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Ensemble and temperature averaging of quantum oscillations in normal-metal rings
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The Landauer conductance 6 between two appropriate contacts of a one-dimensional (1D„
single-channel) ring with elastic scatterers is considered as function of an enclosed Aharonov-Bohm

flux P through the ring's opening. It is demonstrated analytically and numerically that upon

averaging over an ensemble of different microscopic systems prepared under the same macroscopic
conditions, the basic period of G($) changes from P v= hc/e to Po/2. This agrees with existing ex-

periments. It is also shown that self-averaging out of the $0-periodic component is obtained at tem-

peratures higher than a suitable energy-correlation range which is discussed in several regimes. Spe-
cial effects due to the broad distribution of resistances are found numerically and understood
theoretically. These may lead to a non-Ohmic size dependence of the conductance even at finite
temperatures when a classical addition of many rings is valid.

I. INTRODUCTION AND SUMMARY

One of the important insights gained by the recent ad-
vances in applying electron localization theory to conduc-
tion in small systems has been the elucidation of the dif-
ferent roles played by the elastic and inelastic scattering.
The former leads via the interference of the electron
waves to the various effects associated with localization.
Only the latter scattering can really scramble the phases
of the wave functions and reduce the effects of interfer-
ence. It thus follows that at sufficiently low tempera-
tures, a system which is smaller than the characteristic
phase coherence length for the electrons (defined usually
by the inelastic scattering) will exhibit the effects of in-
terference even in the presence of a substantial amount of
disorder (or elastic scattering).

An interesting example is that of a multiply connected
system —a small ring' or a small-radius hollow cylinder
with an Aharonov-Bohm —type fiux P through its open-
ing. The interference of the electron waves around the
opening is sensitive to the Aharonov-Bohm flux (which
modifies the phase relationships for the wave functions).
Thus, one expects some sensitivity of the physical proper-
ties of such systems to the flux P. In fact, P is equivalent,
via a well-known gauge transformation, to a change in
boundary conditions of the wave function around the hole
where the phase of the wave function changes by

0

whenever each electronic coordinate is taken once around
the opening. Here Po

——hc/e=4X10 ' mks is the
(single-electron) fiux quantum. It follows that all the
physical properties of such a system are exactly periodic
in P with a period Po. This is a rigorous theorem whose
domain of validity includes static disorder and all
electron-electron and electron-static ion interactions. In
fact, calculations on both equilibrium properties and the
conductivity' ' between two points on one-dimensional
(1D) models of such systems, exhibit sizeable oscillations

with a period Pc. The model used to calculate these con-
ductivity oscillations is shown in Fig. 1. Without loss of
generality the elastic scattering in the two branches of the
ring may be represented by effective scatterers (1 and 2 in
Fig. 1). Equilibrium properties (e.g., the energy) can be
studied' for the isolated ring. Transport properties of the
system can be calculated by coupling it to reservoirs at
different electrochemical potentials and applying the Lan-
dauer formula. s Further discussion of the model is
presented in the next section.

Notwithstanding the periodicity with period Po, one of
the most interesting predictions for the case of weak dis-
order called "weak localization theory" has been the one
by Al'tshuler, Aronov, and Spivak~ on periodic oscilla-
tions of the (Kubo-type) conductance of small doubly con-
nected samples (such as rings or cylinders) as function of
the Aharonov-Bohm fiux P through their opening. One
surprising aspect of the calculation has been that the fun-
damental period of the oscillations was not Po, as the gen-
eral theorem referred to above would predict, but Po/2.
The Pc/2 period is the "first harmonic" of the Po one,
thus, this periodicity does not contradict the above
theorem. The question is only why the fundamental Po
period does not appear.

