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The Kondo limit of the periodic Anderson model is studied with use of the Gutzwiller method.
Because of the nonanalytic form of the energy gain due to hybridization, a small number of elec-
trons are promoted out of the f-level giving rise to an almost-localized Fermi-liquid state of the f
electrons. Both symmetric and asymmetric limits of the Anderson model are discussed and in the
former case the difference between the lattice and single-site problems is examined. A comparison is
made to other examples of almost-localized Fermi liquids which are based on the Hubbard model.
Finally the consequences of disorder in the Anderson model are examined.

I. INTRODUCTION

The discovery that certain lanthanide and actinide in-
termetallic compounds have Fermi-liquid ground states
rather than Ruderman-Kittel-Kasuya-Yosida- (RKKY)
ordered antiferromagnetic ground states came as a
surprise. Shortly after the first example CeAl&, with its
very large effective mass, was identified, ' Mott2 proposed
that it belonged to the class of almost-localized Fermi
liquids. This concept was introduced earlier by Brinkman
and Rice to describe the effect of the strong correlations
on the metallic state close to the transition to the localized
Mott insulating state. They applied their results to the
metallic phase of V20& near the metal-insulator transition.
Later Anderson and Brinkman pointed out that the
Fermi-liquid state of He had similar characteristics and
recently Volhardt gave an extensive discussion of the
almost-localized model and its application to He. The
discovery of superconductivity in some heavy-electron
metals increased the interest in these materials and an
analogy between their properties and those of He was
proposed by Anderson, Ott et al. , and Valls and
Tesanovic. In this paper we will examine this analogy
using the Gutzwiller method, which allows us to make a
direct comparison between the different systems that have
been proposed as almost-localized Fermi liquids. Short
accounts of part of this work have been published previ-
ously. '

The Gutzwiller method was formulated originally" for
the Hubbard Hamiltonian. A clear exposition of the
method was given by Vollhardt. In Sec. II we follow his
approach in our formulation of the method for the two-
band Anderson lattice. In the Anderson model the num-
ber of electrons in the f band is not fixed and is chosen to
minimize the energy. This leads in general to two varia-
tional parameters representing the number of f electrons
and, when the on-site f-electron Coulomb repulsion U is

finite, the number of doubly occupied f-sites. The
Gutzwiller method can also be used for a single-impurity
Anderson model. There is a difference between the
single-site and lattice models because in the first case the

f electron must return to the site it has left, whereas in the
lattice problem f electrons transfer between sites. We
confine our attention to the Kondo limit where the f level
is well below the Fermi energy. An effective single-
particle or renormalized-band Hamiltonian is obtained to
describe the ground-state energy and its derivatives and
the optimal choice of the parameters is determined varia-
tionally. Renormalized-band Hamiltonians have been ob-
tained by a variety of methods and we refer the reader
elsewhere for a review. ' There are differences between
our results and those obtained by other methods especially
for small values of the f-level degeneracy NI. The rela-
tionship of the present method to the other methods has
been clarified in a forthcoming article by Kotliar and
Ruckenstein' who have reformulated the Gutzwiller ap-
proximation in an elegant way as a particular mean-field
theory using an auxiliary boson approach. %e also should
point out that there are two other papers on the Gutzwill-
er method for the Anderson model in our literature. Both
have a basic similarity to our method although there are
some differences in detail. Fazekas'" concentrates on the
mixed-valence regime and does not consider the Kondo
limit of interest here. Varma, Weber, and Randall'
present numerical results in the mixed-valence and Kondo
limits. The overall results are similar but there seem to be
some differences in detail that we will comment on below.

In Sec. III we present the results for two specific cases.
First we study the symmetric Anderson Hamiltonian. In
this case the number of f electrons is exactly 1 but the
nonanalytic form of the hybridization energy allows one
to introduce a small number of holes and doubly occupied
sites in the f levels which are then optimized. In this case
for a simple band structure the hybridization gap trun-
cates the whole Fermi surface, and the ground state is in-
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sulating and has no Pauli susceptibility. Secondly we

study the asymmetric Inodel in which the bare f level is
below the Fermi energy and the intrasite f f-Coulomb
repulsion U~ m. In this model we obtain a metallic state
away from integral band filling. In both cases the
ground-state energy has a Kondo-like form but the ex-
ponent differs from the single-site result for a finite value
of Nf, the f-level degeneracy parameter. In the sym-
metric case this difference could be traced to the propaga-
ting terms that are present in the lattice problem but not
in the single-site problem. In the asymmetric case the
Fermi-liquid parameters may be determined. In our
scheme the higher Fermi-liquid parameters ( Fl", I ) 1 ),
as a consequence of the local character of the Fermi
liquid, are simply zero.

