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Nuclear magnetic relaxation in fractal pores
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The theory of nuclear magnetic relaxation of a fluid in a porous medium is applied to the case
of a medium having a fractal. structure resembling a Menger sponge. Rapid diffusion within a
pore is assumed and the limiting cases of rapid and vanishing diffusion between pores are treated.
The results are compared with experiments on two sandstone samples. There is good qualitative
agreement with the case of vanishing interpore diffusion but poor quantitative agreement. It ap-
pears that the quantitative disagreement could be at least partially removed by including moderate
diffusion between pores.

Nuclear magnetic resonance is a promising technique to
investigate the microscopic geometry of porous media. In
this technique the pores of the material are filled with a
paramagnetic fluid and, in one approach, spin-lattice re-
laxation measurements are made on this fluid. Near a
pore surface the relaxation time T~s is much shorter than
the bulk relaxation time T~b. This is usually attributed to
hindered rotation of the fluid molecules or paramagnetic
impurities at the surface. Because of the difference in re-
laxation times, the observed relaxation is determined by
diffusion of fluid molecules to the surface and therefore by
the pore dimensions. Earher papers' have developed a
theoretical model of the relaxation in a system character-
ized by rapid diffusion within a pore. The two limiting
cases of rapid and of vanishing diffusion between pores
were considered.

Among the porous materials to which nuclear magnetic
resonance has been applied are sedimentary rocks. Recent
experiments' have shown that some sedimentary rocks
have a fractal structure. A fractal system is characterized
by having self-similar structure over a large range of
length scales. That is, the system looks the same no matter
what degree of magnification is used. An ideal fractal is
self-similar over an infinite range of length scales from
zero to the overall sample size. In a real fractal the self-
similarity is statistical and there is a lower cutoff in the
range of length scales over which the system is self-similar.
If the overall size of the system is L and the lower cutoff is
roL, the number of elements of size rL, roar ~ 1, is

T ' Tib'+1SIVz .

For a fractal system the elements of size rL have surface
area

S(r) N(r)ar L aL r (3)

and volume

V(r) N(r)Pr L3 PL3r (4)

For a self-similar fractal, a and P are constants —1. For a
statistically self-similar fractal, a and p are random vari-
ables with the same distribution for all r.

Introduce the relaxation function

of Ref. 4. In particular, the present model for disconnect-
ed pores should apply exactly to a three-dimensional ver-
sion of the Sierpinski carpet shown at the top of p. 144.

In the magnetic relaxation model described in Ref. 1 it
is supposed that the magnetization of the bulk pore fluid
relaxes at a rate Tb', but that in a layer of thickness I
near the pore surface the magnetization relaxes at a much
faster rate T~z'. Suppose there is a region of the pore
space, having volume V and surface area S, which is isolat-
ed from the remainder of the pore space, but which is
internally strongly connected. Provided /V/SD z&(1,
where D is the diffusion coefficient of the pore fluid and

T~g' —T~b', the magnetization of this region is uni-
form and relaxes at a rate

N(r) -r
where dF is called the fractal dimension of the system.

The purpose of this paper is to apply the magnetic relax-
ation model developed previously to a system with a fractal
distribution of pores. The two limiting cases of strongly
connected pores, giving rise to rapid interpore diffusion,
and disconnected pores, with vanishing interpore diffusion,
will be considered. The results will be compared to NMR
measurements on two samples of sandstone. There are
many kinds of fractal structures, and it is not expected
that the model developed here will apply to all of them.
However, it is expected to apply to a system having a
structure similar to the Menger sponge discussed on p. 144

M(t) —M
g t

Mo —M

where M(t) is the longitudinal component of the magneti-
zation, Mo is the initial value of M, and M is its final
equilibrium value. If the entire pore space is strongly con-
nected,

g(t) -e
where T is given by Eq. (2) with S and Vthe pore surface
area and volume of the entire sample. The total surface
area is the sum over the areas of Eq. (3) with r rot,
where roL is the minimum length scale (lower cutoff) of
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the system and k,K are integers with 0~ k ~K. Thus,

K
L2 ~ ( (2 dF)tx)k

k 0

which is a geometric series that sums to
(2 —d, )(&+ ~/a)

r05 aL (2 —dF )/K
ro

If the pores are disconnected, the relaxation function is

given by

g(t) =g f(r)e (i2)

where T(r) is the relaxation time and f(r) = V(r)/V is the
volume fraction of pores of size rL Fr.om Eqs. (2)- (4)

(s)
T (r) T~b +po/r (i 3)

For rock 2 & dF & 3, K )& 1, ro « 1, but ro = 1. Thus,
r

(2 —dF )/K 2 dF 2 dF
r0 ' —1 eXP lnr0 —1 = lnr0,

EC EC

so
2aLK

( 2d, )
(2 —dF )lnro

This approximation is equivalent to replacing the sum in

Eq. (7) by an integral. In Eq. (9) the 1 is negligible com-
pared to the first term in the last set of parentheses.

