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The phase diagrams of spin-1 Heisenberg antiferromagnets with ferromagnetic next-nearest-

neighbor (NNN) interactions, single-site uniaxial anisotropy, and a magnetic field along the easy

axis are studied. If we treat uniaxial anisotropy exactly and exchange interactions in the mean-field

approximation, novel multicritical behavior is obtained at the coexistence of paramagnetic, spin-

flop, and antiferromagnetic phases. New higher-order critical points are found which combine bi-

critical, tricritical, critical-end-point, and triple-point properties. Occurring at well-defined values of
anisotropy and NNN interactions, the multicritical points merge at a new multicritical point in the

four-dimensional parameter space of temperature, magnetic field, NNN interactions, and anisotro-

py. Appropriate phase diagrams as well as topology of the various multicritical points involved are

discussed.

I. INTRODUCTION

Multicritical phenomena are a common feature of
many different physical systems. Since the early works of
Neel' active research has been devoted to the study of
multicritical points both experimentally and theoretical-
ly. Among various systems, uniaxially anisotropic
Heisenberg antiferromagnets constitute a prototype to the
investigation of multicritical behavior. ' When an exter-
nal magnetic field is applied along the easy axis, they ex-
hibit a large variety of different types of critical behavior.

For weak anisotropies, competition between interactions
of magnetic moments with nearest neighbors and with the
magnetic field yields a spin-flop transition. The spin-flop
transition terminates in the bicritical point between the
antiferromagnetic (AF) and the spin-flop (SF) phase. In
the opposite extreme case of strong anisotropies, the field
can turn the continuous transition from the paramagnetic
(PM) into the antiferromagnetic phase to a first-order
transition via a tricritical point. In between, for inter-
mediate anisotropies, the phase diagrams which include a
critical end point and a tricritical point were obtained by
Gorter and Peski-Tinbergen' using mean-field theory.

More recently Vilfan and Zeks found a tricritical point
for the transition from the paramagnetic into the spin-
flop phase at intermediate anisotropies for S= 1 Heisen-
berg antiferromagnets with uniaxial single-site anisotropy.
The tricritical point was obtained through an exact treat-
ment of the single-site anisotropy and a mean-field ap-
proximation for the antiferromagnetic nearest-neighbor
interactions.

Very similar phase diagrams were obtained by Galam
and Aharony for uniaxially anisotropic Heisenberg fer-
romagnets with a random field along the easy axis. In
the three-dimensional parameter space of temperature, an-
isotropy, and random field a new multicritical point was
found where the bicritical, tricritical, and critical-end-

point lines merge. They also considered a perpendicular
component of the random field and found that a line of
fourth-order points reaches the new multicritical point. '

The case of a uniform and a random field was studied by
Galam" who found that bicritical points are associated
with horns when the ordering field is applied. Similarly,
tricritical points are associated with wings. "' Recently
it was shown that there exists a mapping at the mean-field
level between antiferromagnets with ferromagnetic next-
nearest-neighbor interactions in a uniform field and fer-
romagnets with only nearest-neighbor interactions in a
random field. ' Within this mapping, a staggered field
corresponds to a uniform field. However, due to the dif-
ferent nature of the fluctuations involved, the critical
properties of the two systems are quite different. '

The large variety and richness of multicritical points
exhibited by antiferromagnets and random-field ferromag-
nets motivates a more careful and systematic analysis of
S=l Heisenberg antiferromagnets in a uniform field.
The promising approach is to study the phase diagrams
by including both ferromagnetic next-nearest-neighbor in-
teractions and uniaxial single-site anisotropy. The aim of
the present work is to construct the complete phase dia-
grams of such systems in the four-dimensional parameter
space of temperature T, anisotropy D, magnetic field H,
and ferromagnetic NNN interactions E&. Multicritical
points in the (H, T) phase diagrams are found to form
surfaces in the (D,Ei) parameter space which intercept
along higher-order critical lines or points. A new mul-
ticritical point is obtained which includes properties of bi-
critical, tricritical (paramagnetic —spin-flop), triple
(paramagnetic —spin-flop —antiferromagnetic), and critical
end (paramagnetic-antiferromagnetic) points.

