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Three-dimensional Heisenberg ferromagnet: A series investigation
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%e present new twdfth-order high-temperature series for the susceptibility, correlation length,
and free energy of the nearest-neighbor classical Heisenberg ferromagnet in zero field on a fcc lat-
tice. Checks corroborating the correctness of the series are discussed. Standard analysis of these
series produces results in essential agreement with the renormalization-group calculations and
several other series analyses. However, a more reliable confluent singularity analysis suggests slight-

ly larger values, y = 1.40+@0~ and v=0.72+0.01, as well as a confluent correction of just the size to
cause the observed standard analysis underestimate.

I. INTRODUCTION

TABLE I. Various series and renormalization-group results
for the indices.

This work
Ref. 1

Ref. 3
Ref. 4
Ref. 5

Series
1 40 +0.03

1.405+0.020
1.375+0.010
1 42 +0.02

1.39 +0.01

0.720+0.010
0.717+0.007
0.702 +0.005
0.725+0.015

Ref. 7
Ref. 8

Renorrnalization group
1.39 +0.01
1.386%0.004

0.705+0.005
0.705+0.003

For a number of years, there has been a real discrepan-
cy between the values of the Heisenberg indices. ' Not
only have series results disagreed with renormalization-
group results, but different applications of the same
method have led to different results, so that recent, seem-
ingly reliable studies led to a number of different values,
e.g. , values of the susceptibility index were in the range
1.38 g y g 1.42. This situation is summarized in Table E.

In an attempt to better understand the differences be-
tween the various series results, we have derived new
twelfth-order series for the classical Heisenberg model;
our analysis of these new longer series has been influenced
by the lessons learned in eliminating the Ising discrepan-
cies. " The Heisenberg discrepancy may seem superfi-
cially similar to the Ising situation where the consensus of
recent series work, based largely on new very long series,
suggests that the earlier series analysis overestimated the
indices (e.g., y —1.25) with the new estimates bring indis-
tinguishable from renormalization-group predictions (e.g. ,
y-1.24). These modifications do not rely solely on the
very long series. Recent reanalysis of correct twelfth or-
der, S=—,

'
Ising series indicates the traditional y= —,

' is
too high. " Indeed, five-fit analysis (a confluent-cor-

TABLE II ~ Our twelfth-order high-temperature series for the
susceptibility and correlation function.

Susceptibility Correlation function
3g = 3po 4 =P'iso

1.0
4.0E
14.6666666666666K
51.7333333333333 K'
178.459259259259K
606.745396825394K
2042. 10041152261K
6821.95284028997K'
22659.3609292753K
74921.3032135086K
246802.546214377K"
810503.233705947K "
2654791.75915185K '-

4.0E
16.0E'
58.844"~~4444443 E '
208.355555S55554E
721 ~ 352804232797 E '
2460.68524397408K
8306.72269018206K
27825.0321783441E
92648.9229054439E
307025.400683868E '"
1013490.72770326E "
3334737.54661336K"

rection method) of the twelfth-order spin-S series pro-
duces results in agreement with the renormalization-group
results (y —1.24). however, the Ising and Heisenberg
cases differ on several points.

(1) The larger range of disagreement, i.e.,
1.38~y ~1.42 for the Heisenberg model, is to be con-
trasted with that for the Ising model, 1.24 & y & 1.25.

(2) The role of confluent singularities is somewhat dif-
ferent in the two cases. In the Ising case where workers
relied on the longer spin- —,

'
series, the amplitude of the

confluent correction is almost certainly negative, which
causes standard analysis to overestimate the indices.
In the Heisenberg case, workers relied more heavily on the
longer spin-infinity series. Here, the amplitude is positive,
resulting in an underestimate from standard analysis.

Our new longer, zero-field series (see Table II) have
been derived for the classical Heisenberg model in which
unit vectors (classical "spins") S; occupy each site i of a
fcc lattice and interact with their nearest neighbors
through the Hamiltonian

PH=EQS—; S
(I',J )
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where (i,j ) restricts the sum to nearest neighbors and
where K =JlkT. To derive twelfth-order correlation
function series, we have modified an existing prograin
which correctly derives tenth-order series for Ising, XF,
and Heisenberg models on a variety of lattices, by adding
the 35 "elementary" diagrams which contribute in
eleventh and twelfth orders. The extended program
correctly reproduces Ising susceptibility and specific-heat
series through twelfth order showing that all diagrams
have been included correctly. " To derive XF and Heisen-
berg series, the program decorates each line in the dia-
grams with the appropriate Cartesian indices in a routine
fashion. As discussed in the Appendix, checks have been
performed supporting the correctness of our decoration
subprograms. Even though several of the higher-order
coefficients in Refs. 5 and 6 disagree with ours in the
sixth or seventh significant figure, as discussed in the Ap-
pendix, we are confident that our coefficients are correct
given the routine way that the decorations are performed
coupled with the checks.

