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The critical behavior of disordered single-particle systems without time-reversal invariance is

described by a nonlinear o. model formulated in terms of graded pseudounitary matrices. It is

shogun that the symmetry-breaking pattern of this model predicts the correct analytical structure of
the two-point Green s functions of the disordered system, which are expected to be singular (finite)

for localized (extended) states in the limit of vanishing frequency. The main purpose of the paper is

to obtain exact solutions for the graded nonlinear cr model on a Bethe lattice. A combination of
analytical and numerical methods is used to determine the critical behavior of all two-point Green's

functions. In contrast with other vvork on the graded nonlinear 0 model, no minimum metallic con-

ductivity is found, Instead, the averaged inverse conductivity has an exponential singularity at the

critical point.

I. INTRODUCTION

It is now quite generally accepted that disordered
single-particle systems in more than two space dimensions
may be in either one of two distinct phases. For strong
disorder, or energies far away from the band center, the
eigenfunctions of the random Hamiltonian are localized,
while for weak disorder, or energies close to the band
center, the eigenfunctions extend over the whole system.
What is still in dispute is what happens at the critical
point where the phase transition from localized to extend-
ed states occurs. Wegner' first conjectured that the criti-
cal behavior of (time-reversal noninvariant) disordered
single-particle systems may be described by a nonlinear o
model formulated in terms of 2 n X 2n matrices Q
[QEU(n, n)/U(n)SU(n)], with n =0 due to the replica
trick. This conjecture made available the perturbative
renormalization-group equations worked out for closely
related models and gave predictions for critical exponents
close to two dimensions. In addition to %'egner's non-

compact model, a corresponding compact parametrization
has also been in use. It is not clear whether the predic-
tions of these models can be made to agree in the limit of
a vanishing number of replicas, although this seems un-

likely in general.
In a more recent line of development, Efetov has intro-

duced a related nonlinear cr model, which avoids the use
of the replica trick altogether, at the cost of being defined
over a graded coset space. This model will be referred to
here as the graded pseudounitary nonlinear o. model. It is
my personal conviction, not widely shared at the present
moment, that among the various nonlinear o models pro-
posed, Efetov's model is the only one that is capable of
providing a true description of the localization transition.
This conviction is based on experience with some soluble
cases: The case of a single large random matrix ' and the
analysis of the model on a Cayley tree (Bethe lattice).
Further evidence comes from the observation that the
symmetry-breaking pattern for the graded model predicts
the correct analytical structure for the Green's functions

of the disordered system. This cannot be said of either of
the nonlinear 0 models formulated in terms of 2n X2n
matrices, n =0. Even from a purely technical point of
view, much is gained by making the initial investment of
formulating the localization problem with the use of grad-
ed algebras. I believe that it will be easier in the long term
to work with 4X4 (or 8X 8) graded matrices than to solve
the replica field theory for all values of n and perform the
analytic continuation n ~0.

Although the analysis of the graded pseudounitary non-
linear o model is still in its infancy, several facts are
known at this point. Its perturbation expansion agrees
with what is obtained from replica field theory, which
means that the e-expansion results (e=d —2) remain un-

changed. New insight is now emerging from the analysis
of the model on the Bethe lattice. This work was again
initiated by Efetov, ' who claimed, however, to find
some very startling results for the phase transition of the
model ("mobility transition") which seem difficult to
reconcile with the scaling theory of localization. " (In a
very recent letter, ' Efetov has even gone so far as to chal-
lenge the notion of universality and the existence of a re-
normalization group. ) Rather surprisingly, Efetov's
analysis provides neither a complete nor, in fact, a totally
correct picture of the mobility transition on the Bethe lat-
tice. It is the main purpose of this paper to clarify
Efetov's results and to complete his analysis. For reasons
of technical simplicity, I will restrict myself to the case of
unitary symmetry, i.e., to systems without time-reversal
invariance.

The results of this paper are summarized as follows.
On the Bethe lattice, the two-point Green's functions K'"
and K' ' [defined in Eqs. (3.1}]of the graded pseudouni-
tary nonlinear o model behave as

K'"(x,y;y, e)=—I' (x —y;y)+O(eo}
E'

=K' '(x,y;y, e)

(e infinitesimal) for y & y, (localized states). 1 ' (0;y }
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reaches a minimum value as y'~y, and goes discontinu-
ously to zero at the critical point y=y, . I' (x;y) for

~

x
~

&& 1 has the critical behavior.

m ~"
~ I' (x;y)=c

~

x
~

~ exp( —
~

x
~
/g), (1.2)

and I '"' exhibits a strong singularity near the critical
point:

I'"'(0;y)=A expI+[8(y —y, )] '
I . (1.4)

The correlation function I""'(x;y) again follows the law
(1.2) but with a different correlation length g and only in
the range 1 «

I
x

I
«4'. F«

I
x

I »4 the decay is pure-
ly exponential,

m i" il '"'(x;y) 0:exp( —ix
~
/g) . (1.5)

The two-point Green's function K' ' is more difficult to
control but behaves like K"' as long as

~

x
~

&&(. For
~

x
~

&&g and a~0, this function becomes qualitatively
more long ranged.

The present paper is organized in the following way. In
Sec. II the basic definitions for the graded pseudounitary
nonlinear o model are reproduced. The connection with
localization theory imposes several constraints on the
Green's functions of this model. Some of these are re-
viewed in Sec. III. The symmetry-breaking pattern of the
model is then discussed, and an order parameter is intro-
duced, in Sec. IV. The bulk of the paper is contained in
Sec. V, where the critical behavior of the two-point
Green's functions is analyzed for both localized and ex-
tended states on the Bethe lattice. My concludirlg re-
marks are presented in Sec. VI.

