is in the semi-infinite solid while the transi-
tion from 8 to D can be for a penetrating particle as ~ell as for
one that remains outside the solid. This particle can be an atom,
molecule, ion or an electron. m is the energy transfer and kII the
momentum transfer.

d kIIP~ ———
Uk III1 —g RA

~
PA(2~)'

(5.9)

with PA given by Eq. (5.8).
Using the equation of motion for RAB, Eq. (2.19), the

product RzI'q immediately simplifies:
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gfa&aclc (5.10)

Multiplying this with I'z, summing over A and taking the
imaginary part, according to Eq. (5.9), many of the terms
drop out since they are real (for details see Appendix D).
In the following, a much more transparent result is ob-
tained:

d k~i 1

, Uk Im gf~~~afa — gf~~~ala(2~)' 1+F0 (5.11)

Use of Eq. (5.6) in Eq. (5.11}results in the simple and beautiful form:

P~=Im — x x g x b x S)~dp —p,z,z, co g x b x (5.12)

where 8';„d —=8' —v, U being the bare Coulomb interac-
tion. Comparing with the general bulk treatment in Ref.
2 we see that W;„d plays the role of a position-dependent
self-energy. Another observation is that even though Eq.
(5.1) is quadratic in W, Eq. (5.12) above shows a linear re-
lationship. In fact we immediately obtain Eq. (5.12) if in
Eq. (5.9) one of the Pz's is replaced with its "bare" form
fq,'cf., Eq. (5.8}.

In the situation that both f~ and gs represent electronic
states which are outside of the solid, we can use Eq. (3.1)
for W;„d and Pbd splits very nicely into a part describing
the solid's response and a matrix element containing the
Coulombic coupling, viz. ,

P~= —f 2 Uk [Imp(k)), a))]
~
Msd ~, (5.13)

d kit 2

(2~)'

defimng

Mbd —— X axe 'q'
b X (5.14)

VI. SUMMARY AND CONCLUSIONS

In the previous sections we have developed a formalism
from which we derive a general expression for the interac-
tion between two test charges in the presence of an inter-
face. The main results are given in Eqs. (2.21}and (4.17),
respectively, for the planar and the spherical surfaces.
They can be used in conjunction with appropriate propa-
gators to calculate a number of important quantities
characterizing the interaction between charged particles
and a sohd medium of semi-infinite and finite extent.
The final result is basically two series summed to infinite
order. One series yields the bulk screening and the other,
when summed, has a pole which determines the dispersion

with q (k=~~ik~~}, Eq. uation (5.13) clearly shows the role
of the imaginary part of the reflcx:tion coefficient in
describing loss phenomena. Since we have not specified
the states b and d other than that they are outside of the
solid, they can represent an electron attached to an atom,
an ion a molecule or, for that matter, a single electron. In
the latter case the transition probability, Eq. (5.13), deter-
mines the decay rate for say a scattering electron or an
electron bound to an excited image state, thus giving a
width to these so-called Rydberg states. '

of the surface modes. This is most clearly seen by com-
paring Eq. (3.2) for the reflection coefficient p=( —Fo)/(1+F0) and its classical limit p„=(e—1)/
(e+ 1), in the planar case. Both can be written as
p =y+ y +y3+ =y+ yp, with y = —I'0 and
y, ~

———,(1—1/e). The series in y is the "surface" series,
Fig. 4, leading to a Dyson equation for p. The lowest-
order approximation is p-=y having a pole when e=O
(Fo~ ~ ), i.e., the condition for the collective excitation in
an infinite medium, the bulk plasmon. However, sum-
ming up to infinite order, the pole in p occurs for y= 1,
i.e., for e= —1 (Fo —1), whi——ch we recognize as the
surface-plasmon dispersion relation for a semi-infinite
medium in contact with vacuum. The second sexes is
contained in y(FO) itself and is a bulk series. See Fig. 3
and the definition of Fo in Eq. (2.2).