The paper is organized as follows: Sec II is devoted. to
the calculation of the equation of state of spin-1 Heisen-

berg antiferromagnets treating uniaxial single-site aniso-

tropy exactly and exchange interactions within the mean-
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field approximation. Various multicritical points are ob-
tained in Sec. III, while Sec. IV covers the new higher-
order multicritical points. The results are discussed in the
last section.

plied external magnetic field along the z axis. It vanishes
in the absence of the external field H. The antiferromag-
netic order parameter

m 1'= —,
'

(m,' —mb)

II. THE HEISENBERG MODEL

where the first term describes the antiferromagnetic ex-
change interaction between nearest-neighboring spins and
the second term the ferromagnetic exchange interaction
between next-nearest-neighboring spins which are on the
same sublattice. The third term describes the coupling of
individual spins to the uniaxially anisotropic crystal field,
and the last term is the ~man energy with the magnetic
field H parallel to the easy axis.

In the following we treat the uniaxial anisotropy term
exactly and perform mean-field approximation on the ex-
change interactions. This leads to the expression for the
free energy per unit cell3

F =Em' mb —H''(mq +mb ) Ei(mg+m—b )
2 2

+A~ 'm~ +Ab mb —ks'T(lnZo + lnZb } (2)

where X is the number of unit cells in the antiferromag-
netic phase, E=zJ and E~ ———,'z~Jj with z and z~ denot-

ing the coordination numbers of nearest neighbors and
next-nearest neighbors, respectively. The two sublattices
are denoted by a and b. The spin expectation values are
given, by definition, by

The Heisenberg Hamiltonian of the two-sublattice anti-
ferromagnet is

W'=J QS"S —J) g Sk Si
i ~j k~l

XXX

is the staggered magnetization along the easy axis. It is
nonzero in the AF phase and vanishes in the other phases
if the staggered field along the z axis, conjugate to m",
vanishes. Finally, the spin-flop order parameter

m = —,(m, —mb)
1

is the staggered magnetization along the perpendicular
direction. m is nonzero in the spin-flop phase and van-
ishes otherwise provided there is no conjugate staggered
field in the perpendicular direction.

Using the thermodynamic relations between the stag-
gered fields and the Helmholtz free energy F

"dF i dF
Bm rH dm rH

the free energy can be written in the form

F( T,H, m ll, m" ) =F0( T,H)

H lidm I I+ 0 m 10

where Fo(rH) is the integration constant. The fields H"
and H themselves depend on 0 but are not linearly cou-
pled to each other. The explicit dependence of the stag-
gered fields on the staggered magnetizations, needed to in-
tegrate Eqs. (10), can be found from equations of state (3)
and Eqs. (6)—(8}. Noting that H" and H' are odd func-
tions of m'1 and m, respectively, we expand them in the
form

&II 2~ llm ii+4& lim II3+6cllm II~+8dilmll7+. . .

0 =2a m +4b m +6c rn

The free energy can then be integrated immediately to the
familiar expression

1Xl~ r g8 (3) F F (Z H)+a llmll2+b llm114+c llmll&+dllm lls

The partition function Z, for 5= 1 is equal to

Z, =1+2ei cosh(PA', )+O(A ),
where Ai is the component of the local field perpendicu-
lar to the z direction and 0 means "order of," A being
considered small. The local field is determined by mini-
mizing the free energy:

A, =H Emb+2E&m„a—&b, a, b E(a,b) .

These equations relate the microscopic Hamiltonian to the
thermodynamic equations of state and allow the calcula-
tion of thermodynamic properties of the system.