It should be mentioned here that localization on the
Bethe lattice has previously been studied within the
framework of the original Anderson model by Abou-
Chacra, Anderson, and Thouless' and by Kunz and
Souillard. ' I feel that it would be of considerable interest
to try and compare the results obtained in the present pa-
per with this earlier work. Unfortunately, there are
several differences that hamper such a comparison. First,
the nonlinear o model studied here has a unitary symme-
try, appropriate for disordered single-particle systems
without time-reversal invariance, while Anderson's model
applies to time-reversal invariant systems. Unbroken
time-reversal invariance requires the study of an analo-
gous nonlinear o model with orthogonal symmetry (or
rather, to be precise, orthosymplectic symmetry). It is not
clear whether the orthosymplectic and unitary models are
equivalent on the Bethe lattice. Second, the nonlinear sig-
ma model considered here derives from %egner's
orbital model in the limit of large X, whereas in
Anderson's model %=1. Third, the emphasis in the
present paper is on the determination of critical ex-
ponents. In the classic paper of Abou-Chacra et a1. ex-

where the inverse correlation length g
' vanishes linearly,

' 0-.
~ y —y, ~, and m +1 is the coordination number of

the lattice. These results are consistent with a sum rule
for I', Eq.. (4.12). On the side of extended states
(y&y, ),

IC"'(x,y;y, e)=1+I""'(x —y;y)+0(e)

ponents were not yet obtained. The exponent given by
Kunz and Souillard cannot be evaluated directly in the
nonlinear o model because it describes a Green's function
that involves an absolute value,

~

+(x)%'(0) ~, of the eigen-
functions. For these reasons a comparison with the two
quoted papers will not be attempted here.

II. NONLINEAR 0 MODEL
%PITH GRADED SYMMETRY

A complete definition of the graded pseudounitary non-
linear o model was given in Sec. 3 of Ref. 15. To set the
stage for what is to come, I will reproduce some of the
most important definitions; for quantities not defined
here, I refer to this reference.

The fields of the model are 4X4 matrices, denoted by
Q, which are elements of a graded coset space. They can
be written as Q = i To i—T ', with TEU( 1, 1/2) a 4 X4
graded pseudounitary matrix. Technically speaking,
Q EU(1, 1/2)/U(1/1)e U(1/1). A particularly useful
parametrization introduced by Efetov is

Qii Qii A)2

Q~i Qiz +iA22

(2.1a)

0 p]
A) ) ——0 ~

——A22, A)2 ——
2 0

0 p]
lP2

A2] ——

(2.1b)

Here, u and u are graded unitary [ u, U &U(1/1)], and the
eigenvalues ~l ~2 pl I pi I

e' ' pi=
I pi I

e' ' obey
the constraints

4+ l)Mi I

=1 (2.2)

which is equivalent to requiring that Q—:—1. Equation
(2.2) states that the vectors (A. i, Re@,i, Immi) and
(Aq, Repz, Imp&) are situated on the coset spaces
Hq-SU(1, 1)/U(1) and S2 SU(2)/U(1), respectively.

The action of the model consists of two terms. The
first term, So[Q], has an invariance under global transfor-
mations Q (x)~TQ (x)T ', TEU(1, 1/2). It represents
the usual interaction term of the nonlinear o model and
on the lattice takes the form

So[Q]= — g trgQ(xi )Q(xz ),
2

(x&,x2)
(2.3)

S,[Q]=i e g trgo 3Q (x ) . (2.4)

The dimensionless quantity e corresponds to the imagi-
nary part of the energy, g, that appears in the argument
of the Green's function for the disordered single-particle

where the sum runs over pairs of neighboring lattice sites.
y

' plays the role of a coupling constant. The second
term, Si[Q], breaks the global U(1, 1/2) symmetry down
to U(1/1)SU(1/1), i.e., to global transformations
Q(x)~UQ(x)U ' with U as in Eq. (2.1a). This term
has the explicit form



MARTIN R. ZIRNBAUER 34

~[Q]=~o[Q]+~i[Q] .

The normalization factor Z =f d[Q]exp( —S[Q]) can
be omitted because Z —= 1, due to the exact graded symme-
try.

As was mentioned in the Introduction, the nonhnear u
model studied here is derived most directly from the N
orbital model of Wegner. '6 A detailed exposition of the
mathematical formalism required for this derivation was
given in Ref. 17. This material will not be repeated here.
However, it may be useful to write down the explicit rela-
tions connecting the parameters y and 6 to some actual
random potential. Let us consider %egner's N-orbital
model on a d-dimensional cubic lattice with site-diagonal
and nearest-neighbor hopping matrix elements, which are
taken to be Gaussian distributed random variables with
zero mean and variance I, (1—2dr) and Ar, res, pectively.
For large X, we then have

y=2¹(irkp), e=nXrtp (2.6)

P(&)= [1—(E/2&)']'~' . (2.7)

These relations result from making a saddle-point approx-
imation and subsequently equating the interaction
strengths of the long-wavelength (small-momentum)
modes of the X-orbital model and of the nonlinear o
model, without taking into account the renormalization
caused by large momentum components.

III. T%O-POINT GREEN'S FUNCTIONS

The basic hypothesis underlying this work is that the
critical behavior of the graded pseudounitary nonlinear cr

model and the critical behavior of disordered single-
particle systems without time-reversal symmetry are iden-
tical. In particular, both systems are assumed to have the
same phase structure. Given the knowledge that we have
about disordered single-particle systems, this hypothesis
results in certain constraints (or expectations) for the
Green's functions of the model defined in Eqs. (2.1)—(2.5).
Several of these constraints will be listed below, and it will
then be explained why they fit very naturally into the
symmetry-breaking pattern for the o model. The results
for the Bethe lattice derived in Sec. V will also give sup-
port to the above hypothesis.

