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The electric field gradients (EFG’s) of 5sp impurities (;;Ag—s4Xe) are calculated within the self-
consistent local-density molecular-cluster approach using 27 atoms. The experimentally observed
oscillation of the EFG, from 4;Ag to s4Xe, originates from the conduction-electron contribution.
The 5p impurity electrons hybridize with the conduction band into bonding and antibonding states,
the p,,p, bonding states having the lowest energy. A successive population of these states, with in-
creasing impurity charge, explains the change in sign that occurs close to 5;Sb.

I. INTRODUCTION

The theoretical understanding of the origin of electric
field gradients (EFG’s) in metals has been a subject of
great interest in the past decade. A significant increase in
the amount of experimental data, in particular sign deter-
minations, has occurred and various theoretical ap-
proaches have been employed to explain observed trends.
Excellent reviews of both the experimental and theoretical
aspects have been given by Kaufmann and Vianden."?

Very often estimates and calculations of the EFG’s at a
nucleus are based on the parametrization into one part,
Gext> Originating from sources external to the electron shell
and another part, g, from the valence electrons or un-
filled atomic orbitals local to the nucleus:

g=(1—%_,)qex+(1—R)q, . (1)

The polarization of the charge distribution in the core is
accounted for by the Sternheimer antishielding factors v,
and R. The first term in Eq. (1) is often calculated by a
lattice summation and the importance of including the
screening from conduction electrons, instead of just sum-
ming over bare ionic charges, has been demonstrated by
Nishiyama and Riegel®> and Butz.* Relying on the so-
called “universal correlation,” discovered by Raghavan
et al.,’ the second term is then estimated to be three times
the first term but of opposite sign. In recent years, with
an increasing amount of available experimental data, this
proportionality is questioned in many systems.”? The
reason for this may be found in the second term of Eq.
(1), which requires evaluation of electronic wave func-
tions. For the pure metals, the electronic states are best
determined by a band-structure approach, but despite the
large number of such calculations presented in the past
decades, only a few of them deduce the EFG’s in noncu-
bic metals.! The works by Das and co-workers®’ show,
however, that the EFG’s from the electronic states in the
conduction band and close to the Fermi level are impor-
tant as well as a properly calculated antishielding factor,
accounting for the overlap of the conduction band with
the core.

Most of the measured electric field gradients are for im-
purities in noncubic metals. The broken periodicity of the
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lattice in these systems almost prevents the use of band-
calculation methods, requiring very large unit cells to ex-
clude impurity-impurity interactions. Another approach,
however, that has proven to be a useful tool for impurity
systems is the molecular—cluster method, where self-
consistent solutions are found for the electronic wave
functions in a cluster of a limited number of atoms.

This paper presents self-consistent molecular-cluster
calculations of the EFG’s at 5sp impurities (47Ag-54Xe) in
hexagonal cadmium metal. The EFG’s for these impuri-
ties show a sign-reversal around Sb,® hence not propor-
tional to any antishielding factor. The method, which is
described in Sec. II, treats all the electrons and does not
require the use of antishielding factors. Section III
discusses the results for a pure Cd cluster and in Sec. IV
the calculated values along the impurity series is present-
ed. A short summary and final comments are given in
Sec. V.

II. THEORETICAL MODEL

A. Computational procedure

The theoretical basis for the electronic structure calcu-
lations used here is the self-consistent one-electron local-
density formalism in the Hartree-Fock-Slater model.’—!!
The essential point of this theory is the replacement of the
nonlocal Hartree-Fock exchange operator by a potential
depending only on the local electron density.

In a nonrelativistic approach the one-electron Hamil-
tonian for the molecule can be written (in Hartree atomic
units) as

VZ
H=——2—+VC+VXC, (2)

where the first two terms are the Kinetic energy and
Coulomb potential.

The Hedin-Lundqvist potential'> was adopted for the
exchange-correlation potential

Vie(r)=(3p/m)/3—0.0225 In[ 1 +21(47p/3)'*], 3)

where p is the electron density at a point r.
As in the usual linear-combination-of-atomic-
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orbital—-molecular-orbital (LCAO-MO) method, the
molecular-orbital eigenfunctions are expanded in terms of
symmetry orbitals:

‘l’,-(r): EXJ(I')C], . 4)
J

The symmetry orbitals X;(r) are chosen here as linear
combinations of atomic orbitals located on the different
atoms in the molecule corresponding to the cluster point-
group symmetry, i.e.,

Xj(0)=3 Wi, Uu(r,)Yim®,) , (5)

v,m

where U,(r,) is the atomic radial wave function centered
on the vth nucleus, with principal quantum number n and
orbital number /. U, is obtained numerically by solving
a self-consistent free atom or ion problem, and Y}, is a
spherical harmonic function with magnetic quantum
number m. Wi are symmetrization coefficients which
can be obtained by group-theoretical projection operators.