In the mean-field study of multicritical properties it is
most convenient to expand the free energy in terms of the
order parameters m, m ~1, and m . The first parameter

m = —,
' (m,'+mb)

is the ferromagnetic order parameter conjugate to the ap-

+a'm "+b'm'4+c'm "+ (12)

The coefficients a ',a, . . . are functions of temperature,
field, and m. To calculate them explicitly, we expand also
the ferromagnetic order parameter m in terms of stag-
gered magnetizations

m =m' '+mII"'mli'+mli'4'mii4+mll' 'mil

+m""m "+m""m "+ (13)

substitute it together with Eqs. (6)—(8) into equations of
state (3) and then equate the coefficients of equal powers
of m ll and m on both sides of these equations. Explicit
forms of the coefficients a'~ b~' and c'1 are given in the
Appendix A.

It should be stressed that we use the above expansion of
the free energy only near the critical points where any
discontinuities in the order parameters are small. At an
arbitrary point the first-order surface is calculated using
Eq. (10) without expansion.
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TABLE I. Multicritical properties of uniaxial S= 1 Heisenberg antiferromagnets in a uniform field
parallel to the easy axis. The critical end points are classified so that the transition between the first
two phases is second order and the other two transitions are first order.

Definition
Notation

(as Fig. 2)

TCPA

CEPAA

FOCP

TCPs

BCP

CEPsA

CEPAs

Description

Tricritical point on
the PM to AF
transition

Critical end point
on Pm-AF-AF,
transition

Fourth order criti-
cal point on PM
to AF transition

Tricritical point on
the PM to SF
tI aflsit, iofl

Bicritical point be-

tween PM, SF, and
AF phases

Critical end point
on PM-SF-AF
transition

Critical end point
on PM-AF-SF
transition

Triple point be-

tween PM, SF, and
AF phases

%ith free energy

BF BF
amll' Omll4

a'F
gm I I2

FAF FAF

BF BF BF
gm ll2 gm ll4 gm I I6

BF BF =0
Bm" Bm"

BF BF
gm IIX pml2

BF
Bm" FPM —FAF

c} F
amll' FPM FsF

FAF =FPM =FSF

With coefficients
of free energy

a II gll 0

a II =0, ~ II'=4S lid ll

a II bll ~II 0

g —0 b I I —4g I lc Ii

all=0, b"=4a'c'

(Expansion invalid)

III. MULTICRITICAL POINTS

A typical phase diagram of a uniaxial Heisenberg anti-
ferromagnet is shown in Fig. 1. Depending on D, E„T,
and H, the system can. be either in a paramagnetic, anti-
ferromagnetic, or a spin-fiop phase with second- or first-
order transitions between them.

1.0—

A. Transition between PM and AF phases

We will first discuss the transition between the
paramagnetic and antiferromagnetic phases as if there
were no spin-flop phase. When studying the transition be-
tween the PM and AF phases only the staggered magneti-
zation m II needs to be considered. A second-order critical
line between the two phases occurs at a ~~ =0 if b ~' & 0 giv-
ing for the critical field

(E —2Ei)[cosh (PA) —1]'
b, +cosh(PA)

