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The present status is reviewed for the elastic and plastic properties of the flux-line lattice in
type-II superconductors, which crucially enter the modern theory of collective pinning. In con-
trast to atomic lattices the flux-line lattice exhibits pronounced elastic nonlocality and the screw
dislocation (oriented perpendicular to the flux lines) is strongly anisotropic and can move freely
since there is no Peierls potential along the flux lines. General expressions for the interaction be-
tween straight or arbitrarily curved flux lines are presented which may be used to compute equili-

brium arrangements of flux lines.

I. INTRODUCTION

The theory of weak collective pinning' of the flux-line
lattice (FLL) in type-II superconductors has been con-
firmed recently by experiments on thin amorphous films in
a perpendicular magnetic field B,. Both two-dimensional
pinning of straight parallel FL’s> and an abrupt transition
to the three-dimensional pinning of a plastically deformed
FLL? were observed. This transition reflects itself in a
sharp jump of the critical current j. by a factor of = 10,
followed by a steep increase of j. by a further factor of
= 10 immediately above the corresponding transition field
B.o. The jump is caused by a sudden proliferation of FLL
defects (probably screw dislocations nucleating at the film
surface) which drastically reduces the longitudinal corre-
lation lel,ngth of the FLL and the correlated volume
Ve~ jo 2

This jump proves, I believe clearly and for the first time,
that for three-dimensional pinning plastic deformation of
the FLL is essential even in the weak-pinning limit (amor-
phous materials have a very small j.). This statement ap-
plies at least to materials with large Ginzburg-Landau
(GL) parameter x (x=60 in amorphous superconduc-
tors) and possibly also for clean Nb which has k= 1/v2
and thus a very small shear stiffness of the FLL (see
below). Evidence for the nonapplicability of the original
collective-pinning theory to three-dimensional pinning was
provided by experiments which yielded much larger values
for j. than could be explained by a mere elastic deforma-
tion of the FLL as assumed in Ref. 1.

A quantitative explanation of this jump and of three-
dimensional pinning, therefore, requires detailed knowl-
edge of the elastic and plastic properties of the FLL. We
give here a short review of the present status of the theory
and compile useful formulas (partly unpublished) from
which further studies of linear and nonlinear elastic and
plastic behavior of the FLL should start.

II. ELASTIC MODULI OF THE FLUX-LINE
LATTICE

The flux lines in a type-1I superconductor may be dis-
placed from their ideal positions (a hexagonal lattice of
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parallel FL’s) by various forces:* by pinning forces exerted
by inhomogeneities or structural defects of the material;
by surface currents caused (a) by the boundary conditions
imposed on the magnetic field (by image FL’s), (b) by an
applied field B, (Meissner screening currents), or (c) by
an applied current (which, before the FL’s are allowed to
shift flows only in a surface layer); by temperature gra-
dients; and by gradients in material parameters. For small
strains the change in the energy is proportional to the
square of the strains or displacements. This “linear elastic
energy” is completely determined by three elastic moduli:
The tilt modulus c44(k), the modulus for uniaxial
compression cq1(k ), and the shear modulus ce¢s. The latter
is approximately independent of k, the wave vector of the
(periodic) displacement field. Within the same “isotro-
pic” approximation in which c¢¢ becomes independent of
k, caq and cy; depend only on the modulus k = | k|.

The dependence of the tilt and compressional energy on
k reflects the “elastic nonlocality” of the FLL:*> For defor-
mations with k > 1/A’ the FLL is softer than for homo-
geneous strain. The characteristic length of this nonlocali-
ty is the range of the FL-FL interaction, equal to the effec-
tive magnetic penetration depth A'=A/(1 —5)"2, where
b =B/B,, is the reduced field, B (the FL density times the
quantum of flux ¢g) is the internal field, B., the upper
critical field of the superconductor, A=x¢&, and
&=(po/27B:2)""? is the GL coherence length.

The moduli for homogeneous tilt and for homogeneous
compression of the FLL follow from the magnetization
curve B (B,) by thermodynamic arguments:*

c44(0) =BB,/uo ,
c11(0) —ce¢=(B*/o)dB./dB .

The shear modulus, and also c¢;;(k) and c44(k ) for kK >0,
cannot be obtained in this way.® However, a simple
geometric argument shows that the compressional strain
with shortest possible wavelength (the lattice spacing a
times 2 or times V3 along the two principal orientations of
the triangular FLL) is identical with a (standing) shear
wave with k turned by 90°. One thus has ¢ ;(kz) = ces,
where kg =(2b)"2/& is the radius of the circularized Bril-
louin zone. The relation c¢;;(0) > cgs, which allows us to
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TABLE 1. The linear elastic displacements of the flux-line lattice at the point of application of four model forces. Sy is the result of
local elasticity theory, Syz is the correct, nonlocal response. The flux lines are along z and the forces act along x. For the planar-force
example I chose the extension of the specimen, or the distance of two opposing forces, D = 5a.

