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Effects of the phase periodicity on the quantum dynamics
of a resistively shunted Josephson junction
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A phenomenological model is introduced for the dissipative quantum dynamics of the phase p
across a current-biased Josephson junction. The model is invariant under p &+2m. This en-
ables us to restrict p to the interval 0 to 2x, equating p+2x with p, and study the role played by
the resulting nontrivial topology. Using Feynman's influence functional theory it is shown that
the dissipation suppresses interference between paths with different winding numbers. For Ohmic
dissipation this interference is completely destroyed, and p can effectively be treated as an extend-
ed coordinate. This justifies the use of the usual washboard potential description of a current-
biased junction even in the quantum case, provided an Ohmic dissipation mechanism is present.

In the past several years there has been much theoreti-
cal'2 and experimental3 5 interest in the possibility of ob-
serving "secondary" macroscopic quantum effects in
small-capacitance Josephson junctions. In these junctions
the charging energy is comparable to the Josephson cou-
pling energy, and quantum-mechanical fluctuations of the
phase difference p across the junction become important.
This necessitates treating the phase as a quantum operator
P, which is canonically conjugate to the operator n which
transfers n Cooper pairs across the junction; [),ti1 i
Since p is a phase variable, p and p+2tr are physically
identical states. 7 This fact is of little consequence for mac-
roscopic quantum tunneling since the important changes in

p are small compared to 2tr. Indeed p is usually treated as
an extended coordinate, 's

p e [—~,~].
Recently a new type of macroscopic quantum phenome-

na has been discussed in the literature, " which is the
possible existence of "Bloch" oscillations in current-biased
Josephson junctions. Under appropriate conditions, an ap-
plied dc current is predicted to cause voltage oscillations
across the junction. In terms of the phase p, these oscilla-
tions are analogous to Bloch oscillations of an electron in a
periodic potential in the presence of an applied field. '2

The oscillations involve motions of p which are large com-
pared to 2tr. This necessitates treating with great care the
indistinguishability of the states p and p+2tr. Likharev
and Zorin' suggested that due to the environmental cou-
pling these states could be treated as though they were dis-
tinguishable. However, conditions were not given as to the
form or strength of the dissipation required.

The purpose of this work is to introduce and study a
model for the quantum dynamics of a damped Josephson
junction, which respects the indistinguishability of p and
&+2tt. The damping is assumed to be due to a frequency-
dependent conductor shunting the junction. ' As in the
original Caldeira-Leggett model, this dissipative element
is described by a harmonic-oscillator heat bath. However,
the oscillators are coupled to the angular velocity
p(t ), rather than the phase itself. In this way
the Lagrangian for the full system is invariant under

p+2tr, so that p can be restricted to the interval
[0,2ttl. By using Feynman's influence functional theory, '

If we ignore this conductance for the moment, the total
charge on the junction plates at time t is

1 t

Qo I(t')dt'+2en,

where 2en is the charge transferred across the junction due
to Cooper-pair tunneling (the carets denote quantum
operators). Since the charging energy is Q(/2C the Ham-
iltonian is'

et '2
H 2etl + I (t')dt' —Escost/p

2C ~

(2)

where the second term in (2) is the Josephson locking ener-

gy and [P,n) =i as previously mentioned. Equation (2) is
invariant with respect to 2tt translations in p.

Next, we want to modify the above description in order
to include the conductor shunting the junction. To do this
~e must account for the charge being transported through
this element; the total charge on the plates at time t is then

Q Qo f I„(t')dt', whe—re I„ is the operator for the nor-
mal current. Since the current response of the shunting

we study the role played by the nontrivial topology of p
(i.e., P+2tr P) on the junction's quantum dynamics. As
our main result we derive a condition on the frequency
dependence of the shunting conductor for which the effects
of the nontrivial topology are entirely washed out. At zero
temperature this condition is that the shunting conduc-
tance have a nonzero limit as to 0, which includes the
case of Ohmic dissipation. Under such circumstances it is
valid to treat p as an extended coordinate (p e [—~,~1)
provided one is only interested in the distribution of p,
rather than of p itself. In particular, this justifies the use
of the common washboard-potential description of a
current-biased Josephson junction even in the quantum
case, provided an Ohmic dissipation mechanism is present.

We start by motivating the junction Hamiltonian. Con-
sider an ideal Josephson junction of capacitance C shunted
by a normal conductor and biased by an external current
I(t ). The normal current through the conductor I„ is as-
sumed to be linear in the junction voltage V,

pf
I„(t)- dt'G(t t')V(—t') .
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conductor is assumed to be linear [Eq. (1)] it can be
modeled by a heat bath of harmonic oscillators. The nor-
mal current is expressed as I„—g. ij, Cx /dt where the
[xjj are oscillator coordinates and the b jj are a set of cou-
pling constants to be specified. The new Hamiltonian is
then

pt
H 2eri + I (t') dt'

2 —EJcosP+ H„,

where M (h, /2e) C.
There are a few comments worth making about the

above approach. It should be emphasized that Eq. (3) is in
effect a "two-fluid" description, consisting of the unpaired
(normal) electrons and the superfluid (Cooper pair) elec-
trons. Since the total number of Cooper pairs (in both su-
perconductors) commutes with H, the number of pairs is
conserved; quasiparticle excitations are ignored entirely. '

In this approach, the two "fluids'* are therefore distinct
and not interchangeable.