A=ksTln[x+(x —1)'~ ],
where b, = —,

'
exp( PD), P= 1/ks T, and—

(14) FIG. 1. Field versus temperature phase diagram for D=0.80,
El ——0.10. In all figures the quantities are in units of E =zJ,
solid lines are second-order transitions, and dashed lines are
thermodynamic critical fields of first-order transitions. BCP is
the bicritical point and TCPs is the tricritical point on the PM to
SF transition.
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FIG. 2. Topology of multicritical points and surfaces. (a) In this projection of the three-dimensional (30) phase space, T is plotted
along the vertical axis and D,E~ form the horizontal plane. The light lines are drawn for constant E& and represent multicritical
points which form surfaces if E~ and D are varied. The notation is explained in Table I. Heavy lines 1—7 represent higher-order
critical lines or points occurring at the intersection of multicritical planes or lines, respectively. Different regions of the higher-order
critical hnes are explained in the text and in Table II. (To avoid confusion with other lines, the tricritical lines are represented by
dash-dotted lines, and the critical end lines CEPAA are interrupted. ) (b) Projection of higher-order multicritical lines on the T=O
plane. (c) Cross section of (a) at E& ——0.40. The bicritical point BCP, tricritical point TCPA, and the critical end point CEPsA form
lines in the T vs D plane for constant E~. The three lines merge in the higher-order critical point 1. In the higher-order critical point
'7 the critical end point CEPsA, tricritical point TCPs, and triple point TP coincide. By varying E~ the lines form surfaces and the
points form lines in the 30 phase space shown in (a) and (b). (d) Cross section of {a)at E~ ——0.155. In the higher-order critical point 4
the BCP, CEP~, TCPs, and TP lines meet. By increasing E~ point 4 splits into lines 3 and 7 and by decreasing E~ point 4 splits into
lines 5 and 6. (e) Cross section of (a) at EI ——0.10. In point 5 the lines of triple points TP, CEP&s, and CEP«coincide. TCPs, BCP,
and CEPAA coincide in point 6. Again, by varying E& points 5 and 6 form lines sho~n in (a) and (b).
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x = —, IP(E+2Ei) —2b, +[/'(E+2Ei )'5'

—4' (E+2E, )

+4@(E+2E,)]'") .

The same result can be obtained by noticing that a given
spin configuration is stable only as long as the inverse sus-

ceptibility tensor X ' is positive definite. The continuous
transition lines are defined at the limit of stability where
the tensor becomes semidefinite and the determinant of
X vanishes giving the equation detg =0.

The condition b ii & 0 is fulfilled only above the tricriti-
cal temperature (TCPA) which is determined by
a'i=b'i=0 and cii&0 (see Table I). At lower tempera-
tures, b is negative and the transition between the PM
and AF phases becomes first order. The tricritical tem-
perature and field depend on the parameters D and Ei.
By varying the two parameters we obtain a surface of tri-
critical temperatures in the (D,Ei„T)phase space plotted
in Fig. 2. Notice that for each point on this surface the
tricritical field is uniquely determined.

Upon lowering Ei, a region in the (D,Ei, T) phase
space is reached where the TCP„nolonger exists and the
order of the tl'aiisitioii between tlie PM aild AF pllases
changes at the critical end point (CEP~~). This region is
characterized by cii ~0. For negative cii (while bii

d II & 0), the free energy can have minima at four different
values of mll (two foi

i'll�

&0 and two for pnll (0
e.g., Ref. 3). The four phases coexist along a quadruple
line which ends on the high-temperature side at a bicriti-
cal end point (BCEP), and on the low-temperature side in-

tercepts with the second-order PM to AF critical line to
form the critical end point CEPA„(Fig.3). The critical
end points CEPA&, defined in Table I, form another sur-
face in the (D,Ei, T) phase space (Fig. 2).

The tricritical surface TCP& which appears for large
Ei thus splits into the surface of CEP&A and the surface
of bicritical end points BCEP along the line called
fourth-order critical line (FOCP) (Table I, Fig. 2). The

0.5—

FIG. 3. Phase diagram for D=1.20, El ——O. IO showing the
critical end point between the PM and the AF phase.

value of Ei, at which the FOCP occurs, increases mono-
tonically as D increases until the value E& ———,', E is
reached in the D~oc limit when the model becomes an
I.sing model.

So far we have not considered the spin-flop phase and
therefore the behavior discussed was typical of metamag-
nets. Uniaxial anisotropy caused only quantitative
changes to the values of critical fields and temperatures.