Before answering this question we mention that the pre-
diction of the Pc/2 oscillation following the pioneering
experimental work by Sharvin and Sharvin, has received
very convincing experimental support. In the more recent
experiments ' on long cylinders, an almost quantitative
agreement with the full theory (taking into account the
non-Aharonov-Bohm magnetic field inside the material)
was achieved. The Po/2 oscillation has also been clearly
seen in experiments on large arrays of many "rings. "' In
all those experiments, the fundamental Po period has not
ben seen. Preliminary experiments" on single rings were
inconclusive, but did show traces of perhaps both Po and
Pc/2 oscillations, with additional aperiodic structure
which appears to be due to the non-Aharonov-Bohm por-
tion of the magnetic field. ' More recent experiments on
single rings, reported during the preparation of this pa-
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per'i have shown clear distinct oscillations with a Pp
periodicity.

The answer to the dilemma of why the fundamental os-
cillation of period Pp has not been seen in some of the ex-
periments, might have been that its amplitude is large
only in the unrealistic 1D (or "single channel" case). One
might have expected that in a more realistic "multichan-
nel" situation, appropriate to an experimentally feasible
fine line, the Pp component averages out. To check this,
Buttiker et ttL, ' estimated the size of the Pp-periodic
component of the conductivity and found that it was of
the order of 1/n, where n was the number of channels.
This is of the same order as the Pp/2 weak localization
contribution. Thus the ratio of the two contributions is
fmite for large n Rec.ent results of Lee and Stone, ' on
the magnitude of the fluctuations and above oscillations
can be interpreted' by defining rt as the effective number
of active independent channels. Quantitative results on
many channels, incorporating averaging ideas mentioned
below were very recently obtained by Stone and Imry. '

Thus, the explanation of the above dilemma has to be
sought elsewhere. To do that, we note that both the
theory of Ref. 7 and the experiments on cylinders and ar-
rays involve effectively an ensemble averaging over many
microscopically distinct systems prepared with the same
overall macroscopic conditions. Thus, all rings in the ar-
ray have similar impurity concentrations but the precise
configuration of the impurities is obviously different from
sample to sample. In the theoretical calculations, one en-
semble averages from the very beginning in order to use
propagators that depend only on relative distances (apart
from boundary-effects). In the cylinder experiments, the
resistance is measured along a —1 cm long cylinder which
consists of around 10 pie:es of length l~ added classical-
ly, l~ being some phase breaking length. Now, the work
on rings with contacts suggests that the Fourier coeffi-
cient corresponding to the Pp-periodic part of the oscilla-
tion does not have a definite phase. On the other hand,
the Pp/2 Fourier coefficient does have a definite phase
[for example, G (P) is mimmal (maximal) at /=0 for sys-
tems without (with) spin-orbit scattering' t. This is due to
the part foHowing from backscattering around the loop at
the origin (see, however, Ref. 19). Thus the ensemble
averaging may eliminate the Pp-periodic component but
the Pp/2 component should survive. Similar conclusions
were also reached independently in Ref. 3, although their
statement that the oscillation with period Pp vanishes like
the inverse length of the system is valid only for quanti-
ties averaged over the whole band of states. The low-
temperature conductivity exhibits before ensemble averag-
ing Pp and (()p/2 periodic contributions that are of the
same order of magnitude. ' ' This idea is, of course, in
agreement with the fact that very recent experiments' on
sitigle rings, have in fact displayed large distinct
periodicities. Ensemble averaging was not appropriate for
these experiments.

These experiments have in fact been triggered to some
extent by model calculations by Imry and Shiren' on the
Kubo conductivity of closed 1D rings and by the results
we report in this paper. The inappropriateness of ensem-
ble averaging to display the properties of specific "disor-

dered" (or, more generally, nonperiodic) systems has been
thoroughly discussed in a series of papers by Azbel, 2 who
has also emphasized the possibility of learning something
about the specific arrangement of constituents in such sys-
tems. A particular case, related to the buildup of Grif-
fiths singularities was discussed by one of us. '

All these considerations suggest that there is an impor-
tant difference between a particular realization of, for an
example, a small multiply-connected system and a situa-
tion where an effective averaging has to be taken. The
purpose of the present paper is to study such non-self-
averaging situations, and the effect of various averaging
procedures. We restrict ourselves to one-dimensional

rings, and consider transport properties such as the total
transmission and the conductance of these rings.