In Sec. IV, we consider the effect of introducing disor-
der in the conduction band and in the f levels. In the
former case one can easily show that if one assumes a
constant renormalization of the hybridization at all sites,
then the effect of the disorder can simply be transformed
away. In the case of f-level disorder this is not possible.
However, the assumption of a site-independent renormali-
zation is a severe one and we examine the conditions for it
to be consistent. This problem has also been considered
recently by Tesanovic. ' He finds a stronger sensitivity to
disorder than we do for disorder in the f level.

Section V contains some concluding remarks on the re-
lation of this heavy-electron problem to other systems that
have been treated within the almost-localized-fermion ap-
proach.

where I'„ is the projection operator onto the subspace of5f
a fixed nf P. is Gutzwiller s projection operator

P=g 1 —(1—g) g n;, ni
I l, or~i', cr'

(2.3}

and
~

'Iio) is a ground-state wave function for U =0.
The ground-state energy is given by

(qi[H i@) (2.4)

For the time being we assume no orbital degeneracy,
I. =1, but only the spin degeneracy. A generalization to
an arbitrary L is straightforward. Let M, Nfi (Nfi), and
D be the number of lattice sites, singly occupied sites by f
electrons with up (down) spin, and doubly occupied sites.
In the Gutzwiller method, the difficulty lies in the calcu-
lation of the expectation value of the kinetic energy term,
in our case, the mixing term. The original method has
been very much simplified by Ogawa, Kanda, and Matsu-
bara' and by Vollhardt. In their scheme we take into
account the effect of the projection on the doubly occu-
pied site by a simple classical statistical weight but main-
tain the quantum coherence of the phase of the wave
function

~

+o). We denote the number of configurations
with definite values of Nfl Nfi D by

II. DERIVATION QF EFFECTIVE
HAMILTONIAN

M
ND (M, Nf „Nf, ) =

ft

Xf, M —Sf,
D Xg, —D (2.5)

g Ck kaCka+ g ~kl(Ckafkla+fklaCka}
k, g k„l,o

Our starting point is the periodic Anderson Hamiltoni-
an which has the form The normalization integral of the wave function is given

by

(q'
~

+)= yg' N (M, N „N,)P(M, N „)
1+Ff g IIila+ T U g nilanil a'

1,o~l', e'

(2.1)
XP(M, Nf, ), (2.6)

where n;ia f;laf;la is the num—b—er oPerator for f electrons
at site i The dispe. rsion of the conduction electrons ck is
chosen to be linear and the band ranges —1 & e.k

& 1. The
f level, Ef, is placed below the center of the conduction
band so that the system is in the Kondo regime. The orbi-
tal degeneracy of the f states is denoted by the / quantum
number ( I =1, . . . , L) with a total degeneracy of Nf 2L——
(including spins). The mixing matrix element Vki is as-
sumed to be local ( k independent).

As a variational wave function for the ground state we
use a wave function of Gutzwiller's form. In the present
two-band (f and c bands) model when one projects out the
weight of doubly occupied f states, then the total number
of f clcctroIls dlmln1shcs. Tllclcforc wc need to spccIfy
the final number of f electrons per site nf, and to mini-
mize the total energy with respect to nf. The wave func-
tion is of the form

P(M, Nf )=nf (1 IIfa)

d (1 nf d}——
(nf, d)(nf, d)— — (2.8)

The difference from the Hubbard model is the existence
of the mixing terms. %"ith the assumption of a k-
independent V we can use the site representation. The
average for the mixing term from the f to the c state is

with nf Nfa/M, is ju——st the statistical weight neglecting
any spatial correlation. By using the dominant-term ap-
proximation for the sum gD, we get the relation between
the original variational parameter g and the fraction of
the doubly occupied sites d =D/M, which we will use as
a variational parameter,
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(eI c,'.f,.I
e&= gg"[N, (M —1,Nf. —1,Nf. )