There exist only two nontrivial two-point Green's func-
tions for the present model

E"'(x y y e) =&Qii(x)Q»(y) &

= —,
' «rgkQ»(x)trgkQ»(y) &, (3.1a}

system. It will be important that the global
U(1/1)SU(1/I) invariance, here referred to as "graded
symmetry, " is an exact and hence unbroken symmetry of
the model.

Expectation values of fields are defined as usual:

(A(Q})=—J d[Q]A(Q)e-'(~},
Z

E"'(,y;y, )=(Q'"( )( —1)( }Q"'(y))

= —,
' ( trgkQ i2(x)kQ2, (y) ) . (3.1b)

The two phases of the nonlinear cr model can be dis-
tinguished by studying these Green's functions in the limit
of vanishing e. For y less than some critical value, y„
the E'"'(x,y;y, e) (n =1,2; x,y arbitrary) are expected to
diverge as e '. This defines the "disordered" or "high-
temperature" phase associated with localized states. On
the other hand, for y ~ y, all two-point Green's functions
should attain a definite finite value when e~O. In this
case the system is in the "ordered" or "low-temperature"
phase that corresponds to extended states. These con-
straints on the two-point Green's functions follow from
quite elementary considerations for the disordered single-
particle system; see Ref. 18.

The expected behavior of the E'"' invites the definition
of special correlation functions in the limit e~O. Two
quantities frequently used in the following are

I' (x —y;y)=lim eE"'(x,y;y, e),
e~O

I""'(x—y; y ) = lim [ ( Q'i'i (x )Q22 (y) )
p-+O

—&Qi'i(x) &&Q2z(y) &]

(3.2a)

= lim [E'"(x,y; y, e) —1] .
e~O

(3.2b)

IV. SYMMETRY BREAKING
AND ORDER PARAMETER

The symmetry-breaking pattern for the model (2.1)—
(2.5) is clearly laid out by the definitions given in Sec. II.
There will be a disordered phase (strong coupling, y & y, )

in which the global U(1, 1/2) symmetry is restored as the
symmetry-breaking term Si [Q] is removed. There will,
in general, also be an ordered phase (weak coupling,

I' and I""' will be referred to as the density-density
correlation function for localized and extended states,
respectively.

It is perhaps worth reviewing why the one-point
Green's function of the graded nonlinear a model,
(Q~~(x)), is noncritical and thus without interest. The
presence of the matrix element Q&~ (x) destroys the graded
symmetry of the integrand, but only imperfectly so: one
of the gradual unitary subgroups in U(l/1)SU(l/1) is
broken but the other one is left intact. Due to this residu-
al graded symmetry, the functional integral (Q) can be
evaluated trivially, and the result is that it is simply given
by the value of the integrand at the origin of the coset
space, Q = icri-

( Q~~p(x)) =( ia3)ape— ' = i( —1)i' ', (—3.3)

which is independent of y and e. [The origin of the coset
space will sometimes be denoted by Q = —icr3 and some-
times by (A, i, A2}=(1,1).] By the same reasoning, two-
point functions that involve only matrix elements of Q in
the 11 block, say, are trivial. For example,
(Q" ( )Q "(y)) —= —1.
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y & y, ), where this symmetry is spontaneously broken;
that is to say the symmetry is not recovered in the limit
e~O. In the following, I will make these statements more
concise, and I will indicate why they are consistent with
all that is required of a symmetry-breaking pattern which
is to describe the localization transition.

For a given, infinitely extended lattice in d dimensions,
let us pick an arbitrary site x and integrate e over all
matrices except the one belonging to that site, Q =Q(x).
The result of this integration is a function of Q, denoted
by F(Q). Because graded symmetry is exact, F(g) de-
pends only on the two (independent) graded invariants
that can be constructed from the matrix elements of Q.
These are the "eigenvalues" Xi and A,2, see Eq. (2.1b):

F(g)=F(UQU ')=F(Ai, kz) . (4.1)

Given the function F, we can calculate the one-point
Green's function, and the diagonal part of the two-point
Green's functions:

&g,","( )&=f di(g)g,","F(g),

K'"(x,x;y, e)= f dp(g)QIigz2F(g),

K' )(x,x;y, e)= f d)M(Q)g)2( —I)( lgziF(g) .

(4.2a)

(4.2b)

(4.2c}

{Q~~p(x) ) = i ( —1) 'F(—i erg), —

K'"(x,x;y, e)=1+f dpi f dg2F(A), Az),

(i) ao +i A i+AyK' )(x,x;y,e)= f dA, ) f dl2 F(&i,&2),
1

(4.4a)

(4Ab)

(4.4c)

where in the second equation I have used that
F{ lcTi) =F(1,1)=—1, another direct consequence of the
exact graded symmetry; see Eq. (3.3) and compare to Eq.
(4.4a).

I shall now argue that F(g) is a convenient order pa-
rameter that can be used to label the two phases of the

The integrals over the graded matrix Q can be reduced to
ordinary real integrals by using an integral theorem prov-
en in Ref. 15. This theorem states that the integral of any
function f(g} (with analytical properties as defined in
Ref. 15) is given by

P = —E0'3

ce +1
+ f dpi f dpi(A) —Ag) f4(A), Az) .