By a similar calculation,

I. ICpLK ( 3 dF -1) (10)
dF) lnro

In this case the first term in the last parentheses is small
but not necessarily negligible. Thus, introducing
po al/PL 7:,

3 dplS 3 dF ro '
po (»)

Vr dF —21 3 "F ro

f(r) =—

~K
dk,

k 0

and return to the variable r to obtain

/Tib(3 —dF)e " t"0, d,r 'e ' 'dr . 15
1 —r0

Now let p=po/r. Then,

—r0

On integrating once by parts one obtains finally

and from Eqs. {4)and (10),

(3 —dF)lnro 3 —d„r 14
K(I r,' -')

To evaluate the sum in Eq. (12) we again let r rlt, re-
place the resulting sum by an integral according to

—f/Tg(t)-, „[e "'—ro 'e ' "' (pot) '[I '(dF 2 pot) 1(dF 2 potjro)]],
1 r0

r(a,x) -r(a) ——x'e
a

(i9)

for the two incomplete gamma functions. Then, taking
'"=e '=lande ' "=1—pot jro, oneobtains

3 dFro potgt =1-
dF 2 I —Io F I'o

For pot &(1, pot/r, » 1 (1 ms&(t « 100 s), the second and
last terms in Eq. (17) are negligible. The remaining in-

where

I (a,x) =„x' 'e "dx, a )0 (is)
is the incomplete gamma function. 6

Before proceeding further it will be necessary to have es-
timates of the parameters po and ro Katz and T. hompson
indicate that the range of self-similarity of their rock sam-
ples extends from roL —10 cm to L —10 2 cm,
which gives ro-10 . Following Ref. 1 we estimate
I/r-10 " cm/s and T u, —I s. There is no evidence bear-
ing on the parameters a and P. We suppose that, as for or-
dinary geometric shapes, a/P-1. Then po-0.01 s
po/ro-1000 s '.

For comparison with experiment vie examine the behav-
ior of Eq. (17) in three time intervals. For p t/or «o1(t
((1 ms) one can use the approximation7

(2i)

For pot &) 1 (t » 100 s), one can use the asymptotic expan-
sion

r(a,x)-x' 'e "[1+(a—1)/x]

to obtain

(22)

—~T ~7'+~0&&

(1 —ro ')pot
(23)

Tarczon, Thompson, Ellingson, and Halperin have
measured the magnetic relaxation of water in two sand-
stones for which Katz and Thompson have determined the
fractal dimension. Qualitatively the results of this paper
agree quite &sell ~ith the experiments. At long times the
experimental results show an exponential decay as in Eq.
(23) (the time dependence of the preexponential factor
would not be observable). At short times there is a
power-law dependence on time as in Eq. (21). Measure-
ments a&ere not taken at short enough times to sho~ the
time dependence of Eq. {20).

Quantitatively the agreement is rather poor. This can

I

complete gamma function can be approximated by the
first term in Eq. (19) and the remaining exponentials
again set equal to unity to give

g(t) =
3 d [1 —I (dF —2)(pot)' "] .

1 —r0
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TABLE I. Relaxation times in the region of exponential

decay.

TABLE II. Power law region.

Sandstone Experimental' Theoretical Sandstone dp' Exponentb 1 —dF '

Coconlno
St. Peter' s

96 ms
103 ms

Coconino
St. Peter' s

2.78
2.87

0.64
0.62

0.22
0.13

0.64
0.65

'R.eference 5. "Equation (23). 'Reference 3. bReference 5.

be seen from Table I which compares the relaxation times
for the-region of exponential decay and from Table II
which compares the exponents in the power-law region.
Furthermore, from the estimated values of po and ro one
expects deviations from Eq. (21) at about I ms and 100 s.
The experimental results show no deviations near 1 ms and
already show deviations at about 10 ms.

The disagreement in the relaxation time of Eq. (23) is

most likely caused by the neglect of diffusion between
pores. If there is no diffusion between pores, the relaxa-
tion at long times is dominated by the largest pores which
have relaxation times approaching that of bulk water. The
theoretical relaxation times in Table I are of this magni-
tude. Diffusion between pores allows the smaller pores to
contribute to the relaxation at long times thus reducing the
relaxation time. This is shown by the case of a strongly
connected pore space. With the estimates given above for
the parameters, Eqs. (2) and (11)lead to a relaxation time
of about 30 ms. The observed relaxation times of about
100 ms thus suggest that the pores have moderately strong
connections.

Interpore diffusion might also explain the disagreement
in the limits of the region of power-law time dependence.
A system of disconnected pores shows a power-law region,
while a strongly connected pore space does not. Interpore
diffusion could produce such a crossover if its effect was to
move the power-law region to shorter times. This would
also be consistent with the experimental results. At
present it is not possible to say whether this is indeed the
case and further work is being undertaken to investigate
interpore diffusion.

There is one other point that seems worth mentioning.
As shown in Table II, the quantity 1 —dF ' agrees closely
with the experimental exponents in the power-law region.
I know of no reason why this should be so. It may be just a
coincidence, but it does seem curious.

I would like to thank William Halperin of Northwestern
University for sending me experimental results, and both
Halperin and Robert Guyer of the University of Mas-
sachusetts at Amherst for interesting discussions on this
work.
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