+gND(M —1,Nf l, N—f 1—)]

)&P(M —1„Nf 1)—P(M, Nf )

x(4o Ic; f; I +o&, (2.9)

where 0 denotes the spin opposite to e.
By using the dominant-term approximation again we

get

(@Ic,'.f,.I
e}

=qi~& +o
I «~fi~ I +o& (2.10)

where the renormalization factor for the vertex is

9'1a =
Elf~

I
(nf~ d)—+g

(nf~ d)(n—f d)—
1 —nf +d

(2.11)

FIG. 1. Illustration of the four possible transitions: C,a) and
{b), removal of f electron from site i; (c) and (d), addition of f
electron at site j.

(2.12)

1s

The first term in the large parentheses corresponds to the
process of Fig. 1(a) and the second term to Fig. 1(b). On
the other hand for the transfer from c to f states, the re-
normalization factor of q2 defined by

&+ If':;.
I
+&

q"&~'lf ~
Eg = & IIO

I Heff I
po & + Ud (2.14)

of the effective Hamiltonian with a fixed nf,

pear always in pairs. Therefore the final result can be ex-
pressed by an expectation value

1
q2 = [(1 nf+d)—+g(nf~ d)] . —

1 —Sf~
(2.13)

The process shown in Fig. 1(c) contributes the first term
in the brackets, while that in Fig. 1(d) gives the second.

In the evaluation of the energy, these two vertices ap-

Heff(nf~) = Q skcke ko+Ef g n;~
k, o l, t7

+ g Vqo (nfcr)(ciofia+fi~icr) ~

1/2

where the renormalization factor is given by

(2.15)

qn(nfl) =q iaq2(

1
I (nf~ d)(1 nf +d)—+(—nf d)d +2[(n—f~ d)(nf d)d (1—nf+d—)]' I .

nf~(1 nf~)— (2.16)

The renormalization factor q is identical to that obtained
for the Hubbard model and used previously. '

There are two typical cases which are of interest. One
is the symmetric case Ef+ U= Ef, a symmetr—ic con-
duction band, and the total number of electrons per site
n =2. In this case the number of f electrons is precisely
one per site, and it is essential to keep U finite. The other
is an asymmetric case: Ef+ U & I Ef I, where the num-
ber off electrons per site is slightly less than one. For the
latter case we can take the limit of U~ oo, but the degen-
eracy of the f states is important as we will see below. It
is straightforward to generalize the present method to the
asymmetric case and to include orbital degeneracy. The
result is a trivial extension of the effective Hamiltonian
including the orbital degeneracy with a renormalization
factor for d =0 ( U~ ao ) (Ref. 10)

&.rr=&.rr gv f f— (3.1)

The Hamiltonian can be diagonalized at once, giving hy-
bridized bands

l4, +cr 2 I sk+Ef I e

+ [(sk —Ef +V.)'+ 4 V'1'"
I (3.2)

III. GROUND-STATE AND LANDAU PARAMETERS

A. Condensation energy and relation to Kondo energy

First we discuss the symmetric case. Instead of fixing
nf we can go over to the equivalent of a grand canonical
ensemble by introducing a Lagrange multiplier or a
"chemical potential" )Li~, leading to an effective Hamil-
tonian

l —nf
l Plf)~

(2.17)

where V =q (nf )V. The + ( —) label refers to the
upper (lower) hybridized band. We consider the paramag-
netic case. For the symmetric case, n =2 so that the
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lower band is filled leaving the upper band empty. The
number off electrons is given by

(Ek —Ef+I )
nf= . (3.3)I k, ~ 2[(ek Ef—+y )'+4V']'

The condition of nf ——1 is satisfied by putting the effec-
tive f level at the middle of the conduction band, i.e.,
Ef—P =0.