In Sec. II we perform ensemble averaging over various
realizations of random rings. We find by analytic con-
siderations that ensemble-averaged quantities are periodic
in the flux p with periodicity of pp/2 the pp component is
indeed averaged to zero. This is confirmed by numerical
study of this problem. A further question is which quan-
tity should be averaged for various experimental situa-
tions. This is discussed briefly. The fact that the resis-
tance (conductance) of a ring in the ensemble has a broad,
non-normal distribution ' has implications for the
dependence of the resistance (conductance) of an array of
such rings on its size. Thus, for example, the resistance of
a series array of rings of length I., in the Ohmic regime
(i.e., when the size of each ring is of the order of I~ ) in-
cremes with L at a rate which may be faster than linear.
It is intriguing to investigate in the future what the impli-
cations of this are on the temperature-dependent resis-
tance of such arrays, or of long, narrow wires.

In Sec. III we study a different source for averaging.
We consider the two reservoirs, coupled to the leads of the
ring, to be at finite temperatures. Thus, there is a whole
range of electron energies (or k vectors) which contribute
to the current. The higher the temperature the broader is
this energy window. In general, the total scattering am-
plitudes of the ring depend on k. Eventually, at suffi-
ciently high temperatures, the existence of many k vectors
results in an effective averaging, and similarly to the en-
semble averaging situation, leads to a Pp/2 periodicity.
The details of the crossover from Pp to Pp/2 periodicity
are studied numerically and conditions for the appearance
of a pronounced Pp/2 component are worked out. Similar
consideration for the Kubo-type low-frequency conduc-
tivity of closed rings were recently presented by Imry and
Shiren' and for the many-channel case, by Stone and
Imry. ' The above criteria is valid for small and inter-
mediate ring resistance. %hen the elastic scattering
within the branches of the ring is strong, the situation is
somewhat more subtle. Due to transmission resonances,
only pseudodiscrete energy windows contribute signifi-
cantly to the conductance. A pronounced 4p/2 harmonic
may appear, but generally a complete smearing of the Pp
component will not occur. The effect of the resonances
on the averaging is explained and verified numerically.
The results are briefiy summarized in Sec. IV. We hope
that our work will stimulate studies of thc dctmlcd size
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and temperature dependence of complex multiply-
connected arrays, as well as the strong localization regime
of such systems.

system are 8=—Ir I
and T:—

I
r I, respectively. Thedi-

mensionless Landauer conductance for spinless electrons
is given by '

II. ENSEMSI.E AVERAGE

I ECl

i PI
r~ le

r ffIri= friIe

(2.1)

with It&I +IriI =1, yi ——2ai —Pi+~, /=1, 2. Non-
zero magnetic flux confined in the center of the ring may
be described by gauging the amplitudes according to

o ~
—~~yxyot)~t)e, t)~t)e

—i~//$0, , i~//got&~t2e, t 2 ~t qe (2.2)

PI ~I'I, l'~ ~P'I

In order to calculate the total reflection and transmission
amplitudes of the ring, r and t, respectively, and also has
to determine the 3)&3 scattering matrices of the splitters
at 8 and C. Here we follow the choice of Ref. 2. Howev-
er, we believe that the results presented here do not de-

pend qualitatively on the particular choice of these ma-
trices.

The total reflo:tion and transmission coefficients of the

~2 "~ Z

t~2 l

FIG. l. One-dimensional ring confining a magnetic flux P.
Boxes 1 and 2 denote the elastic scattering in the two branches
of the ring, vrith the corresponding transmission and reflection
amplitudes. Points A and D are connected to reservoirs.