(4.3)

Here, f4 is the coefficient of the highest term in the Tay-
lor series expansion of f(Q) with respect to the anticom-
muting variables parametrizing the matrices u and U in
Eq. (2.1a). (If this coefficient has a dependence on the an-
gular variables Pi and Pz in addition to that on A. i and A, 2,
then an angular average is to be taken; see Ref. 15.) Ap-
plication of this theorem to the integrals (4.2) yields'

system. Let us first discuss what happens in the "disor-
dered" phase where the U(1, 1/2) symmetry is restored as
@~0. Symmetry restoration implies that I' becomes in-
variant under U(1,1/2) in this limit. The only U(1,1/2)
invariant that can be constructed from a single matrix Q
is the trivial one, F=const. Formally, this is expressed
by

lim lim F(A, ),Az, y, e)=1 (y &y, ),
g-+0 V-+ ce

(4 5)

where V~ as denotes the thermodynamic limit, and the
parametric dependence of F on y and e has been included
in the hst of its arguments. By detailed inspection of the
integrand and counting powers of e, I was able to show in
Sec. 6 of Ref. 15 that the leading behavior of F (and of
other functions) in the limit e~O can be extracted by ab-
sorbing one factor of e into each of the integration vari-
ables. In the present context this means that F can be
written as

F(a, ,k, )=f(ek„ea,)+0(e) . (4.6)

Assuming a definite form for the function f, we see that
the convergence of F to unity as e~O is uniform in A,2,
but pointwise in A, i. Because the latter integration variable
is noncompact, symmetry restoration causes the two-point
functions to be singular at e=O. The order of the singu-
larity is obtained by inserting (4.6) into Eqs. (4.4b) and
(4.4c):

K'"'(x,x)=f dl, i f dA2f(el, „ek2)

00 1
N 67,0

0
(4.7)

which is precisely what is required for localized states.
On the other hand, for sufficiently weak coupling and

dimension d & 2, the global U(1,1/2) symmetry is expect-
ed to be spontaneously broken. That is,

lim lim F(A, ),Ai, y, e)=F(A, ),A2, y) (y&y, ), (4.8)
e~O V-+ co

with F a function that decays as A, i and A.z depart from
the origin of the coset space, (A, i, A2) =(1,1). F will actu-
ally have the (somewhat stronger} property of being nor-
m alizable; this is what is needed to make the
K'"){ , xyx, e} finite at e=O, which is the proper behavior
for the two-point Green's functions in the regime of ex-
tended states.

Assuming henceforth the equivalence between localiza-
tion and the graded nonlinear sigma model, I will fre-
quently use (and have already used) the terin "localized
states" when what I really mean is the phase of unbroken
symmetry. Similarly, the word "extended states" will be
used as synonymous with the phase of broken symmetry.

The remainder of this section is devoted to the two-
point functions K'"'(x,y) for x&y. These can be calculat-
ed from a generalization of the above function, F(Q,Q'),
obtained by integrating e over all matrices except two,
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namely Q =Q (x) and Q'= Q (y). Just as in the case
x =y, the symmetry-breaking pattern implies that
K'"'(x,y;y, e) o: e '(e ) for y & y, (y ~ y, ), e infinitesimal.
A less trivial result is that

lim eK' "(x,y;y, e) = lim eK' '(x,y;y, e)
p~{j p~o

(4.9)

for localized states. A brief sketch of the proof is as fol-
lows. (I strictly adhere to the notation defined in Ref. 15.)
(i) Study the transformation behavior of the matrices Q
and Q' under U(1/1)SU(1/1). (ii) Use this to find all
U(1/1)t8IU(1/I) invariants that can be constructed from

Q and Q'. Some examples are found in Eq. {5.46). (iii)
Perform the rescaling of variables appropriate to the limit
@~0 for localized states [see Eq. (6.20) of Ref. 15]. (iv)
Expand F(Q, Q') with respect to the nilpotent terms ha ",
bu, b,f3", and b,P. (v) Combine the result of this expan-
sion with Eq. (5.15) of Ref. 15 and a similar expression
for K' and count powers of e to show that only the term
proportional to hrg*bab f3*bP survives in the limit @~0.
The relation (4.9) then follows. This is a very pleasing re-
sult because the underlying disordered single-particle sys-
tem from which the nonlinear cr model is derived has a
corresponding property:

1 1
limy x x y y

o E —iq —H E+ig —H

1 1=lim q x
o F. —ig —I 8+i q —8

(4.10)

g(Q' ( )( —1){")Q"'(y))=—[(Q'( )) —(Q "( ))].
2

([...],„denotes the average over the disorder. ) The global
U(1, 1/2) symmetry of So[Q] results in a Ward identity
for K"'.

V. BETHE LATTICE

Although the model (2.1)—(2.5) has the general form of
a nonlinear o. model, attempts at its exact or approximate
solution face difficulties that are even more severe than is

usually the case with models in statistical mechanics. The
model differs from the standard nonlinear cJ model in two
major respects. (i) The appearance of Grassmann vari-
ables makes the model intractable by numerical methods,
at least in the form (2.1)—(2.5); it is also unclear whether
mean-field techniques can be applied. (ii) The noncom-
pact symmetry of the bosonic-bosonic variables has the
consequence that the various observables are nonanalytic
at y =0; this rules out the use of standard strong-coupling
expansions in the analysis of (2.5).

For the case of localized states, it was shown in Ref. 15
how to eliminate the Grassmann variables and formulate
a Monte Carlo algorithm that is (or appears to be) compu-
tationally feasible. It is not advisable, however, to venture
into large-scale numerical simulations without seeking a
good qualitative understanding of the model first. It was
partly for this reason that I turned my attention to the
analysis of the graded pseudounitary nonlinear cr model
on the Bethe lattice (also referred to as the "Cayley tree").
Simplifications due to the absence of closed loops on the
Bethe lattice make this model tractable by analytical
means, and it should be possible to work out the nature of
the mobility transition for this case. Results obtained in
Ref. 15 agreed with a preliminary account of Efetov's
work to the extent that the results overlapped. However,
as explained in the Introduction, recent further publica-
tions by Efetov' ' have motivated me to take another
look at the problem.