The expansion coefficients [variational coefficient Cj
in Eq. (4)] are obtained using standard procedures by solv-
ing the matrix secular equation

(H—eS)C=0, (6)

where € is the eigenvalue matrix.

The Hamiltonian matrix H and the symmetry orbital
overlap matrix S are obtained in the discrete variational
method (DVM) as a weighted sum over a set of sample
points. The sample points set used in our study includes
not only a pseudorandom Diophantine points set,'*>!* but
also a regular spherical-volume mesh. The Diophantine
distribution is mapped onto an infinite domain represent-
ing the region exterior to atomic spheres of some arbitrary
radius, using a Fermi distribution.* In order to get good
wave-function accuracy in core regions near the nucleus,
we use an optimized Gaussian surface mesh in conjunc-
tion with a radial Simpson’s rule scheme in spheres
around the nuclei.

The Fermi energy and occupation numbers f;(e€) for
each molecular orbital (MO) in Eq. (4) are obtained by us-
ing Fermi-Dirac statistics on these MO eigenstates. The
cluster charge density was then constructed by summing
over all MO’s:

N
Peluster(T) = 2 Si | i) | 2. ™

i=|

In order to calculate the potential by one-dimensional in-
tegrations, this charge density was cast in a multicenter-
overlapping multipolar form:'

Pmodel(r)= z d,-;,,,(n)pj(r,,)l’}m(’f,,), (8)

nj,lm

where r,=r—R,, R, are atomic sites, and (j,/,m)
denotes multipoles centered on various nuclear sites.

The coefficients {dj,} were determined by least-
squares fitting to the eigenvector density of Eq. (7). The
radial density basis set of {p;] was constructed from
spherical atomic densities calculated from the wave-
function variational basis, and from several radial func-
tions for each /<2 in the fully symmetric representation

FIG. 1. Upper half of the 27-atom cluster, used in the calcu-
lations. The threefold rotation axis (z axis) of the D3, point-
group symmetry is equivalent to the ¢ axis of the hcp structure.
The open symbol shows the center atom where the EFG was
calculated. The plane with this atom is the horizontal mirror
plane.

of the molecular point group.

In the self-consistent multipolar (SCM) procedure the
potential calculated from this representation of the cluster
density is used to determine new wave functions and
hence a new cluster density, until self-consistency is ob-
tained.

B. Variational basis

The impurity atom was placed in the center of a 27-
atom cluster (Fig. 1), with the symmetry point group Dj.
All the electrons were treated for the center atom while
the core 1s—4d were frozen for the other atoms. Since
the local-density eigenfunctions are orthogonal to each
other, the nonlocal pseudopotential of the frozen core can
be fully accounted for by orthogonalizing the valence
wave functions of one atom to the core functions of all
the other atoms—a procedure followed here.

A double basis composed of neutral and ionized atoms
was used for the center atom and its 12 nearest neighbors.
This kind of basis is known to have enough variational
freedom to reproduce all major rearrangements in the
valence electron density.!* With the pure 27-atom Cd
cluster, an extra 4s,4p basis was also added in order to in-
vestigate the influence on the core EFG contribution. A
single basis from neutral Cd atoms was used for the outer
14 atoms of the cluster.

C. Cluster embedding

In the case where one is trying to represent a solid by a
finite cluster of atoms, it is necessary to consider the
embedding problem. For treating some properties of met-
als which may depend more or less sensitively on the band
structure, it is desirable to broaden the discrete energy lev-
els of the isolated cluster into bands. This can be accom-
plished by empirical level-smearing schemes, or by modi-
fying the cluster boundary conditions. The asymptotic
form of the wave function can be controlled by mixing in
a selected continuum state into the cluster wave functions
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FIG. 2. Valence energy levels for the 27-atom Cd cluster and
the corresponding density of states (DOS) obtained with the
empirical smearing parameter =100 and 50, respectively.
With 8=100 some structure is still present in the DOS, while
B=750 gives a smooth parabola-shaped DOS representative for a
free-electron-like metal.