As was indicated in the Introduction, the elastic scatter-
ing in the two branches of the 1D ring may be represented

by effective scatterers (1 and 2 in Fig. 1}. Each of them is
characterized by four complex scattering amplitudes

r;, t;, ri', t&' (i = 1,2). In our notation the phases of these
scattering amplitudes include both the effect of the poten-
tial barriers in the branches (i.e., the scatterers) and the
"optical path" of the electron wave function along the
one-dimensional channels. Thus, for example, the ampli-
tude a of that component of the wave function on the
81C branch (i.e., in the direction of 1, see Fig. 1) near 8 is
related to b (the amplitude of the component on 81C near
C with momentum in the 1C direction) by b =at& In.

general primed (unprimed} quantities denote scattering
amplitudes for waves coming from the left (right).
Current-conservation and time-reversal requirements im-

ply some relations among the amplitudes, which lead to a
simple garametrization of the amplitudes in the absence
of flux,

(2.3)

with

R+T=1 . (2.4)

To perform ensemble averaging over different realiza-
tions of the ring we restrict ourselves to systems with
fixed values of

I ri I
and

I ti I, and choose the phases ran-
domly. As seen from Eq. (1.1) there are four independent
phases, namely ai and P~ (i = 1,2}. We take all points in
the four-dimensional "phase" space to be distributed with
uniform weight.

In order to understand why the ensemble averaging
over all phases yields a periodicity of Po/2 let us consider,
for example, the backward reflection of an electron com-
ing from A (Fig. 1). One can view the total reflected part
of the wave function as an infinite sum of partial contri-
butions to r, arising from multiple-scattering processes.
Thus the electron coming from A may be scattered back
at the splitter B. This process is denoted, symbolically by
ABA. Similarly, the electron may perform a complete
loop and then be scattered back (such a path is, for exam-
ple, AB1C28A) etc. For a given realization of Iai, piI
and a given value of the fiux P, the probability amplitude
of the mth path has a well-defined phase 5 (Iai,pi j,P).
We shall show now that to each realization of random
scatterers, characterized by the phases Ial, PiI, corre-
sponds another reahzation with phases (aI,P'I, such that

(t~I Plj 4) '4(I&I Pl) 0+0'0/2). (2.5)

~l ~i+~ Pl Pl
t

P2=P2.
(2.6)

Note that this transformation leaves paths that do not in-
clude complete turns around the ring untouched. These
transformations, however, imply a sign change of the am-
plitude for every complete turn, which is identical to the
effect of varying P by Po/2 [cf. Eq. (2)]. This completes
our proof.

%e also studied numerically the ensemble average of
various quantities. The ensemble average of the transmis-
sion coefficient (T) is computed and the quantity
6—= (T)/(1 —(T)) is plotted in Fig. 2 versus the nor-
malized flux 8=m//go, for various values of the branch
conductances, Gi =

I ri I'/I ri I' Gz =—
I

&i I'/I ~i I'.
The averages were computed by using 20 data points in
the phase space. For some 8 values, we performed a
much finer sampling (using up to 60 points) and noticed

This immediately implies that the ensemble averaged re-
flection amplitude is periodic in Po/2, and thus the reflec-
tion coefficient has this periodicity. One may consider
some other scattering and transport quantities (the
transmission coefflcient, the conductance, etc.) and verify
along the same lines the Po/2 periodicity.

To satisfy Eq. (2.5) we define the following mapping
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10

08

06

~ a~

study the details of this divergence we divided our four-
dimensional phase space into a grid of nXnXn Xn
points, the distance between neighboring grid points being
2~/n

Defining an arbitrary cutoff 9F, we have found numeri-
cally the number M of grid points at which the resistance
A' is larger than 9F, . We found for large 9F„the power-
law behavior

M 9-F, (2.7)

where X=0.5—0.6. This indicates a divergence of 9P at
special points in the phase space proportional to a power,
—p, , of the distance from these points, where

p, =4/A, =7.3+0.7, (2.7')

FIG. 2. G(8)/G(8=m/4) plotted for various values of
branch conductances, G~ and G2. (a) 61 —-100, G~ -—50,
G(7T'/4}=S. 1; (b) 6]= 1 ~ 0 Gg=0. S, G(W/4)=0. 8S; (c)

G& ——0.001, G2 ——0.0005, G(n /4) =0.0001S. The conductances
are measured in units of e ~/h.

that the averages did not change by more than a few per-
cent. As is seen, the periodicity is tt)0/2. The sensitivity
to the flux is larger the weaker is the elastic scattering.