B. Transition between SF and AF
and between SF and PM phases

For symmetry reasons, the transition between the SF
and AF phases must always be first order. The thermo-
dynamic transition temperature is obtained from the con-
dlt1on

a =b =0 (c &0). (17)

Again, variation of D and Ei generates a surface of tri-
critical points TCPs illustrated in Pig. 2 and defined in
Table I.

C. Transition between PM, SF, and AF phases

We have seen that for small uniaxial anisotropy D the
critical lines on the PM to SF and on the PM to AF tran-
sition are second order while the transition between the
AF and the SF phases is first order. The three phases are
in equilibrium at the bicritical point (BCP) (see Fig. 1 and
Table I) where

aii=u'=0 (~ii=S'&0) .

The two conditions (18) determine a bicritical plane in the
phase space (Fig. 2). In this region of (D,Ei ), the tricriti-
cal point TCPA is hidden in the SF phase and does not ex-
ist. On the other hand, for larger D the iricritical point
on the PM to AF transition does exist and the PM, AF,
and SF phases are in equilibrium at the critical end point
CEPs~. At this point the second-order PM to SF line, the
first-order SF to AF and the first-order PM to AF critical
fields meet (Fig. 4). The CEPsz is thus located at

a =0 and FAF FpM (b &0) . ——
Using expansion (12) for the free energy„condition (19)
can be written as

() gil2 ~licll (gi dll &())

~~F =~sF

where F~F and I'"sF are given by (Bl) and by (B4) in Ap-
pendix B.

More interesting is the transition between the PM and
SF phases since a tricritical point at D = , E for E—i——0
has been found. In the spin-flop phase the perpendicular
staggered magnetization rn~ is nonzero and this is the
only staggered magnetization to be considered with
respect to the PM-SF transition. Here we generalize the
above result for E~ &0 and find that the PM-SF transi-
tion is always second order for D ~ ', E. Above D—= ',E—
the transition changes to first order via a tricritical point
(see Fig. 1) at Ei which is determined from the condition
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TCP
O'E P.„A

end points have thus been found in our model CEPAA~

res ect to
E As. The latter two are equiv 1 t hva en wit

p o the permutation of the SF and the AF hases
(see also Table I).

e p ases

IV. HIGHER-ORDER MULTICRITICAL POINTS

I

1.Q

FIG. 4. Phase diadiagram with the critical end point CEPsA and
with the tricritical point TCPA for a=0.90, E =0.40.

order SF-AF
nisotropy the thermodynamic critical field f h f'&e o t e erst
-AF transition almost coincides with the thermo-

dynamic critical field of the PM-AF t

which umquely determine H and T versus D and E . 8
ary' g and Ei we obtain a surface of critical end

points in the (D E Tn e, i, T) phase space. Notice however, that
the critical end oint CEPp

'
CEPS requires a two-dimensional

order parameter (m ll and m ) and th f
19( ) definmg CEPsA differ from the definition of the criti-

cal end point CEP&A (Table I).
A very interesting critical end point appears for inter-

PM-SF as w
mediate anisotropies and small E . I h'n t is region the

while the PM-A ' ' '
r ig. e

as well as the AF-SF transitions are f t d
PM-AF transition is second order (Fig. 5). The

t ree phases are in equilibrium t
zs w ich is determined by the condition Fi M

——Fsi:
and (8 FiBrn' )T ir 0(Table——I). Three different critical

(21)

PM-AF tran
' '

As Ei is decreased, the tricritical surface TCP hAont e

points CEP
ransition changes to the surface of t 1 dcri ica en

p ~z along the fourth-order critical line (FOCP).
At the higher-order critical point 2 (Fig. 2) this ourth-
order critical line coincides with th b'e icritical surface.
The critical point 2 is defined by the four equations

cll —() (b~ dll) 0) (22)