In Sec. II we discuss the standard analysis of our
twelfth-order classical Heisenberg series for the suscepti-
bility and for the correlation length. we find results
which agree with the standard analyses of Refs. 3, 5, and
6, but disagree with our previous results' where we tried
to account for confluent-correction effects by relying
heavily on trends in the extrapolation procedures. The
twelfth-order series studied here show that the series are
too irregular for such trends to be reliable.

In Sec. III we present the results of an unbiased five-fit
analysis which show the following.

(1) The amplitude of the confluent correction is rela-
tively large and positive.

(2) Past experience has shown that a standard analysis
will underestimate the leading indices, when the
confluent-correction amplitude is positive. Indeed the
fiv-fit determination of the leading indices, shown to be
more reliable, leads to values larger than those from Sec.
II.
For a test function which mimics the correlation length,
i.e., it has the same leading exponent and confluent
correction suggested by the five-fit analysis of the correla-
tion length, standard analysis predicts a result for the
leading exponent of the test function indistinguishable
from the value determined in Sec. II. This convincingly
supports the reliability of the five-fit results over those
from standard methods. As a result of all our analysis,
we assert T, =3.1757+0.0020, 2v= 1.44+0.03, and

l 40+0.03

Contrary to experience with the Ising model, an un-
biased confluent-correction analysis of correct twelfth-
order series for the Heisenberg model worsens (rather than
improves) agreement with the renormalization-group re-
sults. We hope to undertake the partial differential ap-
proximant analysis of Gaussian to Heisenberg crossover
using the method of Chen, Fisher, and Nickel, ' to more
reliably account for the effect of confluent corrections.

II. STANDARD ANALYSIS

Table III presents both the Neville table extrapolations
of the ratio and log-derivative sequences for T, as well as

TABLE III. Standard analysis of susceptibility series for T, . The column labeled 0 gives the unex-
trapolated sequence, the column labeled 1 gives the linear extrapolant, the column labeled 2 gives the
quadratic extrapolant, etc.

(N —1,X)

3.1880
3.1837
3.1838
3.1772
3.1776

(N, N)

3.1805
3.1839
3.1790
3.1776

(N, N —1)

3.2071
3.1852
3.1890
3.1775
3.1776

Log-derivative
0 2

2
3

5

6
7
8

9
10
11
12

3.3333
3.2485
3.2166
3.2012
3.1944
3.1906
3.1877
3.1855
3.1838
3.1826
3.1817

3.2061
3.1847
3.1780
3.1810
3.1811
3.1790
3.1777
3.1772
3.1771
3.1770

3.1775
3.1736
3.1839
3.1812
3.1755
3.1750
3.1762
3.1768
3.1769

2
3

5

6
7
8
9

10
11
12

3.3333
3.2400
3.2071
3.1925
3.1877
3.1853
3.1831
3.1814
3.1803
3 ~ 1795
3.1789

3.1933
3.1743
3.1706
3.1779
3.1793
3.1768
3.1755

3.1755
3.1759
3.1761

3.1679
3.1682
3.1852
3.1810
3.1726
3.1729

3.1756
3 ~ 1768
3.1769
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the near-diagonal Pade: estimates of T, using the suscepti-

bility X=—po series. It is instructive to compare these Ne-

ville tables with those from Ref. 1 where we estimated

T, =3.1753+0.0020. Omitting the eleventh and twelfth
rows of Table III reproduces the corresponding part of
Table XII from Ref. 1. The lower-order entries of these

tables show trends approaching a value less than 3.176
which led us to conclude T, =3.1753+0.0020; e.g., con-
sider the downward trend in the second column from the
log-derivative susceptibility sequence. These trends,
which suggest a value of T, smaller than 3.176, change in

eleventh or twelfth order leading us to favor a value of T,
slightly greater than 3.176. Our Pade estimates are con-

sistent with the suggestion of Fisher and Ritchie,

T, =3.178+0.003, although the new terms and downward

trends lead us to favor a value closer to 3.177. On the

basis of this and additional analysis, we assert

Tc =3.177+0 002
This slightly larger value of T, is expected, to lead to

values of the indices lower than those of Ref. 1. Table IV
presents the Neville table extrapolations of ratio and log-

derivative sequences for the critical indices, y from the
susceptibility, and v from the correlation length.

