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Exact Bethe-ansatz thermodynamics for the sine-Gordon model in the classical limit:
Effect of long strings
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We solve the finite-temperature Bethe-ansatz (BA) integral equations with coupling constant

tt z(1 —n ')+0, in the semiclassical limit n integer ~. After eliminating long strings and

then an exact bosonization, transforming n —2 fermion strings into a single boson, the BA integral

equations are reduced to two, couphng bosons and two fermions (kinks and antikinks). In the

classical limit these iterate exactly to the sine-Gordon free energy found by the transfer integral

method and by other methods recently reported. %e suggest that our result can be extended to

general values of p.

The classical sine-Gordon (SG) model is completely in-

tegrable' with Hamiltonian

H [y] - yo '„[—,
' yo211'+ —,

' y„'+rrt'(I —cosy)]dx,

Poisson bracket [Il,p] b(x —x'), coupling constant

yo & 0. As a (normally ordered) quantum s stem it is in-

tegrable by the quantum inverse method. '3 The Bose
quantum SG is of particular interest because it is
equivalent ' to the Fermi massive Thirring model (MTM)
solved by the Bethe ansatz (BA) method, because both
are equivalent by canonical transformation to a continuum
limit of the quantum spin- —,

' XYZ model, 5 and because
this relates directly6 to the statistical mechanics of the
eight-vertex model in 2+0 Euclidean dimensions.
References 8 and 9 derive coupled integral equations for
the quantum free energy of SG by mapping from the BA
formulation of the quantum statistical mechanics (SM) of
the spin- —,' XYZ model. ' In this note we show how this
otherwise largely intractable system of equations reduces,
in classical limit, to results identical to those recently
found"' by other methods. Because of the theoretical
background to quantum SG mentioned, and because forms
of it, classical and quantum, appear in many low-

dimensional physical problems, '3 the SM of SG has been
brought almost to the status of a "test bed" for the SM of
all the integrable models. The results of this note thus pro-
vide one more check"' on the SM of these.

References 11 and 12 briefly report two wholly new and
fundamental methods for calculating the quantum or clas-
sical free energies of large classes of integrable models.
But they could only note how the conventional BA was
subsumed within these and simply remark (cf. Ref. 19 in
Ref. 12) that the conventional BA SM of SG ' reduced
in classical limit to certain classical integral equations re-
ported there. ' These were important because they iterat-

ed to yield the exact low-temperature asymptotic expan-
sions for the free energy of classical SG. These expansions
could be derived otherwise, but in exactly the same form,
by the transfer-integral method (TIM)'2 on the classical
functional integral for the partition function Z of SG.
Thus, a number of different ideas come together in the
classical SM of SG.

Chen, Johnson, and Fowler' are reporting more or less
the same result as ourselves —namely that the convention-
al BA SM of SG can be reduced in classical limit to cou-
pled integral equations iterating to the TIM result. How-
ever, Chen et al. '" solve this classical limit problem in one
particular case—when a certain number po (see below) is
an exact integer po n Indepe. ndently we have solved this
problem when po n +0 [i.e., when po n + e,
e( & 0) 0]. It is known ' ' ' that these two cases, so
far the only tractable ones, are significantly different: For
po n there are merely n —

1 coupled integral equations;
for porn (including po n+0) there is an infinite set.
Because of current interest in integrable models, and the
test-bed status of SG amongst these, we use this note to re-
port in more detail than our simple reference (Ref. 19 in

Ref. 12) could our solution for the classical limit of the BA
SM for SG when po n+0.

First we quote again results by TIM for the free energy
per unit length FL ' for classical SG. They are found by
methods of matched asymptotic expansion' and include
part results found by a number of different workers. ' Our
collected result, to the terms we have now also derived by
the two methods of Ref. 12 and from the classical limit of
conventional quantum BA as reported here, is FL
-Ftrg+F"'+F(2'+ . where Fttg-P 'a ' (inPa
+ ,'ma): The last—is the contribution of a harmonic
(linear) lattice, spacing a, and this necessarily diverges as
a 0 (in classical limit); P '—:T, the temperature. The
Z'&' are

F"'-—P-'m( lg«)' 'Ie '(li ——,'I —
—,",, t'-—,",,', t' — . . ) —P-'m[ —,'I+ —,'t'+ —,', I'+ —,",, t'+" ], (2a)
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f" 1.4C+2+
32 l'

(2b)

with F q =O(e (('), q =3,4,. . .; ( =(MP) ' and
M—=8m' is the SG soliton (kink or antikink) mass
from (1). In (2b), InC 0.5771. . ., Euler's constant. The
TIM involves periodic boundary conditions for a finite
density thermodynamic limit. "' In principle terms at
any order can now be calculated by the TIM'2, so we can
take the results quoted as definitive expressions for FL
for classical SG in this thermodynamic limit and check all
other calculations for SG against them —as is done for the
conventional BA SM of SG now.