aVAY

and solving an inhomogeneous Schrédinger equation.'®
The net result is an energy-dependent broadening of clus-
ter levels and a smooth spectral representation of proper-
ties like the charge density. Such a scheme is necessary
for systems with bands of different widths like the d and
sp bands in the 3d metals.'®~!® However, for the more or
less free-electron-like sp bands in cadmium metal, the
empirical level smearing was adopted in this work. Each
discrete energy level was broadened by

Li(E)=(B/4)cosh™[B(E —¢;)/2] . 9

The density of states (DOS) obtained for the 27-atom Cd
cluster in this way is shown in Fig. 2 for two different
values of the empirical parameter 8. The actual popula-
tion for each single-particle state is obtained by integrat-
ing up to the Fermi energy ex

€
fi= [ L{B)ME (10)
or by the well-known Fermi distribution function
fi={1+exp[Ble;—ep)]} " . (1

The choice of smearing function was arbitrary. Fine de-
tails in the DOS are not significant since it is only the in-
tegral value of each line (10) that is controlled self-
consistently through Eq. (7). Results using both S=100
and =150 will be given.

D. Electric field gradient

In a hexagonal structure an axially symmetric field gra-
dient is present and given (in a.u.) by

g=— [ p(r)(3cos0—1)r > dr+ gnucieus (12)
or with Egs. (7) and (4),
g=—3 fn 3 Xi(r) | (3cos’0—1)/r*| X;(r))
n ij

X Cin Cjn ~+ 9 nucleus - (13)

TABLE 1. Free neutral atomic (Sp |r~>|5p) integrals (in
a.u.) obtained with the Hedin-Lundqvist exchange-correlation
potential.

Atom Configuration (5p [r3|5p)
wAg 5s'p® 2.46
48Cd Sszpo 3.66
4911’1 SSZP1 5.77
sosn SSZPZ 8.22
51Sb 552p3 10.91
L Te 5s2pt 13.83
o 552 16.99
- Xe 552p 20.39

Here r refers to the site of the probe nucleus, i.e., the
center of the cluster. All terms in the sum belonging to
this atom and its neutral basis set, including the core orbi-
tals (see Sec. III B), were treated separately by using the
integrals (u, |7 3| u,) obtained from the atomic basis
calculation. The other terms were integrated numerically
on the same point mesh as used for the integration of the
Hamiltonian. Since core electrons are included self-
consistently in the molecular-orbital calculation, the
Sternheimer core antishielding factors are not needed.
The overall numerical accuracy is estimated to be better
than 0.1X10'7 V/cm? within the model and basis func-
tions used. (The conversion factor between atomic and SI
units is 9.72 X 10" V/cm?a.u.)

The atomic {u, |7 ~%|u,) integral depends on the
exchange-correlation potential used. The (5p |»~3|5p)
integrals obtained with the Hedin-Lundqvist potential are
given in Table I. Considerably higher values may be cal-
culated with the Slater exchange® V,.=1.5(3p/7)!/3 but
the total EFG for the cluster was less sensitive. Relativis-
tic effects are not included. They are estimated from rela-
tivistic atomic calculations'? to increase the obtained mag-
nitudes by about 15%.

III. RESULTS FOR Cd

The calculated EFG’s, obtained with a Cd atom also at
the center of the cluster in Fig. 1, are summarized in
Table II for two different values of the broadening param-
eter B. The EFG’s from unscreened 2 + ions is slightly
less than —0.1%10'7 V/cm? Using y = —29.27 for a
Cd*t ion,®® one obtains a core EFG of —3.1x10"
V/cm?. Since the valence charges of the nearest-neighbor
atoms overlap with the center atom and are not complete-

TABLE II. Calculated EFG’s in units of 10" V/cm? for dif-
ferent broadening parameter 8.

Total Experimental
Core Valence (including value
B 1s—4d 5sp Gnuct) (Ref. 21)
100 —1.5 + 4.9 +3.3 +6.28
50 —-15 +35.8 + 4.3
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ly external, another antishielding factor other than vy
might be more appropriate to use. This problem is avoid-
ed in the current study where all the core electrons are
treated self-consistently. Instead one must worry about
the variational freedom of the core basis, in particular, the
4p basis which is responsible for more than 90% of the
antishielding of the ion.?° Extra 45 and 4p basis generated
from the Cd’*(4s%p°d®) ion indeed increases the magni-
tude of the core contribution from —1.5 to —1.9x 10"
V/cm?. This correction is, however, small compared to
the total EFG and will be neglected hereafter.

