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Temperature dependence of paramagnetic neutron scattering
from Heisenberg ferromagnets above T,
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The temperature dependence of the constant-energy scans for neutron scattering by isotropic
ferromagnets is studied. The weak temperature dependence of the maxima of these scans is ex-
plained, and the temperature dependence of the width is predicted. In the case of a uniaxial fer-
romagnet the effects of dynamic Fisher-Langer corrections are calculated. In the constant-wave-
vector scans a slight enhancement of the scattering near co 0 is found.

Recently, considerable progress has been made in the
experimental study of the paramagnetic scattering of neu-
trons near T, by isotropic ferromagnets. In particular,
constant-energy measurements have turned out to be an
important tool to gain more information about the dynam-
ic scattering function.

Whereas constant-wave-vector measurements (at least
for sufficiently small q), show a peak at zero energy
transfer, in constant-energy scans a peak at finite wave
vector qe appears. It has now become clear that this peak,
which has been ascribed to spin-wave-like excitations in
the paramagnetic phase, is explained naturally by the
features of the correlation function. ' 3 The occurrence of
the peak is a consequence of the conservation of the order
parameter. Moreover, the position of the peak qe and its
width Aq depend sensitively on the shape of the scattering
function. 4 At T, the shape is expected to be non-
Lorentzian and agreement of the results of renormaliza-
tion-group (RG) theory with experiments was recently
demonstrated. 3 However, in the case of constant-wave-
vector measurements in Ni at q&0.3 A ' controversial
experimental results exist. One group reported a peak at
finite energy transfer, taken as evidence of spin-wave-like
excitations above T„whereas no such evidence was found
by Shirane and co-workers, z'6 as one expects from the
dynamical critical theory.

Above T, the structure factor is strongly temperature
dependent; thus by simple arguments (see, e.g., Ref. 7)
one would expect a temperature dependence of the same
kind in the peak position qo and the full width at half max-
imum dq. However, various measurements at different
temperatures in Fe, Ni, ' and Pd2MnSn (Ref. 11)
show that the peak position is nearly temperature indepen-
dent. For the width, a flat or monotonically increasing'
temperature dependence has been reported. It is the aim
of this Rapid Communication to solve this puzzle by ap-
plying the results of RG theory to this problem. It turns
out that the weak temperature dependence in qe originates
from the compensation of two effects contributing to the
temperature dependence of qe. A change in the constant-q
scans may be caused by the variation of the width and the
change of the shape. In particular, in addition to the
crossover in the width, there is a crossover in shape, from
the non-Lorentzian form at T, to a Lorentzian, with in-

C(q to()Pt'- dt d'xe '"* "'
x(g (x,t )St'(0,0)),

where g is the correlation length f( go(T/T, —1) "with
v=0.67). Renormalization-group theory shows'3 that
C(q, to,g) at criticality (i.e., for sufficient small argu-
ments) is a homogeneous function and can be written in
the following form:

C(q, to, &) -X(q,&)
l

toe q.4
,q& . (2a)

toe q.

Here one has separated out the static susceptibility
Z(q, () q +"X(qg) and introduced a characteristic fre-
quency to, (q,() which is also a homogeneous function

to, (q g) -Aq'0 (q &),
with the dynamic critical exponent z. %e take co, to be
the half-width of the correlation function. Because of our
definitions the shape function p has to fulfill the following

creasing temperature. ' In the temperature dependence of
qe the effects of change in width and in shape compensate,
whereas for the width hq of the constant-energy scans
these two effects go in the same direction. Therefore, we

predict an increase of the width Aq further away from T, .
We also consider the case of uniaxial ferromagnets,

whose dynamics is described by a pure diffusive model
without mode-coupling terms (model 8 of Ref. 13). The
peak position qe and the width d,q are weakly decreasing
functions of temperature. Within this more tractable
model we studied the interesting question of the contribu-
tions of the next-to-leading terms to the dynamic correla-
tion function, '4 known in statics as the Fisher-Langer
corrections. We find a small increase in the constant-
energy scans at small to, which may be most conveniently
seen in the intensity taken as function of temperature,
quite analogous to critical statics. ' ' Those corrections
are not noticeable in qe and hq.