The expression for the ground-state energy reduces to

Eg —2—(1—+4V2) 1/2+2V21nv+d U, (3.4)

with the renormalization factor q =Sd. By minimizing
with respect to d, we get

—( U/8 V2]1

8V
(3.5) Nave vector

and the final result for the ground-state energy is

2~
—(U/SV )

g 2 (3.6)

The binding energy has a Kondo form but the exponent is
a factor of 2 smaller than the single-site Kondo prob-
lem, "

Tx' =2 exp( I /Jx p) =2 exp( —U/4 V ) .

In the Gutzwiller method, we neglect spatial correla-
tions in the evaluation of the statistical weight. In the lat-
tice problem we may justify the approximation on the
basis that the processes of hopping out from and into f
shells are slow processes and between those processes the
electron migrates to many sites as a conduction electron.
On the other hand for the single-site problem, the process
of Fig. 1(a) should be accompanied by (c) and (b) by (d)
since these processes can take place only on one site. The
combination of (a) and (d) or (b) and (c) is allowed only
for pairs of different sites and so can occur in the lattice
problem. Therefore the renormalization factor for the
symmetric single-site problem should be modified to

q =4d, (3.7)

Es ————,[1—(so—1) ]

leading to the correct binding energy of the single-site
Kondo problem quoted above.

Next we consider the asymmetric case. By changing
the electron number from the half-filled case we can have
a metallic ground state. We consider the case of
n = 1+eo (0 & eo & 1). After similar calculations as in the
symmetric case, we obtain

FIG. 2. Schematic band structure illustrating the bare con-
duction band of width 2, center 0, the bare f bands at energy

Ef, and the hybridized quasiparticle bands. kF is the Fermi
wave vector corresponding to a density of electrons n (i.e., in-

cluding f electrons), so is the conduction-band energy e(kF), and
the density off electrons nf & l.

2L —1 ~o 2L —1 &o—& —Ef
LV2 2J LV2

(3.9)

It should be noted that the deviation of nf from one is
nonanalytic with respect to V. It arises from a balance
between a large positive term proportional to (1—nf)
which represents the energy cost to promote an electron
from the bare f level to the Fermi level and a negative
term proportional to (1—nf)ln(1 nf) which r—epresents
the energy gain from the formation of the hybridized
bands. As a result a value of nf & 1 occurs for all values
of V and Ef. We note that a transition to a value nf =1
was reported in numerical calculations by Varma et al. '

as Ef moves well below the Fermi energy in a paramag-
netic state; however, in our analytic result this does not
happen. There can be a magnetic transition which leads
to nf ~1, as we discuss below.

B. Landau parameters

For the metallic ground state of the asymmetric case,
we can discuss Landau Fermi-liquid parameters, and the
low-lying excitations.

The specific heat is given by the density of quasiparticle
states

(3.8)
{~,—sf+a)'

Xo ——

qLV
(3.10)

The quasiparticle hybridized bands are shown in Fig. 2.
The binding energy has a Kondo form again. The ex-
ponent coincides with the single-site case in the large-
degeneracy limit (L —+ ap ), but differs by a factor of 2 for
the orbitally nondegenerate case (I. = 1).

The f-band occupancy is slightly less than one,

Since it involves q ', as expected, it can be very large.
The denominator corresponds to an effective Fermi tem-
perature or Kondo binding energy.

It is straightforward to calculate the charge susceptibili-
ty g, which is determined by the shift in the chemical po-
tential due to a change in the total number of electrons n

or equivalently co. A change in co hardly changes nf, and
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1— 4L —3

(2L —1)

2J Fo
1n

(2L —1)' qL V'

the hybridized quasiparticle bands ride with co. As a re-
sult the total charge susceptibility X, is that of the con-
duction band and the parameter Fo must be very large
since it must cancel the large effective-mass term. Wc
fllld

X, =1 and Fo=-(qLV')

The positive sign of E'0 also shows that there remains
strong residual repulsive interactions between quasiparti-
cles which will tend to suppress conventional s-wave su-
perconductivity.

The magnetic susceptibility, g, is obtained by taking
the second derivative of the energy with respect to the
magnetization m. Since the renormalization factor q is
sensitive to rn through the denominator in Eq. (2.17),
there is an important interaction correction. Using simply
a constant g factor for all values of l and neglecting any
orbital moment leads to a Wilson ratio

scattering amplitude sum rule. In the one-band Hubbard
model it can be shown quite generally that F&' are small
in the almost-localized limit.