As is evident from Table II the total EFG is dominated
by the valence part. The contributions, 8¢ (E), from states
at different energies (spectral distribution) are shown in
Fig. 4. At the low-energy part of the band the EFG is
positive, corresponding to a predominant p,,p, character
of those states. This positive EFG is then partly reduced
by states with p, characters lying close to the Fermi ener-
gy. The actual population of those states determines criti-
cally the calculated value of the EFG, which explains the
different results for the two B values used. Mixing in con-
tinuum states in the cluster wave functions (see Sec. II C)
could not improve the calculated EFG. A more-detailed
knowledge of the Fermi surface and its electron states
than can be obtained by the present method and cluster
size is needed in order to obtain better agreement with ex-
periments. However, for systematic comparisons with,
e.g., different impurity atoms, this accuracy is enough as
will be obvious in Sec. IV.

An inspection of one of the eigenvectors at the Fermi
level, showed that about 70% of the EFG came from Sp-
5p integrals, while about 17% was due to 5p-4p integrals.
Freezing all the core electrons, up to 4d, changed the
eigenvalues by less than a few meV. Hence the core-
electron admixture in the final molecular valence wave
functions is mainly due to the overlap matrix elements
and the core orthogonalization. This “core-electron con-
tribution” is comparable to what is obtained with the local
Sternheimer factor R =—0.2,! but the origin is rather
nonlocal. In the variational basis the 5p and 4p wave
functions are already orthogonal within one atom and it is
the overlap with neighboring atoms that mixes in with the
core contribution into the valence wave functions.

Different cluster sizes and geometries were also investi-
gated. The point ion EFG obtained for the cluster in Fig.
1 is about 15% less than that of an infinite lattice. Re-
moving the two atoms at the c axis leads to a 40% too
large value but the valence part of the EFG does not fol-
low this increase in magnitude. These two atoms are cru-
cial for the correct bonding and antibonding or hybridiza-
tion of the p, orbitals of the center atom. Reducing the
distance of those two atoms pushes up and depopulates
the p,-like orbital at the Fermi energy, increasing the total
EFG. If the atoms are removed the orbital is lowered in
energy, hence reducing the EFG or even changing the
sign. Decreasing all the z-coordinates of the atoms to
values corresponding to the ideal ¢ /a =V'8/3 of the hcp
lattice, reduces the total EFG as expected. The obtained
value, —0.9% 10'7 V/cm?, may indicate the systematic er-
ror in the EFG due to the finite cluster size, if the true
value is assumed to be zero for ideal ¢ /a.

IV. RESULTS FOR Ag-Xe IN CADMIUM

The EFG for different substitutional Ssp-impurity
atoms in the Cd cluster are compared with experimental
data®! in Fig. 3. The change in sign by increasing the im-
purity charge is well reproduced. The spectral distribu-
tions 8q (E)=dgq /dE are shown in Fig. 4, left-hand side of
diagram. The bottom of the band is predominantly of
Dx>Py character and contributes positively. Then a p, re-
gion with a negative contribution appears. This can be
understood in terms of bonding and antibonding states of
the p orbitals of the center atom with the rest of the clus-
ter electrons, i.e., they hybridize with the conduction band
of the host. In Cd metal, where ¢ /a >V'8/3, the bonding
and antibonding of the degenerate p,,p, states are
stronger than for the p, states. This is schematically illus-
trated in Fig. 5. For Ag and Cd, where the p orbitals are
not bound in the free atom, the bottom of the conduction
band gets a small p,,p, character due to the hybridiza-
tion. In Fig. 4 (left-hand side) 8q is positive below the
Fermi energy Er. With increasing impurity charge, and
hence deeper impurity potential, the orbitals illustrated in
Fig. 5 are successively populated. A negative 8¢ is shifted
down through Er in Fig. 4. After Sb, with its almost
spherical half-filled p shell and small EFG, the first anti-
bonding states, which are of p, type, become populated
and the EFG’s change sign. This is also observed in the
right-hand side of Fig. 4 which shows the energy depen-
dence of the valence EFG ¢(E)= f 8q (E)dE. The total
valence EFG is given by the value at Ef,q(Efp). A simi-
lar interpretation has previously been given by Haas and
co-workers.® They adopted a tight-binding model with
different widths of the p,, p,, and p, bands.