Next we calculated the ensemble average of ln(T/R).
One expects this quantity to have a well-behaved distribu-
tion. z 'i The behavior for intermediate scattering is
shown in Fig. 3, again showing periodicity of $0/2. Phys-
icaBy, considering 1n(T/R) is appropriate, e.g., when we
have a series array of rings with 1& being much larger
than the ring size and the interring distance. In that case
the quantum-mcx:hanical addition rule for the resistance
implies that (for sufficiently long systems) the logarithms
of the resistances should be added.

When 1~ is of the order of a ring size, the resistances of
the rings should be added according to Ohm's law. We
are then interested in (R/T). However, our numerical
studies indicate that this quantity diverges. In order to

0-

as

FIG. 3. exp((lnT/R ) ) plotted versus the normalized mag-
netic flux 8. The dimensionless branch conductances are
G) ——1.0, G2 ——0.5.

9Ftv -N"~~ (2.8)

with @=7.3+0.7 and p =4 in our case. The anomalous
dependence of 9N on N arises from the non-normal dis-
tribution of ring resistances and the larger probability to
find a large resistance for larger ¹

The plausible reason for this behavior is that the
transmission vanishes strongly at special points in phase
space. Clearly, there is sufficient freedom in the four
phases to satisfy a condition of total blocking of the in-

coming wave by the ring. The so.*mingly surprising result
is that the large value of p implies that T vanishes like a
high power of the distance from the special point. For
p, &p this singularity is nonintegrable and the above ef-
fects follow. It is, in fact, straightforward to understand
why p turns out to be so large. I.et us write the transmis-
sion amplitude as F=G+iH where the real functions 6
and H each depends on the four phases tz;,P; (i = 1,2). In
general, 6 and 8 vanish each on a three-dimensional sub-
space of the four-dimensional phase space. Both vanish
on the intersection of the above three-dimensional sub-

spaces which is a two-dimensional manifold (a surface).
The transmission amplitude vanishes on the above sur-
face. We now can consider the expansion of the analytic
function F in the deviation from the above surface. There
exist two lines on the latter on which the first and second
order coefficients in this expansion vanish. Thus, near the
intersection point of those two lines, F has a third-order
zero and T= ~F

~

a sixth-order one. Thus, special
points where T vanishes with p =6 may exist. The same
applies, of course, also for the reflection coefficients R,
but at different points. Note again that the result (2.8) is
related to the case where the phase breaking length I~ is
of the order of a ring's size. For parallel addition of
rings, with the usual, Ohmic, addition law (for l~ compar-

i.e, a nonintegrable divergence. Heuristic arguments for
such a divergence will be given below. To see what this
implies on the dependence of the resistance on the
system's length let us consider a configuration of the N
rings in series. Each ring is a given realization of the en-
semble, and is represented by a point in a p-dimensional
phase space where p =4 in our case. The typical distance
between nearest-neighbor points is -E ' &. From the
above divergence, we obtain that the average resistance
per ring for a system of N rings, A'~, scales as
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G~-X" ~& (2.9)

able to the size of each ring) one rather discusses the con-
ductance (G ) = ( T/R }. In a way analogous to the above

discussion we find numerically the average conductance
of N rings in parallel, under these circumstances scales as

Aa (E)=a (E) a—(EF),

is given by

ba (E) 1 E E—F kgb

a (EF) 2 ksr EF

(3.3)

(3.4)

with p'=5.0+0.7 and p =4. Our numerical values for
the exponents of the vanishing of T and 8 near their
respective spa:ial points are in fair agreement with the di-
mensional counting argument presented above.