Since pp n +0 we start from the expressions'" for
FL ', Eq. (6) next, valid for this case. In the convention-
al BA2 ' ' ' FL ' is expressed in terms of energies
(E, say) and coupled integral equations for E, must be
solved to calculate FL '. Reference 15 notes that, for

pp n, there are n such energies (for n —1 "strings" plus
"holes" ) E„1 being a free kink energy, E„ the free
antikink energy (hole in the Dirac sea), and E1, . . . , E„
"breather" energies. For pp n+0, E„1 becomes a
bound particle-hole (kink-antikink) pair, half of the holes
in the sea correspond to free antikinks, and the other half
combine with the "long" strings (length & n —1) to form
free kinks. An otherwise stimulating paper by Maki' does
not distinguish the two situations.

We have also to understand the coupling constants of
the theory: for MTM the coupling constant g 2p —(r,
and (M=—(r(pp —I)/pp —related to the renormalized cou-
pling constant yp' yp/(I —yp/8(r) of SG by 8(r yp

'

pp. ' ' "' Note that the number of breather levels of
SG at P

' 0 is ' ' ' the integral part [8(r/yp'] of 8(r/yp':

This is [pp —1] n —1. When pp 2 the system is a free
fermion system. '

Exact identifications between classical solutions of SG
and terms in FL ' for quantum SG is not possible. Still
we must make the point that our procedure reported in this
note chooses to reduce the quantum BA problem to a semi-
classical form interpretable in terms of "phonons" (bo-
sons) and "solitons" (kinks and antikinks —both fermions)
alone. In a previous attack on the same problem'9 we tried
to keep the classical SG breathers in mind throughout —so
working with solitons and "breathers" but no phonons:
Fxo was the only phonon contribution and was extracted
from the very low-lying breather excitations. The pro-
cedure was tedious, otherwise yielding only the leading
terms of F('~, Eq. (2a). Even so, these two significantly
different points of view must eventually be brought togeth-
er. Note that the classical energy spectrum of SG involves
all of solitons, breathers, and phonons. '

We first simplify the quantum BA equations' by defin-
ing a physical rapidity x na/2p in terms of the original'
rapidity a. Conveniently, we express the "dressed" phase
shifts between BA strings in terms of BA shifts 8J(x) de-
fined, for j I, . . . , n —1, by

sinhx —i sin fzj/2(n —1)]
sinhx+i sin[(rj/2(n —1)]

We write n for po, but no confusion will arise since we ulti-

+ S,„,in(i+e""),
2P

J,n (4a)

for j 1, . . . , n —1, while for j~n the integral equations
of the general case reduce, by the action of certain b func-
tions, to the purely algebraic relations

E„ ln[(1+e "")/(1+e " ')],
2P

(4b)

E, - in[(i+e""')(i+e"-')], j~n+I. (4c)

The dressed phase shifts BJ( are given by

min((, l) —1

B,(-8), ((( )x +8, (+( )x+2 g 8J+( zk(x), —
k 1

and EJ(x) =M~ coshx, MJ= 2M sin[(—rj/2(n —1)], while
fng=—I dx'f(x —x')g(x'). In the same notation the
free energy is then

n —
1

FL ' = — g dx E, (x)ln(1+e ' " )
2(rP .

dx E, (x)ln(1+e "'"')
2(rP"

with E,(x)=M coshx.
The semiclassical approximation expands the 8~(x) up

to O(n '): It corresponds to expanding to O(y'p) in the
quantum coupling constant yp.

" We find

Bjk (x) -x[2 min(j, k) il)k] 8(x)—
2xjk/(n —l)sinhx—; j,k (n —1,

Bj,n —1(X) Bn —1,J(X) 4J tall S11111X,

d 4(n —1)
1

coshx+1

(7a)

(7b)

(7c)

in which 8(x) 1(x & 0), —1(x (0). We subsequent-
ly interpret 4(n —1)(r ' in both (7a) and (7c) as 32yp '

since yp' —yp as yp 0(n~ ~). But, in the semiclassical
"limit, "we need a new semiclassical yp & 0 for consistency
with (1). The procedure of extracting this from the quan-
tum yp at (7a) and (7c) corresponds to reversing the re-
normalization of mass m (and yp yp) in the quantum
theory from (1). Here we define rn —,

'
ypM, (~ as

yo~ 0
Reference to our previous work"' now sho~s that the

mately replace po @+0by 8gyo '. The essential step for
a semiclassical limit is yp~0(n ~). This is then fol-
lowed by a classical limit at (13) and (14) below.