As expected the entries in Table IV are smaller than the
corresponding entries in Table XV of Ref. 1, reflecting the
use of a larger T, . For example, when one considers the
Neville extrapolations of the susceptibility sequences,
Table XV of Ref. 1 showed upward trends to a value of y,

above 1.40 which led us to predict y=1.405+0.020; now

there are downward trends to a value below 1.396. Esti-
mates of y-1.39 and 2v-1.416 from this ratio analysis

are consistent with the Pade estimates given the apparent
upward trends in the near-diagonal Pade terms. Including
the effect of our uncertainty in T„we estimate

y = 1.39+0.02 and v=0.708+0.010.
In conclusion, this standard analysis of our twelfth-

order series is more consistent with the results of Refs. 3,
5, and 6 than with those of Ref. 1. It seems clear that an
overreliance on trends in the Neville extrapolations of

Ref. 1 led to slight overestimates of standard analysis re-
sults for the indices. However, as we shall see, the pres-
ence of confluent corrections causes the standard methods
to underestimate the indices, with the result that all the
evidence favors values of the indices close to or above the
estimates of Ref. 1.

III. FIVE-FIT ANALYSIS

The existence of confluent corrections and their effect
on the standard analysis for the indices has been well do-
cumented. One of the several nearly equivalent methods
for including the effect of these confluent corrections is
the q-fit method. "' The logic behind the q-fit method is
similar to that of the ratio method. "' In this applica-
tion, the assumed form of the leading singularity includes
one confluent correction, i.e.,

(3.1)

To estimate the values of the five undetermined parame-
ters characterizing this singularity, one equates the q =5
consecutive coefficients in the expansion of this singulari-

ty to the corresponding coefficients in the high-tem-
perature series, X=+". oaJK), i.e., aj bj for j——=n,
n —1, n —2, n —3, and n —4. These five equations in

the five undetermined parameters can be solved numeri-

cally providing nth estimates of the parameters. In prin-
ciple, the sequence of these successive estimates should

approach the true value of the parameter in the limit of
large n For T, .and the leading index, the test-function
analysis shows that the five-fit estimates are significantly
improved over ratio or Pade estimates even though 6 and
B are poorly estimated. Test-function analysis indicates
that, for reasonable higher-order confluent corrections, an
improvement in the 8 and b estimates that are presently
available (from 12th- to 21st-order series), requires inac-
cessibly long series (greater than 50th order).

TABLE IV. Ratio analysis for the indices from the susceptibility series and from the correlation
length series using T, =3.177.

1

2
3

5

6
7
8
9

10
11
12

1.2590
1.3083
1.3308
1.3432
1.3508
1.3563
1.3606
1.3640
1.3666
1.3688
1.3705
1.3720

1.3575
1.3758
1.3806
1.3812
1.3837
1.3863
1.3875
1.3879
1.3881
1.3881
1.3881

1.3849
1.3854
1.3822
1.3887
1.3927
1.3913
1.3894
1.3886
1.3884
1.3882

2

5
6
7
8
9

10
11
12

0.7590
0.7364
0.7290
0.7244
0.7212
0.7190
0.7174
0.7163
0.7154
0.7147
0.7141

0.6912
0.7067
0.7058
0.7051
0.7059
0.7066
0.7071
0.7073
0.7074
0.7075

0.7222
0.7044
0.7038
0.7079
0.7086
0.7086
0.7084
0.7080
0.7075



M. FERER AND A. HAMID-AIDINEJAD 34

TABLE V. The sequence from a five-fit analysis of the sus-

ceptibility and correlation length for the parameters in Eq. (3.1).
the effect of higher-order confluent corrections on the re-

sults of a five-fit analysis. Using test functions of the

4

6

8

9
10
11
12

3.1579
3.1656
3.1835
3.1807
3.1661
3.1693
3.1749
3.1764
3.1766

1.526
1.472
1.358
1.374
1.682
1.581
1.423
1.398
1.394

0.512
0.614
0.876
0.838
0.181
0.300
0.709
0.790
0.799

0.53
0.55
1.07
0.82
0.47
0.41
0.57
0.77
0.82

0.95
0.63
0.28
0.23
4.32
2.22
0.42
0.33
0.34

(3.2)

t»s analysis suggested several rules of thumb, three of
which prove useful here:

(i) ~he»& &0, &, is overestimated.
(») ~hen &~ is overestimated, there is a slight underes-

timate of the leading index.
(iii) ~he» & 0, the standard methods result is a much

grosser underestimate of the leading index than the fjve
flt underestimate mentioned in (ii).