T =0.581E, and H =0.977E. An analogous higher-order

4

The considered system can in general exist in a PM, a

ion to t
F, and two different AF phases. Th t AF

ong to the same symmetry group, but differ in the magni-
m. otice t at thetude o the magnetizations m " and m. N t

ground states of the SF and of each of th t AF
are twofold degenerate with respect to the interchan e of
the two sublattices. The ee p"ase transitions can incorporate
different higher-order critical points which form lines and

cussed two tricritical planes, three critical end planes, a
icritical lane1 p e, and one fourth-order critical line. Th

critical su au aces merge along higher-order critical lines or
ine. e

points which are denoted by numbers 1—7
'

Table II.
e icritica su aceAt large values of Ei (E )0.3E) th b' ' '

1 rf

TCP and a
sp its upon increasing D into a tricritical f'

ica sur ace
z and a surface of critical end points CEP . Th

s littinp
' '

g occurs along the higher-order critical line 1 in
ig. , which is defined by three equations (Table II)

a =all =bll=0 (b cll &0) .

5F J

I.Q
—~

5f

1Q ----, — S

TP {EPAA

1

l.Q

FIG. 5. Phase dia rara 1Q Asgram showing the critical end po' t CEP

are firs
~
——0). Here, the PM-SF and the AF-SF *

e - transitions
erst order. Notice that the slope f th fo e Irst-order transition

ine must always be continuous at any critical d

FIG. 6. Phase diagram for a=1.03, E =0.1.10. At the triple
poin t ermodynamic critical fields of three f'ree erst-order tran-
si ion ines coincide. For these values of the parameters TP is
close to, but not at CEPAA.



6434 34

TABLE II. Properties and structure of the higher-order rnulticritical points of the model. The nota-
tion for the multicritical points is explained in Table I.

Notation
(as Fig. 2)

1 line
2 point
3 line
4 point
5 line

6 line
7 line

Description

BCP + TCPA+ CEPsA
BCP + FOCP + CEPsA
BCP+ CEP~+ CEPsA
BCP+ TCPs+ CEPAA+ TP
CEPAp„+CEPAs + TP

CP+ TCPs+ CEPAs
TCPs + CEPsw + TP

Definition

a'=a ~~ =&I~ =0
a'=a ~I =b ~~ =c ~~ =0

a'=a Il =b'=0 c ~~'=4b ~~d ~~

at~=0, b"=4a'c', c~l'=4b~~dl~
al pi 0

a =b =Oi FpM ——FsF

critical point has first been discussed by Galam and
Aharony for anisotropic ferromagnet in a random longi-
tudinal field which is known to be in mean-field theory
equivalent to the uniaxial antiferromagnet in a uniform
field. "

By a further decrease in E„aregion with the critical
end points on the PM to AF transition, CEP~A, is
reached. Along the higher-order critical line 3 the bicriti-
cal surface splits into the surface of critical end points on
the PM-AF transition CEPzz and the surface of critical
end points between the PM, SF, and AF phases, CEPsz.
The line 3 is defined by three equations

() c lli 4g) lid II (g)
i d II )())

In this region of the phase space, however, the PM to SF
transition is already first order at low temperatures for in-
termediate D, and it changes via the tricritical point to
second order at higher temperatures. %hen the tricritical
point TCPs reaches the critical end point CEPsz, it be-
comes a triple point (TP) (Fig. 6, Table I), where three
first-order lines meet. Upon changing D and Ei, we get a
surface of triple points (Fig. 2) defined by the two equa-
tions FAF FPM FsF. T——he sur——face of triple points meets

SF

~See ~
]

AF

FIG. 7. Phase diagram for a=0.985, El ——0.155 showing the
new higher-order multicritical point 4 which involves the prop-
erties of BCP, TCPs, CEP«, and TP.

the bicritical surface in the multicritical point 4 (Fig. 2),
which is determined by the four equations

a —all —b =0 and cll 4blldll (24)

This multicritical point is a combination of a bicritical,
tricritical, triple point, and a critical end point. At this
point four phases are in equilibrium with each other (Fig.
7), three critical lines between the four phases are first or-
der and one second order. The higher-order multicritical
point 4 is new and it has not been obtained earlier in this
or any other system. This higher-order multicritical point
in our model appears for

a=0.985E and E, =0.155E

(2&)

T =0.27E and H =0.99E .