On the Bethe lattice, evaluation of the functional in-

tegral (2.5) is equivalent to solving a nonlinear integral
equation; this simplification is what makes the problem
tractable. Introducing a function F(Q) by F(Q)
= I' +'(Q), with m +1 the coordination number of the
tree, I write the nonlinear integral equation in the form

(4.1 1)
&(Q)= f dp(Q')L(Q;Q')D(Q')& (Q'), (5.1)

QI' (x —y;y)—:1 {y~y, ) . (4.12)

This constraint will be important in Sec. V A.

When combined with this identity and the triviality of the
one-point Green's function, Eq. (3.3), the relation (4.9)
yields a sum rule for I'

where the kernel I., the symmetry-breaking term D, and
the invariant measure dp, (Q) were defined in Ref. 15.
Due to the graded symmetry of L and D, the solution Y'

is a function only of the "eigenvalues" A, , and A.2.
' '

Eq. {5.1) can be reduced to an integral equation in just
these two variables by applying the theorem (4.3) to the
Q' integral. Using that D and I' depend only on A, 'i and
A.2, we easily f1Ilcl

ao +1
F(Ai, A2)=exp[ —y(Ai —Ap)]+ f dpi f dk2(X'i —Ap) L4(ki, Ai', k'i, i2)D(Ai, A2)I'~(A, '„k~), (5.2)

where L4 is obtained by expanding L (Q;Q') and integrating over P„Pq, see Sec. IV and also Ref. 15:
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t

L4(~i ~2'~'i 4)=e " ' ' ' '
4 [ IPioi lli(X IPiPi I

)lo(l IIJzPil )+ IP2IL2llo(r lvi 'i
I
)li(1' lvzu2 I )]

+ I [{~i—4)'{~'i—4)'+ lou 2 I

'+
I s w'i

I

'
4

+ ~ lieu i I'+ z I vw2 I']Io{r li i i I
)Io(1' li 2jul I

) —2{~i—4){~'i—~z)

x[ liuipi I li(y I pi@i I
)lo{1' Iiu2iu21) I s u'z

I
lo()'

I wiiui I )Ii{&liM2iMl I )]

+ i I
iuiiit'i

I
'+2(r

I s iiui I
)Io{)'

I iMu2 I
)+ ~ I va 21'Io{)'

I
iuiiir i I

)12{)'
I iud 2) l

Efetov'o has given an integral equation for Y that is
equivalent to Eqs. (5.2) and (5.3) but is much more com-
pact. The equivalence between the two forms of writing
the equation can be shown by using a standard recurrence
relation among modified Bessel functions, I2(z)
= Io(z) —{2/z)l i (z).

Efetov' has analyzed Eq. (5.2) for y~0 and y~w,
and he found that the solutions Y in these limits corre-
spond to localized and extended states, respectively. It
then follows that the system undergoes a phase transition
("mobility transition") at some finite value of y, y=y, .
In the sequel, I will reanalyze the critical behavior of all
two-point Green's functions at this point.

A. Localized states revisited

It is suggested by the general discussion of Sec. IV (and
confirmed by the explicit calculations of Refs. 10 and 15)
that llm& oY(ki, k2', y, e) =1 for all Ai and Az when states
are localized (y ~ y, ). For e infinitesimal, the solution Y
can be written as Y(A, i,A2)=g(ek, i). Y depends only on
the combination eA, i because the symmetry-breaking term
has the form D =exp[ —2e(A, i

—A2)]. By making the sub-
stitution A, i

——e 'e', letting e—+0, and performing the in-

tegral over A,2, we can reduce Eq. {5.2) to an integral equa-
tion in the variable t only:

1((t)=f dt'Lr(t —t') (dt')P (r'), (5.4)

where d (t) =exp( —2e'), Lr exp[ ,
' (t——t')]I—r(t—t') and-

Ir was defined in Ref. 15. The critical behavior of the
solution iI( of Eq. (5.4) near y=y, was studied in Refs. 10
and 15. It was found that the solution tends toward a de-
finite limiting shape as y~y, and then abruptly collapses
to the trivial solution /=0 at y=y, . This implies in par-
ticular that I' (0;y) goes discontinuously to zero at the
critical point.

In Ref. 15 also I' {x;y) for x&0 was considered, and
an exponential decay with

I
x

I
was found. Unfortunate-

ly, I failed to interpret these numerical results corrcetly,
not realizing that I' (x;y) (and, in fact, all correlation
functions) cannot but decrease exponentially, due to the
exponential growth with distance of the number of neigh-
bors on the Bethe lattice. The objective of this subsection

is to show that the "weighted" density-density correlation
function (weighted by the number of neighbors) does ex-
hibit interesting behavior.

For the present purpose, it is convenient to organize the
evaluation of 1 ' in the following way:

5$'"(t)=(m +1}f dt'L„(t t')—
xd (t')P '(t')5$"'(t'),

5$"'(t)=m f dt'L, (t t')d(r')g —'(t')5$'"(t'),

51('i"(t)=m f+"dt'Lr(t —t')d(t')p '(t')Sg'i' "(t'),

&( lx —y I

)I' (x —y;y)=2 f dtd(t)P (t)$f'r'(t) .

Here, p =
I
x —y I

is the distance between the sites x and

y, and N(p),

(5.5)

&(0)=1, &(1)=m+1, E(2)=(m+1)m, . . .