The neutron scattering intensity is given, up to a
thermal factor, by the dynamic magnetization correlation
function C(q, to,g),
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relations:
~ + OO

ds (((s,x ) 2x,

y(l, x) -—,'(((O,x) .

(3a)

(3b)

and therefore
' 1/z

Nqo=b— (9)

First we discuss two limiting regions for (2), namely, the
critical region q g » 1 and the hydrodynamic region

qg « 1. From dynamic scaling theory one can make gen-
eral statements about the behavior of the dynamic quanti-
ties Q and p. To obtain explicit expressions for Q and ((

one has to resort to perturbational calculations.
The half-width crosses over from (0,-q' for qg»1 to

(0,-q for qg«1, which implies for Q(x) the limiting
behavior Q(x) 1 as x —~ ™and Q(x)-x (' for
x 0. For isotropic ferromagnets (z —', , taking r/ 0)
we use the following simple interpolation between these
two limits:

Q (x) -0.43
1+x

x +043
This choice is (i) in numerical agreement with the mode-
coupling result of Resibois and Piette, '7 (ii) compatible
with the RG results of Ref. 18, and (iii) agrees with mea-
surements. '9 Recently, the next correction to 1 in the
x ~ limit has been discussed; one could also include
such corrections in (4). However, the only praperty need-
ed in our further considerations is that xQ'(x) 0 for
x ao. For uniaxial ferromagnets (z 4, rl 0) the van
Hove theory yields

Q(x) -1+ l

X

Concerning the variation of the shape of p(s,x) with x
one has in the limit of x

y(s, ~) -2 Re
1

is+a[1+i (Ps/c)](z

y(s,0) -2 1

1+s~
(7)

The explicit dependence of p an x, describing the crossover
from Eqs. (6) to (7), is not known. Therefore we shall
consider below both forms in the whole region of x values.
In the case of uniaxial ferromagnets there is no crossover
in shape, if we neglect higher-order effects in the static
fourth-order coupling, and (7) applies in the whole region
of x values.

For the isotropic as well as the uniaxial ferromagnet we
take the Ornstein-Zernike form for X(q,g).

%e are no~ in a position to calculate the maximum qo
in the constant-energy scans. Because of thc scaling prop-
erties one easily sees that qo obeys the scaling law

q. =g-'Q(g'~/~ ),
where the scaling function Q depends on the explicit ex-
pressions for Q (x) and p(s, x). Since qo is finite at T, we
find the limiting behavior in the critical region Q (y) -y /

with a 0.78 and P 0.46. ' In the opposite limit,
x 0, p(s,x) is a Lorentzian,

with b 0.90 and b 0.87 for isotropic and uniaxial fer-
romagnets, respectively. In the hydrodynamic region we
get Q -y'" and

1/2

((z/2) —1 (10)

with c 1.53 and c 1.0 for the isotropic and uniaxial
case, respectively. Though the shape of p is the same in
both cases the differing values for c result from the dif-
ferent amplitude in the limiting behavior of Eqs. (4) and
(5) for x 0.

Similar arguments hold for the half-width of the
constant-energy scans and one again finds the scaling
behavior

hq g
' P(+co/A) .

The scaling function P has the same power-law behavior as

Q in the critical and hydrodynamic limit. Analogous to
Eq. (9) we have

(12)

with b' 0.68 and b' 0.65, respectively, and analogous to
Eq. (10)

]/2

6q ~C g(z//2) —I

A

with c' 2.2 and c' l.4, respectively. In order to evaluate
the scaling functions Q and P between these two limits for
the isotropic ferromagnet one needs the shape function p.
To cope with the fact that the crossover in the shape func-
tion p is not known we calculate Q and P for both forms
(6) and (7) in the whole region of x. This leads to the two
curves for the maximum and for the width, shown in Figs.
1(a) and l(b), respectively. Each of the curves is asymp-
totic to the true crossover functions Q and P in the ap-
propriate limit. It is natural to expect that between these
limits, Q and P should lie between the curves shown. This
leads in the case of qo [Fig. 1(a)] to a weak temperature
dependence. For Aq, however, the crossover from the criti-
cal to the Lorentzian shape enhances the temperature
dependence [Fig. 1(b)].