I.ooking at the classical result it is seen to be an expan-
sion in (= 1 —e, since y, i

————,'[g/(1 —g)], and it is
therefore an expansion in the deviation from vacuum
(@=1). Notice as pointed out before, that Fo is related to
e —1, the 1 coming from the dielectric function for vac-
uum. This series then corresponds to building up the
medium from vacuum, the deviation being proportional to
e —1. Starting out from the first term which has a pole
for e= 00, we end up with the infinite order result, a pole
at e=0, which determines the plasma frequency of the
bulk medium. This is then the starting point for building
up the semi-infinite medium through the "surface" series.

Our general results are only a more sophisticated way
of expressing the same ideas, but allowing for (i) a depen-
dence on wave number (since we include the full spatial
nonlocality in our treatment) and (ii) the "e" going into
the "bulk" series' contains surface information through the
wave functions of the system [cf. R„a, Eq. (2.19)]. Notice
that the classical calculation takes e for a bulk medium
and couples it to vacuum yielding p, ~

——(e—1)/(@+1).
Such an approach works very well for the optical proper-
ties of solids. This latter aspect suggests an interesting
approximation scheme, which is illustrated for the spheri-
cal case in Appendix C; it may be sufficient to calculate
Ãqa within a bulk scheme since we have taken care of the
main surface structure in the problem through the Iz's.
For the spherical case this corresponds to approximating
R.„a which„ for a sphere that is sufficiently large that the
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curvature does not affect the screening, should yield a
first insight into the behavior of the response of the small
particle.
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g Rpr qq
5——„gRr r +,

ue P

X 1+ QRqq+ I +( . ) ( )

using the simple form for 8&ii in Eq. (A4) and

4a =&~4.
From the definition of the Lindhard dielectric function

in Eq. (2.6), Eq. (A6) is seen to be an expansion in 1 —e,
with the result that

1 —er (kii, s,a) )

The expression for F(z,z') is then considerably simplified
leading to the semiclassical infinite barrier model result
for F(z,z'):

APPENDIX A F(z,z')= g f, (z)
1 —eL

f, (z')/I, . (A8)

P~(z)=(V'2/qr)sin(pz), z &0 . (Al)

Inserting this into the definition of I„,Eq. (2.11), we can
write

It is important to establish the classical limit of our
quantum-mechanical scheme, to see that our formulation
has the appropriate limits. There is a well-defined way
starting out with the quantum mechanical expression for
the microscopic response function and obtaining the clas-
sical contribution. ' lt is based on isolating terms which
are characteristic of a bulk (infinite) medium; starting
with the infinite barrier model proceeding via the semi-
classical infmite barrier model and its long-wavelength
limit yielding the classical response.

With the infinite barrier model as a basis we start out
having a g&(z):

kll {z+z')
e

1 —eF(z,z') =
26'

z,z' ~0
k (z z)

e ll, z gOgz'
—

kll lz —z'l —kll{z+z )
2e —e z,z'gO

(A9)

leading to the classical expression for the total effective
interaction between two electrons in Eqs. (1.3)—(1.5).

Finally, in Sec. III we defined an effective dielectric
function

To arrive at the classical result where we describe the
response of the semi-infinite medium with a frequency-
dependent dielectric function e(co), eL(k~~, s, co} in Eq. (A8)
is replaced by its long-wavelength limit =—e(co). The sum-
mation over s can then be performed explicitly (Q,I,= —,

'
)

and we get

—k zI„=—J dz e ~~ [cos(p —p')z —cos(p +p')z] . (A2) 1/F= 1+2 g 5' RggIs .
A, B

The second term in the bracket has to be dropped since it
is not a bulk term and we get for I„

+
llIg ——

2 with 5 =p' —p,
ir(k

(A3)

2cos(sz) —e ~~, z &0
fg z =Igx e, z~O.kllz (A5}

It is only a function of p —p*(s). The summation over p
and q for Rzz, in the definition of F(z,z'}, Eq. (2.19),. can
then be performed, yielding

which is a representation of a 5 function in p and p' when

kll ~0.
The next quantity to evaluate is Bqa, Eq. (2.15).

Proceeding in the same manner, only keeping terms going
as p —p' and q —q', we get

Bgg =Ig5g] wjth t =g

i.e., it is diagonal in s and t Similarly w. e get for f„(z},
Eqs. (2.10) and (2.11)

T

Clearly in the limit when kll 0, and since Rzz is
evaluated for p =p', it is the long-wavelength limit of Eq.
(A7) which is pertinent. This then gives 1/e
=1+2X—,(1/e —1)=1/e(co), i.e., e is the frequency-
dependent bulk dielectric function of the material in this
limit, as we stated.