For pp n+ 0 the BA integral equations become'

n —1

E, (x) =E,(x)+ g „B ln(1+e ')2'�( 1
dx

+ 1 d
B,„,*ln(i+ e ")Ijsn

4(rP dx
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combination of the term in 8(x) and the second term with
singularity at x 0 in (7a) corresponds to a bosonization
of n —2 of the fermions in the problem: This becomes evi-
dent too from the solution of Eqs. (4) which we now
describe ln semiclassical limit.

First we solve (4c) for long strings to give

Ej [j n—+( I+e ")'~ ], j«n+I. (Sa)

Combined with (4b) this yields

E„=P 'In[1+2(1+e " ')'~ ] —P 'In(1+e " ') .

Under the same condition p0 n+0 the result (8a) is

given in Ref. 8 while (Sb) is already found in Ref. 10. We
remark on it here because, below, we shall both generalize
the argument, and use it in a different context, namely for
the exact bosonization just referred to. We now see from
(Sb) (and cf. Ref. 15) interdependence of holes (E„) and
breather labeled n —l. We need a physical soliton energy
E,: This cannot usefully be defined by either —E„or

2 E„)alone and -we choose a relation between "densities"

I+e '—= (I+e P " ')(I+e ')'i' (9a)

This has the property that it introduces no discontinuity in
soliton mass between the cases p0 n, p0 n+0—contrary to Ref. 16 which defines E, through E„alone.
Equation (Sb) now means (9a) is equally

We use 0)(x)=mcoshx, M~ 2M sin(jy0/16) -jm as
y0 0, and

n —2

Z(x)= g j.in(I+e "J").
j~$

Consistently, for new semiclassical y0, M, E, (x)
=Mcoshx and M=8m y0 '. The support is —~ (x'

Thus, we can go on to find from (6) in the same
~ay that

FL ' - — dx a)(x)Z(x)
2)rP 4

dx E, (x)In(1+ e ' " ) .
)rP 4

Equation (loa) is solved exactly for n ( co as

PE bc' —b 'cl+e
e —c

The two parameters b and c are fixed by boundary condi-
tions. Note that for n ~, when b c e'~2, that
(12) Fowler's2' solution. It also means Z(x)

—ln(1 —e p'(")) exactly in the semiclassical limit, the
exact bosonization referred to. By using this in (lob) and
(Ioc) and (11)we therefore reach

s(x) -0)(x)— 3'0 dx d
ln ( I e

—Pi(x') )«P" sinh(x' —x) dx'

E„)—(2P) 'In(1+e ") 2E +P 'ln(1+e '), 2 dx
I (I + pE, (x ))-

&P " cosh(x' —x )
(13a)

and substitution of this for E„)in (4a) induces, from the
second term on the right side, extra soliton-soliton phase
shifts O(n ') with respect to (7c). These are consistently
neglected in the semiclassical limit, so (9b) in effect sets
its left side equal to 2E, . We note in passing that defini-
tion (9a) was also introduced in Ref. 15 for p0 2+0. We
also note how (9a) immediately simplifies (6).

In these ways we find (4a) becomes (for j I, . . . ,
n —2)

Pf 2

E, (x) js(x)+P ' g [2 min(j, l) —b,i]

I

ln(1 —e P"" ')
&P " cosh(x' —x )

+ 8 ',
I

cosh(x' —x ) + Ix'In
&yop " cosh(x' —x ) —I

E, (x) -E,(x)—

xln(1+e *" ),

FL,
-)- dx ~(x)In(I -e-P ("))1

2x 4
fO

dxE, (x)ln(1+e ' " ).
2x 4

(13b)

(14)

xln(1+e ' " ), (IOa)
These semiclassical results couple phonons, bosons mass

m, energies s(x), with (two) fermions mass 8m'
energies E, (x). The strictly classical results follow
from In(1 —e P'( )~ In[PE(x)] and In(1+e ' )—IjF., (x) .~ e * in all places. Although iteration of the resul-
tant system introduces some amkard integrals all of these
can be done. 2 The results are precisely those exhibited
close to and at Eqs. (2) first found by TIM. Note that this
means iteration of the classical integral equations is only
asymptotic.

Our results (2) from conventional BA for SG' when

p0 n+0 bring into line yet one more aspect of the SM of
quantum and classical integrable models. "'2 The
analysis mill presumably apply for arbitrary po by analytic
continuation.

E(x) = 0)(x)+ „, , z(x'))'0 dx d
sinh x' —x dx'

+ ' ln(1+e ""),
&P " cosh(x' —x )

(Iob)

I

E,(x) -E,(x)+ Z(x')
&P" cosh x' —x

(IOc)

8 d, l
cosh(x x )+ 1

I (I+ pE, (x))—
&yoP " cosh(x' —x ) —I
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