5

6
7
8

9
10
11

3.1309
3.1697
3.1812
3.1771
3.1758
3.1756
3.1749
3.1752

0.853
0.733
0.698
0.713
0.720
0.721
0.727
0.724

0.849
1.672
2.045
1.867
1.772
1.75 I
1.668
1.714

g'= p2/(@0K )

0.64
0,63
0.89
0.69
0.62
0.61
0.56
0.59

2.01
0.53
0.30
0.37
0.42
0.43
0.50
0.46

Since the best determination indicates AI-0. 55, ' '
the values for h~ in Table V are overestimates. Coupled
with our experience of test functions [(ii) above], this leads
us to expect that the five-fit estimates of the leading in-
dices are, if anything, underestimates, however slight.
These differences between the five-flt estimates of the
leading indices y = 1.40 and v=0.722 and the previous ra-
tio and Pade estimates are fully consistent with standard
analysis misestimates effected by confluent corrections of
the kind observed.

To demonstrate this assertion, we have performed ratio
and Pade analyses of the twelfth-order series obtained by
expanding the test function

Table V gives the five-fit estimates of the parameters in

Eq. (3.1) from our susceptibility and correlation length

series. The susceptibility sequences are quite irregular,
with perhaps two (n =8 and 9) defective entries. From
the far more regular correlation length sequences, we esti-

mate T, =3.1757+0.0020 and v=0.722+0.010, where

ranges of values include the last five terms in these se-

quences. In what follows, we will argue that this five-fit

estimate of v is more reliable than the lower estimate from

standard analysis. From g, we estimate y=1.40+o'0&, ig-

noring the eighth and ninth entries.
The test-function analysis of Ref. 11 tried to estimate

'~(1+0 47m r ), . t=l E— (3.3)

in which the leading index and confluent correction ap-
proximate what is observed for the correlation length, i.e.,
v-0. 72, h~ -0.5, and 8-0.47. Table VI presents the ra-
tio analysis for the critical temperature and leading ex-
ponent of this test function; the ratio analysis is typical of
all the standard analyses. The critical temperature,
T, =1.0, is overestimated by a few hundredths of a per-

cent while the index determinations, formed using the
correct critical temperature (not the standard analysis
value) underestimate the correct value by 1 to 2%. The
striking agreement between these misestimates of the lead-

TABLE VI. Ratio analysis for the test function [Eq. (3.3}]showing the effect of a confluent correc-

tion approximating the one in the correlation length.

Index equals 1.44
0 1

T, = 1.0000
1

1

2

5

6
7
8
9

10
11
12

1.2801
1.3226
1.3420
1.3537
1.3619
1.3681
1.3729
1.3769
1.3801
1.3830
1.3854
1.3875

1.3651
1.3806
1.3891
1.3947
1.3988
1.4019
1.4044
1.4065
1.4082
1.4097
1.4110

1.3884
1.3976
1.4031
1.4069
1.4097
1.4119
1.4137
1.4152
1.4164
1.4175

2
3

5

6

8
9

10
11
12

1.0425
1.0193
1.0118
1.0082
1.0061
1.0048
1.0039
1.0033
1.0028
1.0024
1.0021

1.0078
1.0042
1.0028
1.0020
1.0016
1.0013
1.0010
1.0009
1.0007
1.0006

1.0031
1.0018
1.0013
1.0009
1.0007
1.0006
1.0005
1.0004
1.0004
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ing index, v=0. 71, and our previous estimate of the corre-
lation length exponent from ratio and Pade analyses,
v=0.708, support our contention that the correct ex-
ponent is larger, with standard analysis misestimates due
to a confluent correction approximating that indicated in

Table V. Note that use of the standard analysis overesti-
mate of T, would have lowered the standard analysis
value of v even further.