APPENDIX 8

In this appendix we give the main mathematical steps
for deriving the classical interaction in a spherical
geometry. It is equivalent to the main derivation in the
text provided gz(r)=ji(q~&r) and the summation over A

and 8 is for p and p'. We choose to work with the set of
ji's which are such that j~'(rj~~)=0, where i)~~=q~~R, R
being the sphere radius. This choice allows X(r,r') to
have a finite amplitude on the surface which is a charac-
teristic feature of the classical response.

Having made the choice for g„(r) we can perform the
various integrations introduced in Sec. IV and we summa-
rize here the results. We obtain
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(R/ro) +', ro&R
(81)f, (ro) =I, && 21+1 II(e, ro) t+1 (ro/R), ro & R

I I (83)

with

Bp ——( I + —, )Ip [rtip —1(1+ 1 ) ]/1

=(1+ z )Iprtip . (84)

Before proceeding we have to relate the polarization bub-
ble Xpp ~, Eq. (4.3), and the dielectric function. Using

2

5(x—x') —c(x,x', co) = I 13X ' X(xi', x', N),
fx —xiii

(85)

relating X to e we will find the X corresponding to the
classical situation, g", from the condition that it should
yield 5(x—x')[1 e(ru)]—on the left-hand side of Eq. (85)
when inserted on the right-hand side. Expanding I ac-
cording to Eq. (4.3) and expressing the 5 function in our
basis set as (for the radial part)

= g ~pjl('Il }jr1(9 Ip)r

P

and

where clearly G(ro, r) acting on ji gives back ji', our bulk
expansion set. Ip is nothing but fp(R) and is given by

IRIp= z II(rtip) . (82)
9/P

Furthermore, we introduced the scattering matrix element

Dpp having the bulk part 8pp, which turns out to be diag-
onal and we can write

Rpp I =5pp Rp/e(co), (812)

%e now proceed to go one step beyond the classical re-
sult. Instead of using the classical dielectric function in
Eqs. (812) and (813) we use the semiclassical infinite bar-
rier model result from Eq. (A7). In other words our form
factors I„,f„,etc. , reflect the spherical symmetry giving
the form of the effective interaction but when taking the
bulk screening, as represented by the series for R„si, in-
stead of using the classical result with a frequency-
dependent dielectric function which has no information
whatsoever about the spherical aspects of the problem we
use a somewhat better screening based on the Lindhard
dielectric function, as in Eq. (A7). Equation (813) is then
changed in such a way that (I /c —1) is inside of the sum-
mation„since the Lindhard dielectric function depends
also on the momentum transfer rtip/R. Then adding and
subtracting the classical part considered above we get the
following result:

Foi ——— (1—td„/R),t(e —1)
c(21 +1) (815)

where we have introduced a length 1, (corresponding to
dz in the'planar case) defined as

i.e., the screened propagator Rp (Rp =[1—c(~)]/&p). »-
nally this now gives for FDI

FOI= QIpRppIp = g 2
. (813)

2 1 —6 1

P PP P PI +1 ~ —2

If we multiply Eq. (86) with (r')'+ and integrate over r'
and then let r =R, the sum over the inverse zeros can be
shown to be equal to 1/2. This then yields the classical
expression for FOI, in Eq. (4.21), viz. ,

E(r,r, co') g ApdppiJ((+pr)j((lplp r )

P

with

Ap=2rtip/IR'jl'(rtI )[alt —l(1+1)]],

d„(a))/R =
(87) "

~—1, q,', t(t+1)—
1 1

X
eL (g(p/R, a)) c(co)

(816)

where CL is the Lindhard dielectric function. With the
definitions made in Eq. (815) we ensure that the reflection
coefficient [Eq. (4.19)] coincides with the general form it
must have according to the theory of Apell and Ljung-
bert. ' Furthermore, we notice that Eq. (816) coincides
directly with the expression given in Ref. 15, and our
treatment therefore provides an understanding of what
approximations have to be made to achieve this result.