We emphasize that (2.8) and (2.9), while having to do
with the special broad distribution of resistances in ID are
of a different nature than the by now well-known proper-
ties in the quantum regime. They apply for classical,
Ohmic, addition of many quantum single-ring units.
More work is needed to find out whether similar effects
may exist in the more realistic multichannel ("quasi-1D")
case. In any case the results of Ref. 15, as interpreted in
Ref. 16, imply that around the transition to strong locali-
zation (i.e., total ring resistance of the order of M/e ) real
systems should behave like single channel ones. We ex-

pect the results (2.8} and (2.9) to be applicable to such
cases.

III. TEMPERATURE AVERAGING

A different type of averaging arises when the reservoirs
(A and D in Fig. 1) are held at a finite temperature r.
The contributions of the electrons at various energies,
which participate in the conduction, have to be weighed
now with the factor —df /dE, where f is the Fermi-Dirac
distribution

1

~E-E isa ~F 8++ l
(3.1)

Here E is the energy, ka is Boltzmann's constant, and EF
is the Fermi energy. The average dimensionless conduc-
tance G,„(r)is given by

G,„(r)=
T(E)dE

1 —f T(E)dE

(3.2}

Strictly speaking this conductance, while being the usu-
ally measured quantity, i.e., the ratio of current to voltage,
might contain a thermoelectric contribution which is ig-
nored here, for simplicity. In order to find the depen-
dence of T on E, we express the phase of each scatterer as
the sum of two contributions: (i) a (P ), m = 1,2, in-
trinsic part related to the scattering process; (ii) kl

(klan ), which is related to the optical length of the elec-

tron. Hereafter we assume for simplicity that a (lf ) do
not depend on k. Since kFl »a (kFlIi »P ), kF
being the Fermi wave vector, we do not expect our results
to depend strongly on the above assumption. Thus a
strong dependence of T on E arises from the dependence
of the phases of the scattering amplitudes on the k vec-
tors. Using E-k, the variation of the phases with the
energy, defined by

Similar relations hold for hP (E).
Equation (3.2) may thus be written as

G,„(r)= (3.5)

where

ks~
a~(x, r)=a (EF) 1+—,'x2

kg v.

P (x,r)=f3 (E~) 1+—,'x
EF

(3 6)

and x =(E EF)/ks—r. The integrals extending from
—ao to +oo in Eq. (3.5), with the weight function
e"/(e"+1),may be approximated by introducing cutoffs
at x;„andx,

„

that do not depend on ~. Nevertheless,
the range of phases contributing to the integral increases
with increasing temperature. Thus for sufficiently high
temperatures (although possibly still much lower than
EF/ks), we may have an effective averaging of the
transmission over the phases, similarly to the case of the
preceding section [except that Eq. (3.6) constrains the
averaging in this case to be on a line in the (a„P„a2,P2)
four-dimensional phase space]. Note that since in this
case the transmission is the averaged quantity, the diver-
gence problem discussed in Sec. II does not arise.

This is indeed the case for weak and intermediate
elastic scattering. The dependence of A'(P) —=G,„'(P)on

for intermediate branch resistances A'~ and
982(%, =

~
r;

~
/~ t;

~
) is shown in Fig. 4. At low tem-

peratures the resistance is periodic in P with a periodicity
As the temperature is increased a pronounced Po/2

harmonic appears. At a sufficiently high temperature
(ksr 0 IEF in t. his case) 9F acquires a fundamental Pii/2
periodicity. "High" temperature acts in this case as an ef-
fective ensemble averaging. For different realizations of
the ring (i.e., with the same 9F i and 982 of the system de-
picted in Fig. 4 but with different phases) the low-
temperature behavior of the resistance is different, cf. Fig.
5. Thus at low r we have a minimum in A' at P =0 [com-
pared with a maximum in Fig. 4(a)]. At high tempera-
tures, the choice of the zero-temperature phases of the
scatterers [a (EF),P (EF)] is irrelevant, and Figs. 4(d)
and 5(d) are practically identical. As a general rule for
the cases we studied when an ensemble averaging (and a
periodicity of Po/2) is established, 9P is maximal at / =0.