St SN Correction factor Snz/St
Model force local nonlocal general b=0.8
on the FLL elast. theory elast. theory expression k=3 k=60
Planar force 2
1 1 K'z d 2 b
—~— —— 1+ = 30 12000
S=5(x) cun b? (1-5)? D" [ 1 ——b]
Line force )
2 X
I FL’ ~ Iy pu—— —_— 1 1 1
s ces  b(1—b)? b(1—b)?
f=8(x)é(y)
Line force "
L FL’s ~Ll L K 142 | b 30 12000
Joicas b2 Vb(1—b)3 3In(D/d) | 1—b
S=68(x)é8(z)
Point force 2 12
~—t K S — L 5 180
Veescas B3 (1 —b) b(1—b)¥? V2|1-b

f=686(x)é6(y)8(z)

treat the FLL as an “incompressible solid”’ for many pur-
poses, is thus closely connected with the pronounced nonlo-
cality of its elasticity.

The moduli derived in Refs. 5, 7, and 8 from the GL
theory (valid near the critical temperature 7,.) have been
rederived from the microscopic theory of Gorkov (valid at
arbitrary temperature).! The modifications of the GL re-
sult are negligibly small even at low temperatures in most
cases. We summarize the (slightly improved) GL results
for the rather general case 0.707<kx<oo, (2x2)7!
<b<l

2 —5)2
copm 220U =b) [1— 12](l~0.58b+0.29b2),
8x 2k

B} 1 2,2y —1 2p2y—1
cnlk)= 1—-— |+ 71 +k2H) 7!

Ho 2k

B} 29 2)-1 —2q =2
C“(k)-# [(Q+c22) "+ kg 2] .

0

In ¢;1(k) the factor containing the effective coherence
length &'=¢/(2—2b)"? becomes important only very
close to B.; and may usually be omitted. For many appli-
cations one may put ¢ =oo; the FLL is then incompressi-
ble, not liquid, since ceg is finite.

The linear elastic displacements caused by four different
model forces of unit strength at the point of application are
compiled in Table I. Note that the correction to the result
of the usual local elastic theory caused by the correct non-
local treatment is typically large except when the model
force is a line force parallel to the FL’s, which causes only
shear deformations. The complete displacement fields
generated by point forces or by planar forces (which in
some cases yield oscillatory displacement fields) are given

in Ref. 9. The generalization of the above bulk elastic
behavior of the FLL to the presence of a planar (or weakly
curved) surface is treated in Ref. 10.

III. EFFECTIVE INTERACTION POTENTIAL
BETWEEN FLUX LINES

The above expressions for the elastic moduli apply if the
induction is not too small; then each FL interacts with
many neighboring FL’s. At small induction, b S1/2x?
corresponding to @ X 4, the moduli decrease exponentially
with the FL spacing. In this case the FLL is usually
strongly perturbed even by weak pinning. It is then ap-
propriate not to use the linear elastic moduli but to start
calculations from the structure-dependent part of the ener-
gy. For straight, parallel FL’s this reads

UZ‘%'Z Z V(Il','_l‘j') .
i j(=i)
The elastic moduli derived from this interaction are

C11 —Cé6 -(B/8¢0)Z _[R,'ZV"(R,') —R; V'(R,')] s
ce6=(B/16¢0) ¥ [RZV"(R;)) +3R;V'(R)] .

In these sums r; and r; are the FL positions and R; are the
vectors of an ideal triangular lattice, R; = |R;|. The in-
teraction

V(r) =(08/2n0%u0) [Ko(r/A') — Ko(r/ED]

(K¢ is a modified Bessel function) reproduces the correct
linear elastic properties to a good approximation. For
b <1 the repulsive part of ¥ (r) reduces to the London po-
tential ~Ko(r/A), and its attractive part to the FL core
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interaction caused by the change in condensation energy
when the cores overlap. This attractive term was first ob-
tained for well-separated FL’s in Ref. 11. Here we derived
it from the nonlocal moduli.