we get (Rpp =uIXpp I),

APPENDIX C

For completeness we give the main steps and results for
the effective potential using the double cosine transform
for comparison with the approach in Sec. II. In this
scheme, the density-density correlation function is ex-
panded as

R =R +JR BR (811)

is the dressed propagator. Combining Eqs. (84) and (89)
for thc classical case whcrc all terms arc diagonal, wc gct
for the fuH polarization propagator:

X(kii,z,z', ro)= QXpp cso(p )zc o(sp' z) (C 1)
psp

We have then kept only the "bulk" part of the integration
in Eq. (85} in accordance with the classical model being a
bulk model with no information about where the surface
is. The classical result for e(r, r', co)=c(m)5(r r'}/r is-
obtained for with ezp 5pp e(co). ——

Inverting Eq. (89) we guet the inverse dielectric function

epp' ——Sp +a R (810)
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where p and p' now stands for external variables in con-
trast to our expansion using the gq's in Eq. (2.2). Calcu-
lating the first iteration term URv it can be written exactly
in the same form as Eq. (2.8), viz. ,

URU =Uk g fz(z)R&z fz (z'),
ll

pp
(C2)

however, with different expressions for fz and Iz ——fz(0),
T

—klls2cos(pz) —e, z~O
jp Z p e, z&0kll~

k2ll+P'
'

which are very close to the classical limit of our treatment
as a comparison with Appendix A gives at hand

(R~~ =Uk X~p ).
ll

The next iteration order generates Dpp corresponding to
our Dzq in Eq. (2.13},which is found to be

5p(z =0)=0~ g Epp' ——

p

(Cl 1)

if we sum up the series U+URU+uRURU . . to infinite
order.

The expression for the surface dielectric function
e, (k~~, co) is (g I = —,):

&, '(k~~,~} 2——X6&.~', (C9)
pp

where happ'
——

5pp +Rpp Ip defines an inverse dielectric
function. The semiclassical limit is ezz ——5&z /
eL (k~~,p, co), which gives the semiclassical infinite barrier
model result for e, (k~~, co):

Eg (k(),CO) =2 g IpEI
dP ll 1

k~~+p &L, (k~(,p, a))
'

(C10)

eL being the Lindhard dielectric function. Finally for the
double cosine transform we have a suin rule which re-
sults from the vanishing of the induced density at z =0:

~en =Its~~ ~n~~ (C5)
which is automatically satisfied in our scheme since

gz (z =0)—=0, because this condition defines z =0.
i.e., diagonal for the bulk part and separable for the sur-
face part. Defining F(z,z'), APPENDIX D

F(z,z') = g fp(z)R~~ fp (z'),
pp

where

(C6) We demonstrate here the steps required in going from
Fq. (5.9) to Eq. (5.11). We introduce

"n~ =R~~+ XRwBeR~+

= [R (1—BR) ']pq (C7)

and B& Iz, we can a——gain write the total effective interac-
tion as

I

W( k)(,z,z', co) =Uk e II +F(z,z')
il

and

II~ = gfaRa~
8

G~ = QIaRa~
8

~= QG~f~
A A

(Dl)

(D2)

(D3)

F(z,O)F(O, z')
1+I'p

(C&) from before Fo ——g&G&I& [Eq. (2.22}]. We can then

write

f~+ QHaBa~ —,(I~+ g GaBa~ }R'
1+I'0 a &++o a

(D4)

Taking the imaginary part and summing over A we obtain the following:

QH~f~+ QH~B~aHa—
A A, B

R R~+ Q G~B~sHa ++ 0 A, B + 0
(D5}

Obviously, since Bz~ contains the product of gq and gii [Eq. (2.15)], the second and last terms are real and do not con-
tribute.

When writing down Eq. (D5}, we have furthermore used that Bsz ——B&ii. Moreover the fourth and sixth terms are
each others* complex conjugate and they can also be deleted. Forming a common denominator for the third term, part of
it is found to cancel the seventh one and the remaining part is real. This leaves us with the following terms:
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Im+Rg ~I'g
~

=Im QHgfg— (D6)

which is nothing but the integrand in Eq. (5.11) as we set out to demonstrate.
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