The Lagrangian (6) is very similar to the Lagrangian
introduced by Caldeira and Leggett' in their discussion of

(3)
A

where H», is the Hamiltonian for the harmonic oscillator
bath with masses [m, j and frequencies [tnjj. As far as the
dynamics of P alone is concerned, the Xj's enter only via
the spectral density' J(to),

J(to)-—g ' '8(to —toj) . (4)
2 . pig

This function is chosen as follows. We require that the
voltage operator V h(dg/dt)/2e, generated from (3) via
i hd g/dt [P,H] is related to the normal current operator
I„as in Eq. (1). This is achieved by choosing

J(co) -toG(to),

where G (to) is the cosine transform of G (t ). The function
G (co) is a frequency-dependent shunting conductance; for
Ohmic dissipation it is independent of frequency. '2 Equa-
tions (3)-(5) fully specify the model. The Lagrangian
corresponding to (3) is

aM IP+ EJcosp
&

I (t )tIt +glj xj +Lg»
8

macroscopic quantum tunneling:

L„- ,'M—j'—V(y)+g ,'m—,x2

ft PXy

U(y) - E—, cosy (I—y/2e)I .

In fact, the classical dynamics generated by the two La-
grangians are identical, since (6) can be transformed into
the Caldeira-Leggett form by adding a total time deriva-
tive and then performing a canonical transformation which
interchanges the oscillator coordinates and momenta. In
addition, as we will show below, if p is treated as an ex-
tended coordinate (p c [—ao, »]) the quantum dynamics
generated by the two models are also equivalent. Howev-
er, LCL ls not invariant with respect to 2z translations in p.
For the macroscopic quantum tunneling problem this is
unimportant. However, in a correct treatment of such
phenomena as Bloch oscillations, "

p should be restricted
to p c [0,2tr]. The advantage of the Lagrangian (6) is that
it is invariant under p p+2z, enabling a quantum
description when p is defined on this restricted interval.

We now study the quantum dynamics generated by the
Lagrangian (6), paying particular attention to the non-
trivial topology that arises when p 6 [0,2tr]. We employ
the influence functional theory developed by Feynman and
Vernon' which studies directly the time evolution of the
reduced density matrix. It is convenient to define the fol-
lowing representation of the reduced density matrix:

p(y, X,t ) -Trtt&y ~
exp[iMX(d P/dt )/26] p„,(t )

xexp[iMX(dg/dt )/2h]
~ y), (8)

which can be viewed as the generating function for mo-
ments of p and p. Here p«&(t) is the system-plus-bath
density matrix at time t for the Hamiltonian (3), and

~ p)
denotes an eigenstate of P defined on the interval 0 to 2z.
The trace in (8) is over the bath degrees of freedom. The
probability distribution of p follows directly from p(p, X,t )
by setting k 0, whereas moments of p are generated by
differentiation with respect to X at k 0 and tracing over

We now apply the Feynman-Vernon theory to study the
time evolution of p from a given initial condition. For con-
venience we assume a factored form

(yo [ exp[iMX(dg/Ct )/2h] p „(0)exp[iMX(dl/dt )/2hl
~ po) p(po Xo 0)po (P)

where p„,(P) is the equilibrium density matrix of the un-
coupled oscillator bath at temperature T (kBP) '. The
long-time steady-state properties of the junction should
not be influenced by this particular choice. After a tedious
but straightforward calculation, the reduced density matrix
p(p, l, ,t ) at time t is related to p(po, k,o,O) by a propagator
E(p,k.,t;po, ij.o,O), which is represented as a double path in-
tegral over paths p(t ) and p (t ), with p, p e [0,2x]. These
paths are coupled by an influence functional which de-
pends on f and p. At this point 1t ls convenient to Intro-
duce a winding number representation. '6 The amplitude
to go from p( to Q2 on a rmg (1.e., 0 «Q],Qp~ 2x) ls ex-

I

pressed as a sum of amplitudes for an extended coordinate
starting at p~ and ending at p2+2xn The winding n. umber
n runs over all integers from —~ to ~ and corresponds to
the number of times a given path cycles through 2z, i.e.,
winds around the ring. Two winding numbers, n and m,
are needed for the forward and backward paths p and p'.

In this way p may be expressed in the form

p(y, a, t ) -„dyodao g K„(y,a, t;yo, ao,o) p(yo, ao,O),
n, m

with the propagator
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t E '
I p+A/2+2xn

K„=exp i2x(m —n)(2e) ' I(t')dt'
aJ o , g )0+A@2

~ p —Xj2+ 2Ãltl

Dw' ~ y0
—X0/2

D'y'exp[(i/h) [So(y) —So(y')1[e' ", (l l)

+—'2n(n —m ) dt'8 (t —t') [e(t') —yol~o

—(n —m )'F, (i3a)

2
h 1 de G (to) sin(tot ) coth(Phoo/2),
2e z "o

(131)
' 2

F- G (to) coth(Ph to/2),
h 2e "o co

(13c)

and 8 (t ) is the P 0 limit of Ph 8,A (t ). The first term
in (13a) is the Caldeira-Leggett influence phase'7

tttE tIE

iecL -——' dt', ds 8(t')X(s )8 (s —t')

t E

dt' ds E(t')A (t' —s)X(s),~p (i4)

which is the result for an extended coordinate described by
the Lagrangian (7). The remaining terms depend explicit-
ly on the difference between the winding numbers and re-
flect the nontrivial topology of the phase p when restricted
to thc interval 0 to 2z.