V. CONCLUSIONS

%'e have given a detailed study of multicritical proper-
ties in spin-1 uniaxial Heisenberg antiferromagnets with a
uniform field along the easy axis. The phase diagrams
have been constructed in the four-dimensional parameter
space of temperature, uniform field, single-site anisotropy,
and ferromagnetic next-nearest-neighbor interactions.
Our results have in particular confirmed the necessity of
treating the anisotropy exactly to get complete phase dia-
grams. Inclusion of ferromagnetic next-nearest-neighbor
interactions was found to have drastic effects on the mul-
ticritical properties.

A large and rich variety of known and new multicritical
points was obtained. A particular feature of the phase di-
agrams is the very new multicritical point [Eq. (24)]
which combines properties of bicritical, tricritical, triple,
and critical end points. The prediction of a new multicrit-
ical point [Eq. (22)] for antiferromagnets based on the
studies of random field ferromagnets is thus con-
firmed. " Our results provide a basis for a comprehen-
sive analysis of topology, hierarchy, and classification of
multicritical points.

Pure antiferromagnetic compounds with unaxial aniso-
tropy in the intermediate range D=l, on which our
model could be tested, are relatively rare. The most
promising way to check our predictions is therefore by al-
loying systems with different uniaxial anisotropy. Varia-
tion of the concentration produces a continuous change in
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the effective anisotropy. Such experiments were done on

cl —xCoxCl2'2820 which has competing Ising-Ising an

isotropies. ' The competing anisotropy problem has
nevertheless unsolved questions {for a recent review see
Ref. 16). We hope our results will stimulate search and

experiments on intermediate anisotropic pure and diluted

antiferromagnetic systems where rich multicritical
behavior is expected to be found.

APPENDIX A

The first three coefficients of the antiferromagnetic or-
der parameter I ~~ are

2p[1+ b, cosh(pA)]a II = (E—+2E& )[1+6cosh(pA)]+ [b, +cosh(I{3A)],

4P[1+b, cosh(/3A)]b II = ——,
'
P (a'} [4+6cosh(PA)]+P (a') [1+6,cosh(PA)]

/3(E ——2E, )m I" 'sinh{PA)[2 cosh(PA)+24+Pea'],

(A 1)

(A2)

12P[1 +b, cosh(P A)] cll= —~ P (a') [16+hcosh(PA)]

+ 6 p (a') [4+6,cosh(pA)] —
3
g'(a') hsinh(pA)m II'2'(E —2E, )

2P3(a )3[Sbll+b, sinh(PA}(E —2E, }m il~~~+2b llg cosh(PA)]

+p a'I 16b ii[1+6,cosh(pA)]+25(E 2E, )m II~4&sinh(pA)+ pg(E —2E~ )~(m II'2')2cosh(pA) j

—4Pm II' '(E —2E~ )sinh(PA)[cosh(PA)+ 5]
+2/3 (E —2Et) (mll' ') [2cosh (PA)+Acosh(PA) —1]

+Sh/3 (E 2E )m II—' 'bllsinh(PA) (A3}

Here and in the next expressions a'=2a +E+2E~, b, = —,exp( /3D}, A=——,(A', +Ab ). The derivatives of the antifer-

romagnetic order parameter are

(0) sinh(PA )

6+cosh(PA) '

m I" '=/3 (a') I2m' '[1+6,cosh(PA)] —b sinh(/3A) )

&& (2/3(E —2E~ ) [2m' 'sinh(/3A)[h+ cosh(PA)] —2 cosh (PA) —b cosh(/3A)+ 1 I
—[b, +cosh(/3A)] )

m II' '=( ——,', P'(a') I2m' '[4+bcosh(/3A)] —b sinh(/3A) I
—/3 (a') (E —2E, )m'" '[m' 'sinh(/3A)+cosh(/3A)]