A more general, three-dimensional version of the
structure-dependent energy applies to arbitrarily curved
FL’s, even to FL’s forming loops, cutting other FL’s, or
merging to FL’s carrying more than one quantum of flux,
though it was originally constructed to reproduce cj;(k),

c44(k ), and ce6. It reads
04 e
U=+ —2 | [ar, [ ar
} ’ZZ,: 22() 20 f 'f /
~ [ 1axil [ 1ax,1 £

: fdzlz‘fdzzlr,rj

The above approximate expressions U, and Uj; prove to
be very useful. Not only do they circumvent the necessity
of solving the GL equations (even for a regular FLL this
requires a computer!?), but they also provide us with a
transparent picture of a repulsive and attractive interac-
tion and “explain” the b, k, and k dependences of the elas-
tic moduli. These expressions are useful in computer
simulations of flux pinning'? and, in principle, also allow
analytical and numerical calculations of the plastic proper-
ties of the FLL.

-

-r/E ]

I

U =_
2 mﬂu

IV. DISLOCATIONS IN THE FLUX-LINE
LATTICE

A plastic deformation of the FLL may be described by
the presence of edge and/or screw dislocations.!*!> When
the local elastic description is replaced by the correct non-
local one the displacement field s and the line energy Jedge
of the edge dislocation is not seriously modified since its
strain is a mere shear strain and the shear modulus exhib-
its only weak dispersion. For FL’s along z one has for an
edge dislocation centered at the origin and with Burgers
vector b along x (e.g., b =|b| =a),

sCx,p)=—b12n) &K (xy/r2+0)+3y¥/r?] ,
Jedge = (cesb*/4n) In(R/b) .

Here r?=x2+y? and ¢ =arctan(y/x). R is an outer cut-
off radius.

In contrast to edge dislocations,'® the screw dislocation
in the FLL (which is oriented parallel to the FL’s)
possesses several peculiarities compared with screw dislo-
cations in atomic lattices: (a) The extension of the dislo-
cation core along the FL’s, /, is typically much larger than
its extension perpendicular to the FL’s, ==a, since
c44(0) > c¢, (b) the nonlocality (the dispersion of ca4)
should be accounted for, and (c) the screw dislocation can
move freely along the FL’s since there is no Peierls poten-
tial (no FL structure) in this direction. In my opinion all
three points are important for a quantitative explanation
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Here the sums are over all FL’s and the line integrals are
along each FL. Note the different nature of the “vectori-

al” repulsion (~dr;dr;) and the “scalar” attraction
(~|dr;| |drj|). The terms i =j are included in U3 but
not in U,. These terms give the interaction between all
line elements of the same FL, i.e., the self-energy of the (in
general, curved) FL’s. In principle, these terms could also
have been included in U, but since for straight FL’s the
self-energy does not depend on the lattice structure it may
be omitted without loss of generality. Note that the self-
energy in Uj does not diverge (in contrast to the London
model) since &' effectively acts as a cut-off radius.

The line integrals in U3 may be expressed explicitly by
using the z-coordinate as a line parameter and writing
1;(z)=(x(z)yi(z)z2), r=|rG)—r;(z)|, dr/dz,
=r;, and drj/dzz=r,’-. This gives us

—r/E

= [+ @D+ )2 E—

of the observed abrupt transition.’

Minimizing the sum of the shear energy (which tends to
decrease / and comes from the region outside the disloca-
tion core) and the tilt energy (which tends to increase /
and is concentrated inside the core) one finds

I = a(casfces) P=~a(l—b)/3xb"? .

The nonlocality reduces the core length /. For simple esti-
mates one may replace c44(0) by c44(1/1) in the local ex-
pressions. For a more rigorous treatment one may approx-
imate the displacement field of a screw dislocation passing
through the origin and oriented along x by

s(z,y) =%(a/x) arctanlz/c ()] ,

where c(y) is a trial function which satisfies c(y)
=—c(—y), c(a/2) =1, and c(y — o) =0co. The elastic
energy should then be minimized with respect to ¢ (y).
The resulting line energy will not depend crucially on
c¢(y). The effective inner cut-off radius entering the loga-
rithm is A', even if /oK', since strains varying over a
shorter length do not contribute much to the tilt energy.
The self-energy of the screw dislocation is thus expected to
be

Jscrew == (CMC66)1/2(02/4ﬂ) In(R/A) .

For a further investigation of the plastic properties of
the FLL a detailed treatment of the production and aniso-
tropic interaction of straight or curved dislocations is re-
quired. Such calculations should be based on the ideas
outlined above and on the theory of crystal lattice disloca-
tions.!” The force between dislocations with well-
separated cores is obtained from the Peach-Koehler for-
mula when the stress field far from a dislocation is known.
This stress field may be obtained from the linear theory of
elasticity in its local approximation, since the relevant
wavelengths are large and linear superposition of the stress
fields is allowed in this case. When the dislocation cores
overlap, both nonlinearity and nonlocality become impor-
tant. A quantitative treatment of dislocations with over-
lapping cores requires numerical calculations based on the
above interaction potentials between FL’s or FL elements.
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