There arc several important points to notice about the
results (10)-(14). If p had been treated as an extended
coordinate from the start, the sum over winding numbers
would be replaced by the n m 0 term alone. The re-
sulting dynamics is then equivalent to that generated by
the Caldeira-Leggett Lagrangian (7). Thus for an ex-
tended coordinate the two Lagrangians (6) and (7) gen-
erate identical quantum dynamics.

When p E [0,2nl, the last term in (13a) suppresses those
configurations of the double path integral in which the two
paths have different winding numbers, num. The dissipa-
tion tends to destroy the interference between these paths.
The factor exp( —F) is the well-known Franck-Condon
factor which describes the reduction of an overlap between
two states of p (separated by 2n) due to the environmental

and with So the action for a washboard potential in the ab-
sence of damping,

+E

S,= dt'[ ,' Wj—'+F.,cosy+ (h/2e)l (t')y] . (i2)
4 o

The integration in (10) is over the range
0~&o+ —,'Ao~2n. The path integration in (11) is for an

extended coordinate p; this was obtained at the expense of
introducing the additional summation over winding num-

bers. The influence phase 4„represents the effect of the
dissipative environment. It is given by [8 (p+p')/2,
Z-y —y']

hatt Eie„-iecL+ (n —m ) dt'A (t —t')Z(t')

I

degrees of freedom. However, it did not arise from an
adiabatic treatment of the fast oscillator variables as is
usually the case, but rather as a consequence of an exact
elimination of the bath degrees of freedom. There are now
two possibilities:

(i) The Franck-Condon factor is finite. This is the case
for shunting conductances G(to) which vanish sufficiently
rapidly at low frequencies so that the integral in (13c) is
convergent. In particular, for G(to)-to" for to 0, F is
finite for v & 0 at T 0 and v & 1 for nonzero tempera-
ture. In this case, although configurations with n Wm are
suppressed, they nevertheless contribute to the functional
integral (11) and may give rise to nontrivial dynamical ef-
fects.

(ii) The Franck-Condon factor vanishes. This occurs
for v~0 at T 0 and v~1 for Te0, since then F
In particular, this case includes Ohmic dissipation (v 0)
where G(co) approaches a nonzero constant at low fre-
quencies. Under these circumstances, configurations with
different winding numbers are suppressed completely and
have zero weight. The dissipative environment destroys
completely the interference between the two paths.

The difference between these two cases (at T 0) can
be understood heuristically in simple physical terms. Con-
sider the charge transferred through the resistor when the
phase cycles through 2n. The motion of the phase intro-
duces a nonzem voltage which drives the normal current as
in Eq. (1). As the phase cycles a net nonzero charge is
transferred only for v~0. In this case the system ends up
in a state orthogonal to the one it started in; the overlap
between two paths with different winding numbers
(n~m) should vanish. In contrast, for v&0 no net
charge is transferred, the final state is not orthogonal, and
configurations with n am contribute.

Enormous simplifications occur in case (ii) since the
double summation over winding numbers in (10) reduces
to a single sum over n m. The time evolution of p may
then bc written

p(P, X,t ) - dyodlo+K, „,(p+2ttn, k, t;po, ko,0)

x p(yo, ~o,o), (is)

where E,„&—=E„- is the propagator for an extended coor-
dinate, with dynamics descrl. bed by either the Lagrangian
(6) or (7). A further simplification occurs if we restrict
attention to the moments of p (the junction voltage) which
follows from

p(X,t) =„dip(y, X,t),
by differentiating with respect to k at X=0. Integrating
on (15) gives

p4, t ) -„d pod o p(yo, ~o,0)

d y K,„,(y,a, t;yo, zo,o),
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which is precisely the generating function for the moments
of p for an extended coordinate.

Thus we arrive at our main result. %hen the frequency-
dependent shunting conductance G(co) gives a vanishing
Franck-Condon factor b.e., F =ee in (13c)j the nontrivial
effects which arise from restricting p to [0,2tr] are entirely
suppressed. As far as the moments of jt are concerned, the
results are entirely equivalent to those obtained for an ex
tended coordinate, with dynamics generated by either (6)
or (7). In particular, this justifies the use of the Caldeira-
Leggett Lagrangian' for calculating the voltage response
in a current driven Josephson junction, provided an Ohmic
dissipation mechanism is present, G(m~0)WO. On the

contrary, in cases where F is finite this equivalence to an
extended description does not hold. Nontrivial dynamical
effects may arise from the interference between paths with
different ~inding numbers.
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