The fact that the term F& is zero (or small) means that
the effective number of carriers is small, in fact
~(1—nf). The effective number of carriers enters the
plasma frequency of the Fermi liquid, co& and if F&-0
then co& ~ n /m ' ~ (1 n—f )/m T. herefore we can interpret
the effective carriers as holes in the f band and the large
effective mass as a way of reconciling the smail number of
effective carriers 1 —nf, with the large number of carriers
n No.te the Fermi surface contains n the total number of
electrons~onduction plus f electrons —and at the Fermi
energy the quasiparticle bands (in Fig. 2) have predom-
inantly f character. Therefore the simplest interpretation
of the quasiparticles is that they are f electrons whose
enhanced mass reflects their almost-localized and strongly
correlated character and the fact that they need to find an

f hole to move. Recent experiments on the plasma fre-
quency of the Fermi-liquid state in UPt3 imply a small
value for F'& in agreement with the above discussion.

=(1+Fo) (3.12)
IV. EFFECT OF DISORDER

ON THE HEAVY-ELECTRON
FERMI LIQUID

If L =1 (only spin degeneracy), X, &0 always or the
paramagnetic state is unstable towards magnetic ordering
in the Kondo limit that we consider. The present treat-
ment covers only a uniform magnetic state. The actual
magnetic order will of course be determined by the de-
tailed structure of the conduction band and the resulting
Ruderman-Kittel-Kasuya-Yosida interaction. If the orbi-
tal degeneracy is large the paramagnetic state can be
stable even in the Kondo regime where the effective mass
is large. The condition is

(eo —Ef —1)
2L=

2
(3.13)I.V

when Eq. (3.9) is used to rewrite the logarithmic term
The quantity (eo —Ef —1) is the depth of the bare f level
from the Fermi energy and ,'nLV is the w—idth of the
virtual level in the single-site problem. This ratio governs
the crossover between Kondo and mixed-valence regimes.
A similar conclusion, that the orbital degeneracy is essen-
tial to stabilize the paramagnetic state, has been reached
using different methods by Coleman, ' Read et al. , and
Yamada et al. '

Lastly wc turn to other Landau parameters. It has been
pointed out by several authors that momentum
dependence of the interaction effect may not be impor-
tant. In our scheme the rcnormalization procedure is also
essentially local and the renormalization factor q is a
function only of the average occupation numbers. There-
fore if we make distortions of the Fermi surface corre-
sponding to displaccments in k space, higher™-order spheri-
cal harmonics, etc., which do not change the average
numbers then there are no interaction effects beyond the
superposition of quasiparticles and so higher Landau
Fcrm1-11qu1d parameters arc zcr'o Bl thc pr'cscnt scheme.
Presumably in a more realistic scheme they could take
small values which are necessary to satisfy the forward

It is a remarkable experimental fact that small amounts
of disorder on either the lanthanide/actinide lattice or in
the conduction band have a dramatic effect on the coher-
ence. Indeed it often takes only a few percent of impur-
ities and the resistivity no longer drops dramatically as
T~O K and the coherent ground state is apparently des-
troyed. Now one can write quite generally the dc conduc-
tivity as

0= —', e S~W/(2m) (4.1)

where W denotes the set of the sites with impurities and
the potentials Wf and W,

'
act on the f electrons and the

conduction electrons, respectively. For simplicity we
neglect the orbital degeneracy in this section I.=l. A

where SF is the Fermi-surface area and 2' is the mean-
free path. Now the area of the Fermi surface Sz by
Luttinger's theorem that the volume enclosed is related to
the density of electrons, cannot vary appreciably so that
the dramatic drop in the dc conductivity at T =0 K must
come from a dramatic drop in W, from values W p~a to
values W-a. But this poses a serious problem since the
mean-free path is not renormalized by the large mass
enhancement and should be determined essentially by the
spacing between impurities. However, for dilute concen-
trations the interimpurity spacing is much greater than a,
hence an apparent paradox. This paradox was already
recognized in the case of the first almost-localized Fermi
liquid, namely, the metallic state of V203. The only
solution to the paradox is if the Fermi liquid itself is
unusuaHy sensitive to small disruptions of the coherence.