Despite the change in sign of the EFG, the core contri-
bution is negative for all the different impurities. The
EFG from charges external to the center atom is also neg-

15-Ag Cd In Sn Sb Te I Xe

EFG (10" V/cm?)

FIG. 3. Calculated and experimental EFG’s for 5sp-impurity
atoms in cadmium metal. The solid curve shows results ob-
tained with =50 and the dashed curve for B=100. The solid
circles show experimental data (Ref. 21). The Sb-EFG sign is
not known and the I value is very uncertain.
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FIG. 4. Left diagram: The spectral distribution of the EFG,
8q (E)=dq /dE, for different atoms in Cd. Right diagram: The
valence part of the EFG as a function of
energy, ¢(E)= f E8(E)dE. The total valence contribution is
given by the value at the Fermi energy. All scales are propor-
tional to (5p |1/r3|5p) for the respective impurity atom,
B=50.

ative and in Fig. 6 this EFG and its antishielding of the
core [Eq. (1)] is compared to the calculated core contribu-
tion. For Ag the 4d levels lie on the bottom of the con-
duction 5sp band and for Cd just below, making the
separation into core EFG and valence EFG more ambigu-
ous than for the other atoms.

As already mentioned in Sec. III, the contribution to
the EFG from states at the Fermi level is important and a
detailed knowledge of the Fermi surface and its electron
states is necessary in order to obtain better agreement with

?

energy

Xy z

FIG. 5. Schematic illustration showing the splitting of the
valence p-orbitals into bonding and antibonding states due to the
hybridization with neighboring atomic orbitals. In a prolate
structure (¢ /a >V 8/3) the p,, orbitals are more split than the
p. orbitals. In a tight-binding model (Ref. 8), more appropriate
for a solid, this implies a broader p,, band than the p, band
(solid curve).

CORE EFG (10'"V/cmY)

FIG. 6. Solid curve: The core EFG contribution (from levels
below 4d) for different 5sp atoms. Dashed curve: EFG from
charges external to the center atom and its antishielding of the
core electrons [Eq. (1)].

experimental values. Some of the deviations may, howev-
er, also be ascribed to uncertain quadrupole moments of
the nuclear levels. Values for, e.g., '”Sn, range from
—0.06 b (Ref. 22) to —0.11 b (Ref. 23). The values quot-
ed in Ref. 21 were used for the experimental points in Fig.
3.

Another important factor is the lattice relaxation due to
the impurity atoms. From the valence charge-density
maps in Fig. 7, it is clear that some relaxation of the

FIG. 7. Valence charge-density maps in a ca plane of the hcp
structure. Contour intervals are 0.002 a.u., linearly.
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neighboring atoms is to be expected. The equilibrium dis-
tances can in principle be calculated from the total ener-
gies of different cluster geometries, but this was beyond
the scope of the present work. Interatomic distances
representative for the pure Cd metal were used. Hence,
the systematic trend in the EFG for the different impuri-
ties, reproduced by the calculations, is due to the hybridi-
zation of the impurity electrons with the host conduction
band, and not because of different impurity-host dis-
tances.

V. SUMMARY

The EFG of 5sp impurities in Cd metal was found to
depend strongly on the valence band and in particular on
details of the Fermi level. Although a finite molecular-
cluster model cannot calculate the Fermi surface and ac-
curate electronic states there, the systematic trend and
sign reversal were well reproduced. The merit in the
molecular-cluster model lies, instead, in the more simple
interpretation of the results in terms of orbitals associated
with certain atoms. It was found that the systematic
trend originated from a bonding and antibonding hybridi-
zation of the p electrons of the impurity atom with the

host conduction band. The impurity-host system here
gives us a unique possibility to study this. In principle the
same trend with sign reversal should be seen in the pure
metals going from Ag to Xe, but the structure and c¢/a
also change when p,,p,, and p, bonding and antibonding
states successively become populated.

The hyperfine field of impurity atoms in ferromagnetic
metals follow a similar oscillating dependence on the im-
purity charge. In, e.g., Fe, Co, and Ni, the Ag-hyperfine
field is negative while the I field is positive and the sign
reversal occurs close to Sn.>* This systematic behavior is
also explained by successive population of imgmrity asso-
ciated electron states close to the Fermi level.!® Care must
therefore be taken when hyperfine data of impurities are
used to extract information about host properties. “Unex-
pected” temperature dependence, etc., may appear if the
hyperfine parameter critically depends on a narrow im-
purity level at the Fermi energy.
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