2/3 (a'—) m II' '[1+hcosh(PA)] 8/3 a'—bllI2m' '[1+6, osch(PA)] —L3, sinh(PA) (

+4/3(E —2E
~ )( m I I'

) sinh(PA) [b, +cosh(PA ) ]

/3 (E —2E~ ) —(m'" I) I2m' '[2cosh(PA)+b cosh(PA} —1]—sinh(PA)[4cosh(PA)+b]I )

&&(2/3(E —2E& ) I 2cosh(PA)+b cosh(PA) —1 —2m' sinh(PA)[6+cosh(PA)] I +2[cosh(/3A)+ 6 ] )

(A4)

(A5)

Notice that for strong anisotropy when b ~0 (D~ ao )

the Heisenberg model becomes an Ising model and the
above expressions become equal to the coefficients listed
in the Appendix 8 of Ref. 3.

m, = 2sinh(PA, )exp(/3D) [a E(a,b)],1
0 z

Z, = 1+2 cosh(PA, )exp(PD),

{82)

(83)

APPENDIX B

The transition between the AF and the SF phase is al-

ways first order. At the thermodynamic transition tem-
perature the staggered magnetization in the SF phase, m,
and the staggered magnetization in the AF phase, m ~~, do
not tend to zero. Therefore the free energy must be calcu-
lated directly from Eq. (2).

The free energy of the AF phase is

I'AF Em, mb+E—)(m, ——+mb) ksTln(Z, Zb), —

where m, and Z, are determined from the coupled set of
equations

and

m, =—pc; c J(Jik~ S,
~
j)exp( —Pk, b)

1

ijk
(85)

Z = g exp( —PA,k) .
k

where A, is given by Eq. (5). The free energy of the SF
phase is

+sF (E + 2E, )m (——E —2E
~ )m I I —2—ks T 1nZ,

where the parallel and perpendicular magnetizations are
determined from the sublattice magnetization I, :
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Here, A, k are the eigenvalues and c;k the components of the eigenvectors of the sublattice Hamiltonian

l AYAH

L. Neel, Ann. Phys. (Paris) 18, 5 (1932};C. R. Acad. Sci. 203,
304 (1936}.

Multicritical Phenomena, edited by R. Pynn and A. Skjeltorp,
No. 106 of NATO Advanced Study Institute Series 8 (Ple-
num, New York, 1984).

~J. M. Kincaid and E. G. D. Cohen, Phys. Rep. 22, 57 (1975).
~E. Stryje~ski and N. Giordano, Adv. Phys. 26, 487 (1977).
Y. Shapira, in Multicritical Phenomena, Ref. 2.

6H. Rohrer and Ch. Gerber, Phys. Rev. Lett. 38, 909 {1977).
7C. J. Gorter and T. V. Peski-Tinbergen, Physica (Utrecht) 22,

273 (1956).

~I. Vilfan and B.Zeks, J. Phys. C 12, 4295 (1979).
9S. Galam and A. Aharony, J. Phys. C 13, 1065 (1980),
~DS. Galam and A. Aharony, J. Phys. C 14, 3603 (1981).
~'S. Galam, J. Phys. C 15, 529 (1982).
'2R. B.Griffiths, Phys. Rev. Lett. 24, 715 (1970).
' S. Galam, Phys. Lett. 100A, 105 (1984).
'~G. F. Tuthill„J. Phys. C 14, 2483 (1981).
~5K. Katsumata, M. Kobayashi, T. Sato, and Y. Miyako, Phys.

Rev. B 19, 2700 (1979); K. Katsumata, H. Yoshizawa, G.
Shirane, and R. J. Birgeneau, Phys. Rev. B 31, 316 (1985).

~6P. Mong (unpublished).