Wc consider then adding a disorder term to the periodic
Anderson Hamiltonian

Hd;, ——g Wf;f;~f; + g W„c(~;.
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similar model has been cons&dered by Tesanov&c. '

We start from a mean-field treatment of the impurity
scattering. The critical strength for losing the coherence
is given by a very simple argument. The ground-state en-

ergy for the asymmetric case as a function of nf is given

Eg =
y eo+(Ef —Eo)nf + T1lf

——,
' —qV ln(eo/co, ), (4.3)

where the lower cutoff ~, is co, =qV2 for the pure case.
With impurities the inverse lifetime ~ '= ,'(r, —'+rf')
plays the role of the cutoff. Now taking the derivative of
Eg with respect to nf at nf ——1 we get

nf ——1

=E/ so+1—+2V ln(so~) . (4.4)

If the slope is positive then nf &1 leads to q&0 and
therefore the system gains some energy by the coherent
hybridization process. The critical strength in terms of
the lifetime is

( '),„;,=Tx [ =eoexp[ —(eo—1 —Ef )/2V']) . (4.5)

However, the mean-field treatment overestimates the ef-
fect of the impurities giving a too stringent criterion for
coherence.

Let us consider the effect of the disorder in the conduc-
tion band. In this case the part of the Hamiltonian in-
volving only the conduction electrons is

H„„d——g e(k)ci,~k + g W', c;~; (4 6)
k, a iFM

This can in general be diagonalized by a transformation to
a new basis set of extended wave functions if

~
IV,

~
&&1.

Let us denote the new basis by [P„(r)J and the new opera-
tors by

c„=gP„'(r;)c; (4.7)

Since the f states are dispersionless we can make a cor-
responding transformation on the f states and define

f„=g0„'(r, )f,
' . (4 &)

Therefore if we make a uniform renormalization of the
hybridization q(nf ), i.e., independent of the site label i,
then the effective Hamiltonian H, rr can be diagonalized
and there is no change in the hybridization energy gain.
As in Eq. (4.3) it will be proportional to qV ln(qV ) and
the only change that arises comes through the change in
the conduction-band density of states. However, for weak
scattering (

~
W,

~

&&1) the change in the density of states
is negligibly small and so we conclude that within the
constant renormalization approximation, the renormaliza-

The hybridization terms in the new basis is again (in the
simplest (on-site) hybridization approximation] diagonal

g V(f; c; +H.c.)= g V(f„~„+H.c. ) . (4.9)

tion factor would be unaffected by disorder in the conduc-
tion band. This agrees with the mean-field results of
Tesanovic' who considered the same model. Note there
is no assumption here of Bloch coherence.

However, the problem here is the assumption of the
constant renormalization independent of the site. In the
presence of impurity potentials the number of the f elec-
trons is no longer constant but fluctuates from site to site.
We can estimate the fluctuation in the following way. Let
us define a local off-diagonal charge susceptibility Xf'
which can be obtained from Eq. (3.9) as

c l co—1 —Ef I Tgxf'= exp
2V 2V &o 2V

(4.10)

Biff 1 Tx
+C

2V 2V

Then the criterion is

(vf '),„,=2V or ~n;
~

8'f
~

=2V

(4.12)

(4.13)

where vf '=n;
~

IVf
~

/2V . This criterion disagrees with
the results of Tesanovic. ' In his calculation all the disor-
der in Ef, the bare f level, appears in the renormalized
level, Ef —p, i.e., p is fixed unlike our calculation where
JM varies from site to site in the presence of the disorder.

The criteria are much weaker than the mean-field re-
sult. The conclusion that potential disorder on the con-
duction or f-electron energies does not have a drastic ef-
fect is in agreement with that reached earlier by Fukuya-
ma. There remains the effect of disorder on the hybridi-
zation matrix element V. In the present theory it is clear
that this disorder would also be renormalized by the q
factor (a point which Fukuyama also agrees to ), but
nevertheless since the hybridization band gap is sensitive
to the hybridization strength the states at the hybridiza-
tion band edge could become localized as a result of such
disorder, relatively easily, leading to a drastic effect on the
transport properties. Such problems require further
study.