The differences between the results from our confluent
singularity analysis and those of Refs. 4 and 5 seem to
arise because of the value of r, used in their r, biased
methods. Both references rely most heavily on 1, or in-
dex biased methods favoring that value which gives them
the smoothest sequences. Camp and VanDyke favor a
value of T, only slightly smaller than ours which leads
them to favor slightly larger indices. Note that part of
the difference in the susceptibility index may be due to
our preference (perhaps erroneous) for values closer to the
standard analysis values based on the smaller confluent
correction amplitude. McKenzie, Domb, and Hunter
favor a value of T, close to our standard analysis value
and find index values similar to those in Sec. III.' We
doubt that their index estimate is correct, since given a
positive amplitude for the confluent correction, standard
methods underestimate the indices.

IV. CONCLUSIONS

For the correlation length index, the five-fit estimates

(supported by the size of the ratio and Pade analysis un-

derestimates due to the predicted confluent correction)
lead us to assert 2v=1.44+0.02, where conservative un-

certainties include the ratio and Pade estimates as a lower
bound. Arriving at a best estimate of the susceptibility in-

dex is rather more problematic because of irregularities in

the five-flt tables. Excluding the apparently defective
n =8 and 9 entries, the values for 8 are smaller than ob-
served for the correlation length; hence, the ratio and

Pade estimates of y will be closer to the correct value than
was the case with the correlation length index. The last
three entries are fairly consistent and produce values for
'1, near our estimate T, =3.1757+0.0020. On these
bases, we estimate y= 1.40+0'o&,' by doing this, we have
tried to err, if at all, in underestimating the index and
overestimating the uncertainties.

As a result, we believe that there does exist a discrepan-
cy between the series and renormalization-group values of
the indices for the Heisenberg model; the renorm-
alization-group values agree with ours to within uncer-
tainties only because of our generous uncertainties. Un-
like the situation with the Ising model where the con-
fluent singularity analysis had little effect on the most re-
liable standard analysis (for the s = —,

' Ising model),
confluent singularity analysis of the classical Heisenberg
series shows that the results of standard analysis, in seem-
ingly good agreement with the renormalization-group re-
sults, underestimate the indices.
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APPENDIX: CHECKING THE CORRECTNESS
OF OUR SERIES

There are bothersome discrepancies between our coeffi-
cients and those of Refs. 5 and 6. Specifically, our
eleventh- and twelfth-order susceptibility coefficients
differ in the seventh significant figure from those of Ref.
5, which are

810503.9650K"+2654798.191K'

the corresponding terms from our Table II are

810503.233705947K & ) +2654791.759151855K'

Furthermore, of our two new free-energy coefficients not
discussed previously,

376.43549526607K ' +926.26155555729K '

the twelfth-order coefficient agrees with the general D ex-
pansion of Ref. 6; the thirteenth-order term differs from
that of Ref. 6 in the sixth significant figure.

We are confident that there is no error in our coeffi-
cients. The program which derived the series is a
twelfth-order extension of a program used in the late
1960s to derive the tenth-order series of Ref. 1 among
others. Our extended program correctly derives twelfth-
order Ising susceptibility series, "which demonstrates that
all diagrams (elementary diagrams' ) have been correctly
included. To derive Heisenberg series, the same program
decorates, in a routine fashion, all bonds with the x, y,
and z Cartesian labels and then sums over all decorated
graphs. We are convinced that this is done correctly for
all twelve orders in the correlation function for several
reasons.

(i) All diagrams contributing to the nearest-neighbor
correlation function are correctly decorated through
eleventh order because of the agreement between our
free-energy series through twelfth order and the previous-
ly mentioned, general D series of Ref. 6.

(ii) The on-site correlation function is exactly —,, i.e., all
higher-order coefficients are zero to within round-off.
This suggests that all diagrams contributing to the on-site
correlation function (specifically all elementary diagrams
where the two fixed vertices can occupy the same lattice
site) are correctly decorated (or the unlikely possibility)
that errors accidentally cancel. This check is also satis-
fied for the (n =2) plane rotator model.

(iii) We believe that the most convincing check is our
derivation of the n = 3 cubic model in the limit of infinite
cubic anisotropy where the model reduces to three Ising
models and the susceptibility is just the Ising susceptibili-
ty. The correctness of our series for this model is con-
vincing proof that the elementary diagrams are decorated
correctly, because although this model has the same ver-
tex weights (semi-invariants) as an Ising model the
decorations of the elementary diagrams are labeled very
differently. We are convinced that an error in decorating
procedure could not allow correct derivation of both Ising
and infinite cubic model series.
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