X(p) =(m +1)m& (5.6)

denotes the number of neighbors at a distance p.
There exists a remarkable connection between the above

sequence of equations and the integral equation (5.4).
Suppose that we were to perturb the solution of Eq. (5.4)
by an infinitesimal amount, $~$+5$' '. The evolution
of this perturbation under iteration of Eq. (5.4) is
governed by Eqs. (5.5), for the linear operator
M(t;t')=mL~(r t')Z(t'), Z(t—')=d(t')f '(t'), enter-
ing these equations is precisely the operator obtained by
linearizing Eq. (5.4) around its solution 1(. There are two
immediate conclusions that can be drawn from this obser-
vation. Qn the one hand, the required stability (for
y &y, ) of the solution 1( with respect to small perturba-
tions implies that 5$'i"(t) goes to zero for all t as p~ co.
On the other hand, the observed increase' ' in the num-
ber of steps needed to reach convergence in the iterative
solution of Eq. (5.4) is a direct signal of the appearance of
long-range correlations in I' (x —y;y).

The evolution of the "perturbation" 5P' '(t)=e'P(t) is
best analyzed by introducing the eigenfunctions of M. It
is rather difficult to get a handle on these eigenfunctions



MARTIN R. ZIRNBAUER 34

by analytical means but, fortunately, this will prove un-

necessary. Notice, first of all, that the operator M has a
continuous spectrum since the integration domain is un-
bounded from &low and

M(r;r') mL, (r r'—}=me" ' '"l,{r r'—)

for t~ —ao. Notice also that M is not invariant under
the interchange of its arguments t and t'. This means
that M is not Hermitian in an appropriate functional
space, and its eigenfunctions are not orthogonal with
respect to the unit weight in this space. However, if fz(t)
is an eigenfunction of M, then e '~ v'Z(t}fz(t) is an
eigenfunction of the symmetric kernel v'Z(r)l„(r
—r')i/Z(r'). We therefore expect the pz(t) to satisfy
orthogonality relations like

I

f dr e 'Z(r)g, (t)g~(r)=
P

(5.8)

where W~ depends on how we normalize the fz. The cor-
responding completeness relation in the appropriate func-
tional space takes the form

e 'Z(t) f W~dp g~(r)g~(r') =5(r r') . — (5.9)

Due to Eq. (5.7), the asymptotic behavior of the eigen-
functions for t «0 is given by

liz(r)=e'~ sin[ pt+5—(p)] . (5.10)

With the normalization chosen in (5.10), Wz will be regu-
lar and nonvanishing at p=0 (i.e., limz OW&

——Wo &0), as
is suggested by the orthonormality of the functions
i/2/me'~ sin(pt) over the interval ( —oo, O] with weight
e '. We also need to know how the "phase shift" 5(p)
behaves at p=0. The continuity of the eigenfunctions in
conjunction with the fact that the term Z(t) forces them
to approach zero near i =0, requires that. the ratio 5(p)lp
tend toward a definite limit as p~O. In other words,

t «0. Using Eqs. (5.7), (5.10), and the fact that lr(t t—')
is even in r —t we find that

map ——exp[ —ao a—2p +0 (p ) ] . (5.14)

Note that az is related to the eigenvalue cur(8) used in Ref.
15 by v&

——
d'or( —,'+ip) T. he equation for the critical point

y, derived in Refs. 10 and 15 takes the form mxo ——1,
which implies that ao ——ao{y—y, )+O((y —y, )') near
y=y, . According to the central limit theorem of statis-
tics, we may now put

=C fx
/

~exp( —/x //g), (5.16)

where g
' =ao cc

~ y —y, ~

vanishes linearly at the mobili-
ty edge. "

It should be pointed out that the power law proportion-
al to

~

x ~, 5= ', , is con-sistent with I' (0;y, —)&0
and the sum rule (4.12),

i=pl' (x;y)= g X(p)I' (p.;y) . (5.17)
x p=0

For I' (0;y, —) & 0 the sum rule can only be conserved if
5 & 1. Conversely, a smaller value of the exponent,
0&5&1, would necessitate the continuous vanishing of
I ' (0;y) at y=y, . It should be added that the scaling
behavior (5.16} is completely confirmed by the numerical
results given in Ref. 15 and their subsequent extension.

(5.15)

Finally, we use that 5$&
' and the integral in large

parentheses in Eq. (5.13) are both linear in p for p small.
[Both statements derive from the asymptotic form (5.10)
and the property (5.11) of 5(p).] The resulting expression
for the (weighted) density-density correlation function is

—a ~x~N( ~x
~

)I' (x;y)=constXe ' f dpp e

5(p)=pro+O(p') . (5.11)

These considerations put us in a position where we can
evaluate the long-range part of I'~. To do so, we first
"Fourier analyze" the initial perturbation 5$' '(i) in terms
of the eigenfunctions of M:

5P~ '= f dr e 'Z(t)g~(t)5$'"(r) . (5.12)

x 2 f «d(r)p (r)f,(r) . (5.13)

The discussion now focuses on the expression (ma. ) '"
~

for
~

x
~

&&1. The eigenvalue a~ can be obtained by act-
ing on f~(t) with Lr(r t') in the asym—ptotic domain

The evolution of 5$~
' is now obtained simply by succes-

sive multiplication with the corresponding eigenvalue Nl Kp
of M: 5$'~'=(m + l)m~' 4'5$'o'. We finaBy invert
(5.12) using the completeness relation (5.9} and insert the
result into the last of Eqs. (5.5). This gives

E(
i
x

i
)I' (x;y)

f W~dp(ma&) '" ~5'

B. Extended states

After this addendum to previous work, we turn our at-
tention to the region of extended states. Analysis of this
phase mill require considerably more effort, as is suggest-
ed by a quick glance at Eqs. (5.2) and (5.3), or at Eqs. (17)
and (18) of Ref. 10. It will prove useful to develop our in-
tuition about the properties of this integral equation by
looking at numerical results first.