V. CONCLUSIONS

The model of almost-localized Fermi liquid was
developed initially for systems which are described by a

Note that if we change energy of the conduction-band
center at some site by IV, it will change the cutoff energy
so but not the argument of the exponent. The numerator
in the exponent is the depth of the f level measured from
the chemical potential but this stays constant even if an
energy W, is added. Now we demand that the fluctuation
of the number off electrons

[n, ~Xf'IV, ~'I'"
should be less than 1 —nf Tx/——2V, leading to the cri-
terion of the coherence

(r, '),„,=so, (4.11)

where v, '=n;
~

IV,
~

/so and n; is the impurity density.
On the other hand when the disorder is on the f elec-

trons the relevant charge susceptibility is the diagonal one
given by
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Hubbard Hamiltonian. In such systems the number of
electrons per site is fixed and is usually integral. The
band filling of the strongly correlated band is given. The
almost-localized state is achieved only close to the critical
boundary separating localized from itinerant behavior. In
the case of the metallic state of V203 (Ref. 3) this boun-
dary separates at low temperatures an insulating antifer-
romagnetic (AF) ordered state from the Fermi liquid and
in liquid He (Refs. 4 and 5) it is the boundary to the crys-
talline state. The small parameter which leads to a small
number of effective carrires and hence to a large mass, is
the closeness to the critical boundary.

The heavy-electron metals are described by the two-
band Anderson model and do not have a fixed number of
electrons in the strongly correlated f band. The small pa-
rameter originates in the weakness of the hybridization
process. This ensures the smallness of the density of ef-
fective carriers [d in the symmetric model, (1—nf ) in the
asymmetric limit]. There is no obvious inherent limit to
the size of d or (1—nf) and therefore to the mass
enhancement which varies as d ' or (1—nf) ' The.
competition to the localized state is represented here by
the competition to the RKKY AF ordered state. In the
Hubbard mode1 the closeness to criticality that can be
achieved before the onset of localization is strongly influ-
enced by the crystal structure and the resultant band
structure. Presumably here also the crystal structure
plays a role but the precise factors which govern the
choice between the RKKY and heavy-electron states
remain open. Clearly a generalization to a more realistic
treatment of crystal structure, and spin-orbit and crystal-
field effects is required.

The relationship of the Gutzwiller approximation to the
auxiliary boson and other methods developed for the
heavy-electron problem has been clarified greatly by the
very recent work of Kotliar and Ruckenstein. '

In conclusion we make a few comments on the physical
interpretation of the heavy-electron state. The approach
presented here is directly based on the Anderson Hamil-
tonian without making the Schrieffer-Wolff transforma-
tion to the Kondo Hamiltonian. The heavy-electron Fer-
mi liquid arises through the introduction of a small num-

ber of holes (and also doubly occupied sites at finite U)
into the f band enabling a hybridized band state to occur.
This introduces charge degrees of freedom in the f band
so that the density of states for electron-hole excitations in
the f band extends down to zero energy. Therefore in a
band description of the Fermi liquid the f band must ap-
pear at the Fermi energy and the Fermi surface must con-
tain the f-electron states. In the localized RKKY state
the f bands have no low-lying charge degrees of freedom
and the Fermi surface contains only the conduction states.
This difference is, in principle, measurable, e.g. , for a Ce
compound with an odd number of Ce atoins in the unit
cell.

Lastly we comment on the question of the nature of
heavy electron. In our description the simplest interpreta-
tion is that heavy electrons are f electrons. It is clear
from Fig. 2 that the quasiparticle states have predom-
inantly f character at the Fermi energy. Further the large
electronic entropy at 1ow temperature that is implied by
the large specific heat is clearly due to the f-spin degrees
of freedom and there is a large number off electrons (e.g. ,
= one per Ce atom). They move very slowly because of
the very small number of empty (and doubly occupied)
sites which is one way of looking at their heavy mass. Al-
ternatively their characteristic Fermi temperature is very
low and so their spin degrees of freedom have a very low
characteristic energy and hence lead to a large linear
specific heat as T~o K. So we conclude that the heavy
electrons are simply strongly correlated f electrons.
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