It is of interest to have estimates for the temperature at
which a pronounced $0/2 harmonic becomes relatively
large. For the model considered, this temperature should
decrease with decreasing branch resistances. The reason is
the following. The typical phase spreading of the incom-
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This energy was shown by Edwards and Thouless to be
identical to the parameter V, in agreement with the above
expectation.

The behavior in the strong scattering regime
(9Pi, 982 »1) is, however, different. 9P(P) for a series of
temperatures is shown in Fig. 6. Here, 9P i

——1000,
982 ——2000. Note that complete averaging and $0/2
periodicity are not achieved even at high temperatures.
9P(/=0) may vary from maximum to minimum as v is
varied (and vice versa in other cases). For other sets of
Il, lp I a "bump" at $0/2 may appear at certain tem-

peratures, but it disappears as ~ is raised further. We also
note that the sensitivity to the fiux decreases as ~ in-
creases.

The explanation to this behavior follows from the ob-
servation that for strongly localized systems the transmis-

sion for almost all energies is exponentially small with the
size of the system, except for exponentially narrow energy
windows, ' for which the transmission is significant.
Only relatively few k vectors that correspond to these nar-
row transmission resonances contribute significantly to
the conductance, which explains why a complete averag-
ing may not be achieved even at relatively high tempera-
tures. A typical structure of the resonances for 9P, =500,
A'2 ——200 is shown in Fig. 7. The contribution of each in-
dividual resonance to the flux-dependent resistance does
not have a definite phase; for some of the resonances
9F(/=0) is a minimum, while for the others it is a max-
imum. As the temperature is increased the energy inter-
val included in the integral (3.5) increases and occasional-
ly additional resonances contribute, which may be accom-
panied by changing 9P(/=0) from a maximum to a
minimum and vice versa. We checked numerically that
indeed such a change is related to the inclusion of an ad-
ditional resonance in the effective energy integration
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59k =
~
9F(/=0) —SF(/=go/2)

~

1
(strong localization) . (3.8)

In Fig. 8, we plot b9F(~) and find 598(v)-~ ", v=0. 5,
in agreement with Eq. (3.8).

range.
We also expect that since various resonances correspond

to SF($=0) being maxima or minima at random,

~
9F(/=0) —4'((() =Pc/2)

~

(which measures the sensitivi-

ty of 9P to the flux) will decrease with the inclusion of
more resonances. Since the number of contributing reso-
nances is proportional to r, we have

This paper is devoted to the study of various averaging
processes on the fiux-dependent oscillations of the
Landauer-type conductance of a 1D single channel ring.
The usual averaging over an ensemble of microscopically
different systems prepared under the same macroscopic
conditions should be equivalent to an averaging over the
phases of the various scattering amplitudes. A finite tem-
perature provides an effective averaging due to the differ-
ing optical paths of elo:trons with different energies.
Both of these averaging processes lead in most cases,
where the effcetive ensemble is wide enough, to a cancella-
tion of the $0-periodic component of G(P), changing the
effective period to ((io/2=Itc/2e. The strong disorder case
is found to be an exception to the above, which is dis-
cussed in detail. Conditions for the temperature averag-

ing are formulated. A novel divergence of the ensemble-

averaged resistance and conductance, related to the broad
distributions of those quantities is found and heuristically
explained. While being of a different nature from the
well-known zero-temperature anomalies, it might have
measurable consequences at fmite temperatures for effec-
tively single-channel conductors.
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