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Analytical determination of the production rate of thermal sine-Gordon solitons
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The equilibrium production rate of kink-antikink pairs in sine-Gordon systems subject to local

thermal fluctuations is determined analytically. In the limit of strong damping the energy needed

to nucleate a kink-antikink pair turns out to be three times the rest energy of a single kink. This

result is interpreted in terms of a three-body mechanism of pair production.

The problem of the escape of a Brownian particle out of
a one-dimensional metastable potential well has been
treated by means of a variety of techniques. ' The exten-
sion of some of such techniques to deal with metastable
minima of multidimensional systems is also well establish-
ed. 23 A rather different situation is described by the per-
turbed sine-Gordon (SG) equation

p«
—co p„„+too sing —ap, + g(x, t ),

where a is the damping constant and ((x,t ) is a thermal
random force with (g) 0 and correlation function4

(g(x, t )g(x', t')) -2ak, Tb(t t') a(x——x') .

In the discrete representation of Eq. (1), g(x, t) corre-
sponds to an array of Gaussian (in time) b-correlated ran-
dom forces acting on each site independently and with
equal intensities. Analogously, Eq. (1) describes an en-
semble of Brownian particles bound by a multistable
periodic potential and interacting (linearly) with their
nearest neighbors.

The related problem of the escape of (a set of) these
particles over a potential barrier in the presence of thermal
fluctuation cannot be treated as a straightforward applica-
tion of the stochastic analysis of Refs. 2 and 3. Difficulties
arise because of the discrete "translational" invariance

p+2tr of the system [Eqs. (1) and (2)l. In the ab-
sence of an external bias we cannot identify a saddle point
in the energy surface through which the field (or chain)
configuration is to pass. A saddle-point configuration
should be a stationary solution of the unperturbed SG
equation such that its energy increases or remains constant
in all but one direction as one moves away from it. This
difficulty has been underestimated in Ref. 5 where the de-
tails of the activating mechanism are purposely neglected.

In this Brief Report we present an alternative deter-
mination of the equilibrium production rate of thermal
kinks. As a major distinction between geometrical and
thermal kinks we recall that the latter ones are always pro-
duced in pairs. The relevance of the process of solitonie
pair production in many fields of condensed matter physics
and electronics has been well elucidated by several authors
(see Refs. 4 and 5, and references therein).

In the Buttiker-Landauer theory of nucleation, kinks
and antikinks are immediately driven apart due to the
presence of an external constant force. An unperturbed
doublet (kink+ antikink) configuration, whose distance

between the kink and antikink depends on the intensity of
the external bias, plays the role of a saddle-point configu-
ration. However, when the external field is switched off,
the doublet configuration energy is neutral under variation
of the distance between its components. The situation is
even more complicated when we admit the presence of oth-
er pairs which can influence to some extent the motion of
the newly formed pair and act on it as a time-dependent
external field of force.

Since a detailed study of such a mechanism is far too
complex, we propose an equilibrium statistical mechanical
treatment. According to the authors of Refs. 7 and 8 we
assume that any solution of the SG equation can be
described as a dilute gas of unperturbed kinks and an-
tikinks. This picture has been proved to work quite well in
the limit of low temperature. s The spatial size of the kinks
is negligible compared to their mean free path, and their
collisions can be treated as elastic. Under such approxi-
mations the mean kink (antikink) density per unit of
length is given by

' 1tr'2

(P~)le (3)
F Cp

where P 1/ktt T and Eo 8tooco is the rest energy of a sin-
gle kink (antikink).

The continuum limit of the Fokker-Planck equation cor-
responding to the discretized system [Eqs. (1) and (2)]
coincides with the classical partition function of the Ham-
iltonian system from which the unperturbed SG equation
derives. This implies that the canonical ensemble descrip-
tion of Refs. 7 and 8 also can be easily extended to deter-
mine the statistical properties of the solutions of the SG
equation in the presence of local thermal fluctuations. In
particular, the perturbed SG solutions still can be depicted
as a dilute gas of kinks and antikinks with mean density
(n), as in Eq. (3).

The presence of a fluctuation term ((x,t ), however,
modifies two important properties of such a gas, namely,
the interaction mechanism and the "free" movement of its
components. Kink-(anti)kink collisions can be analyzed
by extending the perturbation technique of McLaughlin
and Scott. ' The collision of two unperturbed kinks is
elastic and the effective potential acting between them is
repulsive. Under the action of a frictional term this
bouncing mechanism is likely to remain almost un-
changed. The situation is markedly distinct in the case of
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kink-antikink collisions. Kink and antikink attract each
other and, in the absence of thermal fluctuation, their in-

teraction is reflectionless. The interaction, on the con-
trary, becomes desrrucriue" unless the friction losses are
not compensated by the energy input of a suitable external
field of force.