According to a discussion in Sec. IV, we expect the glo-
bal U(1, 1/2) symmetry of the system to remain broken as
e—+0 for y & y, . The expected finiteness of all two-point
functions in this limit leads us to seek solutions 7 that de-
cay as A.i~00. If such decaying solutions exist (and it
will be demonstrated below that this is indeed the case),
then we can take the limit e~O right under the integral
sign in Eq. (5.2), for, under these conditions, the conver-
gence of Y(A, i,kz, y, e) to Y(A. i, lz,'y, e=O) is uniform in
A, , and A,z. We accordingly put D~ 1 in Eq. (5.2).

It should be pointed out here that the resulting equation
has Y—= 1 as a solution for all values of y. This follows
from the fact that the kernel L(Q;Q') is normalized to
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unity„p ' I. ;
' =1.' However, or y ~ y', ex-

tended states) this constant solution is unstable with
respect to the addition of a small symmetry-breaking
term, i.e., it cannot be reached by the procedure of first
taking e&0, then solving the integral equation (5.2), and
finally letting @~0. The constant solution must therefore
be discarded for y & y, .

The nonlinear integral equation for F, Eq. (5.2), is the
appropriate equation to use when A,

&
is large. However, as

y approaches y, from above, the solution F will be seen
to approximate 1 very closely for a large range of values
of A.„ 1 &A, i &A. In this range it is therefore better to
consider an equivalent integral equation for the deviation
of I from unity. This greatly improves the numerical
stability, and it also helps the analytical discussion in Sec.
VB2. Following Efetov, ' we put F=1—u(A, , —A,z). We
also use the relation quoted in the text below Eq. (5.3),
and the identity

ot) +1
exp[ —y(&i —~2)]+f «', f «2(&i —&2)-'L4(&i, &2 ~i ~2) (5.18)

which derives from the normalization property of the kernel L (Q;Q'). Equation (5.2) with @=0 can then be rewritten as
a nonlinear integral equation for the quantity u:

u =k4 [mu —X(u)] . (5.19)

Here, K is an integral operator with kernel

CO +i
(E4 u)(z„xz) =f dX', f dazed(z, ,~z;X', , X;)u (X'„X;), (5.20a)

+(~1 ~2 ~l ~2)= e " ' ' ' ' [(~i~i+~2~2)io(y I l iP'i
I
)Io(y I Pzl z I

)
2

—
Ii i 'iIIi(y I) i 'i I)IO(y Ii a 21)+ Ii a 2IIo(y lviw'I)Ii(y lviv'i I )]

and X is a polynomial in u and the difference (A, i
—Az),

X(u) = [[1—u (A i
—Az)] +mu(A i

—Az) —1I/(hi —Az)

= g c~(m)ui'(ki —Az)t' ', cz(m) =( —11
p=2

(5.21)

ao +]f dA, 'i f dA, 2K(A, i, l,z', A, 'i, l.z}

=f dA, ', f dizK(1, 1;)(,'i, Az)

f dpi f dkze ' '(Ai+Az)=1.

(5.24)

Some properties of X have been discussed by Efetov. '0

(Note that X is denoted by I' in Ref. 10.) The kernels L4
and E are connected by the relation

L4(A, uzi'A'i Az)=K(ki Az', A'i, lz)(Ai —kz)(k'i —Az)

(5.22)

E has the interesting property' that it can be expressed
solely in terms of the invariant product
ki'A, i=A iA i

—
p [iuilti+(imi ) oui] ol1 t11e hypelboloid

SU(1,1)/U(1) =Hz, and the invariant product
4.~2=44+ 2 [I zi 2+(i 2)'pz] on the sphere
SU(2)/U(1) =Sz ..

K(A, A, 'A, '
A, ')= y 2~ dk 2~ dk' —@[A,l.k )

—A,2-%, 2)
1~ 2~ 1~ 2

X(k,i.k i+f2 A, z) .

An important consequence of this invariance is that

From the invariance of K we must not conclude, however,
that the solution too is invariant on HzS2, for the sym-
metry on this space is explicitly broken by the factors
(A, i

—Az) appearing in the definition of X. We deduce
from the properties of F, ' ' F(1,1)=l, l & F &0, and
limz F(h. i, kz) =0, that u (1,1)=c & oo, u & (A, i

—)iz) 'Vli, kz, and u A,
&

' as A, i oo.

1. Numerical solution

The numerical solution of Eq. (5.2) or, equivalently, of
Eq. (5.19) is a nontrivial task which is, however, some-
what simplified by the positive definiteness of the kernels
L4 and K. Equations (5.2) and (5.19) are integral equa-
tions in two variables, one of which is noncompact, and
this places considerable demands on both storage and
computation time. As the properties of these integral
equations became unravelled, I gradually settled for the
numerical method outlined below.