To compare these predictions we have plotted experi-
mental data for the peak position of Ni (Refs. 6, 9, and
22) and Pd2MnSn (Ref. 11) into Fig. 1(a). They lie well
within the crossover region; however, the error bars and
the scatter of the data are too large to make more definite
statements about thc crossover function. An analogous
comparison was made for the width in Fe (Ref. 8) and in
Ni. ' To judge this comparison one should keep in mind
that the value of the width depends essentially on the
background subtracted. %e also like to remark that the
values of the relative temperature distance from T, enter
sensitively via y into these plots. Some scatter of the data
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FIG. 1. For the constant-energy scans of isotropic ferromag-
nets we plot as functions of the scaling variable y (m/A)gs/2:

(a) The reduced peak position qo(m/A ) +' Q(y)/y+' for both
shape functions p. The solid line corresponds to the critical
shape, Eq. (6), and the dashed line to the hydrodynamic shape,
Eq. (7). (b) The reduced width hq(m/3) ~5 P(y) y/z/, sagain
for both shapes. The experimental data in (a) are taken for Ni
from Ref. 9 (full circles) and from Refs. 6 and 22 (open circles),
for Pd2MnSn from Ref. 11 (crosses). In (b) they are taken from
Ref. 10 for Ni (full circles) and from Ref. 8 for Fe (squares).
The error bars result only from the experimental uncertainties
for qo and hq, given in the references referred to. In both figures
there should be a crossover in the data from the solid line for
large y to the dashed line for small y. Data belonging to the
asymptotic region should lie on one universal curve.

"at T," in Fig. 6 of Ref. 22 may be attributed to a slight
temperature dependence of qo and should be distinguished
from background effects at larger q and m values. Such
background effects may also be the reason for deviations
from the universal crossover function, that is, data whose
m, q, or g values are outside the asymptotic region are not
expected to lie on the universal curve.

For the uniaxial ferromagnet the crossover functions Q
and P are shown in Figs. 2(a) and 2(b). For that case we
study also the contributions from the next-to-leading terms
to the asymptotic behavior. Those can be included in the
correlation function by a method introduced for the static
case by Nelson, which has been extended to relaxational
and diffusive dynamics in Ref. 14. Here we discuss the
case of purely diffusive dynamics only. We find
[y -(m/A)&4],

FIG. 2. For the constant-energy scans of uniaxial ferromag-
nets, we plot as functions of the scaling variable y (m/A)g:
(a) The reduced peak position qo(m/A) '/ Q(y)/y'/. (b)
The reduced width aq (m/& ) ' P(y)/y'

ponent a 0.11 (Ref. 25), and

2
—)/4

F(x,y) - y +(1+x')'
X4

The calculation of the maximum qo and the width hq with
Eq. (14) leads to the result already shown in Fig. 2 for the
Lorentzian case. No effects of these Fisher-Langer
corrections can be found; however, for the intensity in the
constant-q scans near m 0 we find a slight enhancement
of about 1/0. Plotting the normalized scattering intensity
as a function of temperature shown in Fig. 3, we obtain a
small peak, similar to that found in the statics. 's's A gen-
eral feature of these curves is a decreasing peak position

I OIO
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CF'
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C(q, m, g) + [x + (1+p)F'/"x' x4

l.000
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F(I -a)/v —2}2 (14)

with p (2v —1)/a, where v 0.63, the specific-heat ex-

FIG. 3. The normalized structure function C(q, m, ()/
C(q, m, ~) for uniaxial ferromagnets including the dynamic
Fisher-Langer corrections (solid lines) plotted for q 0.2 and
m 0, 0.002, 0.005 vs g

' [see Eq. (14)l. The dashed lines show
the structure function without Fisher-Langer corrections.
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and width for decreasing q and ro. For smaller q values the
height of the peak decreases faster with increasing ro.

Finally, we believe that our results should encourage
further efforts on the experimental and theoretical deter-
mination of the crossover of the scaling function for the
peak position and for the width of the constant-energy
scans. For that purpose, improved experimental data are

needed. In particular, more temperature-dependent
measurements would be advantageous. On the theoretical
side, the crossover in the shape function should be
calculated.
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