At low temperatures any solution to the SG equation
departs from the representation as a linear combination of
kinks and antikinks only when the distance between two
components is about twice the kink size. Between two suc-
cessive collisions each kink (antikink) travels with con-
stant velocity if a g 0 or undergoes a process of transla-
tional diffusion in the presence of thermal fluctuations. In
both cases the individual mean energy is given by
ka T/2. "

We recently proposed a new description of the dif-
fusional process of a single kink (antikink) subject to the
stochastic perturbation of Eq. (1). Our approach consist-
ed in generalizing the perturbation technique of Ref. 10 to
deal with fluctuating (both in space and in time) fields of
force. We proved that at the first order in the perturbation
parameter a [a«coo and T fixed and small, i.e., PEO«1
(Ref. 10)] the effect of the thermal fluctuation amounts to
activating a Brownian movement of the kink structure
which, in turn, is not distorted. The random motion of the
perturbed kink is described by a Langevin equation (LE)

p- —ap+QEoy(r) .

Here p denotes the kink momentum

p(r ) -Eau (t )/[1 —u'(r )]'"
u (r ) the kink velocity, and y(t ) a random stochastic fluc-
tuation in time with correlation functions

(y& -0, (yO) y(r')) -2akaTB(» —r') .

The physical scenario leading to our determination of
the pair production rate is now clear. A doublet configura-
tion annihilates each time a destructive collision between
kink and antikink occurs. At equilibrium the frequency of
such phenomenon must coincide with the rate of produc-
tion of an equivalent pair. We assume that at equilibrium
only n„(a) pairs out of (n) survive interaction in the pres-
ence of stochastic fluctuation y(r). This means that
the thermal energy of a certain fraction ri(a) [(n)
—(n~(a))]/(n) of colliding kinks and antikinks is high

enough for them to pass through each other.
We start calculating the time a kink needs to encounter

destructively an antikink. The mean distance L between
annihilating kink and antikink is given by ((n) —(n„))
The equilibrium quadratic displacement of the kink center
of mass can be determined from the LE(4) (Ref. 12) in
the limit of low temperatures, i.e., p (r ) Eou (r ),

(ax'(r ) & qr /a' —
q (1 —e ")/a',

where q 2a/P. In the overdamped regime, i.e., for
at && 1, we approximate

(Ax'(r ))=qr/a2 .

Equating (hx (r)) with L gives the kink mean diffusion
time before a destructive collision, i.e., the lifetime z of a
thermal kink (or antikink). We note that at low tempera-
tures r is fairly large so that limit (7) can be realized at
values of c for which LE(4) is still reliable (a « coo).

The mean pair production rate for unit of length p is
then defined as 2(n)/r. Employing Eqs. (3) and (8) we
obtain our prediction in the overdamped limit

2
r ~ 3/2 p

PO 4
0 8 0

(PE ) (/2
—3PE (8)q(~) a z

(i) Prediction (8) is quite surprising. In the limit of
strong damping, kinks and antikinks colliding annihilate, '0

i.e., tl(~) 1. The Arrhenius factor appearing in po im-
plies that the total energy needed to nucleate a kink-
antikink pair is three times the rest energy of a single kink
and not twice the kink energy as one might naively ex-
pect. s Actually, what the result suggests is that a kink-
antikink creation in the limit of strong damping can only
occur in the presence of a spectator. As an intuitive argu-
ment, we would interpret such a spectator as a thermal
ized kink (or antikink) attracting the antikink (or kink)
partner of the newly nucleating doublet, thus exerting a
pressure which contributes to expand the nucleating doub-
let to infinity.

(ii) The Biittiker-Landauer theory for nucleation of
overdamped soliton motion must also be quoted here. As
a starting point in their analysis these authors assume that
nucleation of kink-antikink doublets is triggered by an
external field of force F. The activation energy 2Ep(F)
(~2Eo) in the Arrhenius factor thus obtained depends on
F. Since the activation energy cannot change abruptly
from 2EO(F) to 3Eo, we advocate the existence of a cross-
over field F, which separates the two different mecha-
nisms. Such a crossover would occur when the external
force due to the field of force 2nF, equals the opposite at-
traction kaT/l exerted on the doublet components by
thermal motion of the spectator. l denotes here the dis-
tance moved by thermalized solitons before destructive in-
teraction. It follows that 2', =ksT(n) In this lim. it,
however, the Biittiker and Landauer approach does not ap-
ply.

'
In this Brief Report we have calculated the equilibrium

pair production rate for a SG system at low temperature.
The main features of our predictions are likely to be
relevant to the modeling of chemical reactions in con-
densed phase as well. ' ' A many-body activation mecha-
nism could be invoked, indeed, to explain experimental ob-
servations which do not match the classic Kramers
model. ' This discussion will be reported in further publi-
cations.
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