For reasons indicated earlier, I chose to split up the in-
terval 1&k] ~ Oo into two regions. In the first region,
1 (A. i & A, Eq. (5.19) was used, and in the second region,
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A(A, t & oo, Eq. (5.2) with Eq. (5.3) or, rather, Efetov's
simple form' of this equation. The point A was chosen
so as to satisfy the condition 1'(A, A2)=0. 5. [We will see
that as y ~@„Abecomes large and F(A, A2) independent
of A,t.] Both equations (5.19) and (5.2) were discretized,
with mesh points chosen to be equally spaced in kz, and in
the variable t =1ni, &. Typically, 5 to 10 points were used
in A, z, and several hundred in t. Of course, only a finite
number is needed since we are looking for solutions that
decay as A, t~ at . The adequacy of the discretization pro-
cedure was checked by verifying the relations (5.18) and
(5.24). Actually, the first of these relations is not easy to
preserve under discretization, due to an (integrable) singu-
larity at A, ', =A,z

——1. This does not cause any numerical
problems, however, as it is Eq. (5.19) and not Eq. (5.2)
that is used for small values of A, ~. (With increasing X),
contributions from the singular point become weaker be-
cause of the finite range of L4.) The integral equations
were solved iteratively, with an initial function
1'o(k, t, A2) =exp[ —P(A,

&

—A2)]. This initial function is
suggested by Efetov's analysis' of the metallic limit
P~ 00 ~

Let me now describe the features of the solution u to
Eq. (5.19) as found by this numerical procedure; all of
these features will be explained qualitatively, and to a
large extent also quantitatively, by the analysis given
below. To begin, nontrivial (i.e., nonvanishing) solutions
to Eq. (5.19) do indeed exist for y &y, [i.e., technically
speaking, the global U(l, l/2) symmetry is indeed spon-
taneously broken]. These solutions decrease monotoni-
cally with increasing X~. For a stretch of A, t values ex-
cluding the vicinity of the origin and a small region near
the crossover point A, the solution u behaves roughly as

Beyond the crossover point, u rapidly attains
the asymptote -A,

~
. As the critical point is approached,

u(A, A,2) is pushed down (for A, ) &A only) and, conse-
quently, A moves to larger values of A, ). The region in
which the crossover from the behavior -k) to the

PO 1 x & &

}
s I I I

}
I I t I

}
I I f 'I I I I I

-40

—60
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FIG. 1. The logarithm of the solution u(A, 1) of Eq. (5.19)
as a function of t =ink, I for m =2 and three different values of
y

—= 10 &( y. The critical point lies at y, =6.803 & 10

asymptotic behavior -A, , occurs remains of finite size
as y~y, . These features are evident from Fig. 1 which
shows 1nu(A, ~, 1) as a function of t =ink, t for three dif-
ferent values of y. Using Eqs. (3.2b} and (4.4b) to calcu-
late the diagonal part of I '"', I find a violent singularity
in this observable; for example, for m =2 and
10 X y =7. 10, 7.05, 7.00, 6.95, 6.90, I obtain
I'"'(0;y) =2.06 x 10" 2.52 && 10", 1.69 ~ 1027,

2.44X103', 2.64X10 . (The critical point lies in this
case at y, =6.803)& 10 .)

These numerical results are in striking contrast to the
analysis of Efetov' who claims that such long-ranged
solutions as are shown in Fig. 1 cannot exist, with the
peculiar consequence that I'"' remains finite as y~y, .
Therefore, several tests were performed in order to check
the numerical stability of the solution with respect to
changes in the initial function and the discretization pro-
cedure used. The outcome of all these tests was satisfac-
tory, suggesting that the appearance of long-ranged solu-
tions is in fact a genuine property of the integral equation
and not a spurious effect caused by discretization. In or-
der for the present results to be completely convincing, I
should, of course, point out what went wrong in Efetov's
analysis. This will be done in Sec. V 8 2.

I also found that close to the critical point the solution
u becomes independent of the variable A,2 for al/ values of

This is easy to understand. Recall that the S2 sym-
metry of the integral equation (5.19) is violated only by
the difference (A, t

—A, 2) hidden in the nonlinear term X.
For A, , »1, this difference can always be replaced by A, ),
this explains why the solution u at large A, , is always in-
dependent of A,2, no matter whether the system is close to
the critical point or not. In the vicinity of y =y„howev-
er, an additional feature arises: u(1, 1) approaches
zero and, consequently, the nonlinear term
X =c2u (A, )

—Az)+O(u'(X) —A2) ) becomes negligible
compared to the term mu as long as u (A, t

—A, 2) «1. As
y~y„ the integral equation thus becomes effectively in-
variant on Sz for all values of A, t. Using the arguments
given in Appendix B of Ref. 15, one then concludes that
the effective S2 symmetry of the integral equation carries
over to the solution u.

It is now clear that the critical behavior at the phase
transition point is governed exclusively by the noncom-
pact variable, A, &. The only role of the compact variable,
A,2, is to ensure that certain integrals [see Eqs. (5.18) and
(5.24)) are properly normalized to unity. This should be
contrasted with a recent theory of the quantized Hall ef-
fect, ' which proposes to explain the existence of extend-
ed states in two-dimensional disordered systems by topo-
logical arguments pertaining to the compact sector, i.e.,
the variable A.2. Clearly, the transition mechanism as-
sumed in Refs. 5 and 6 is completely unrelated to the one
found here.

Due to the effective 52 symmetry near y =@„the in-
tegral equation (5.19) can be reduced to an equation in a
single variable by averaging the kernel K over Sz and put-
ting u(A, t, kz)~u(A. , }. This greatly accelerates the nu-
merical computation. It also allows a finer mesh size to
be used and makes it possible to go much closer to the
critical point.
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2. Analytical discussion

It has been argued above, that Eq. (S.19) effectively
reduces to an integral equation on the hyperboloid
H2-SU(1, 1)/U(1) near the critical point y=y, . To be-
gin the analytical discussion of the present subsection, I
write the reduced equation as

u(g) =f dp(g')E(g;g')[mu(Q') —X(g', u)], (5.25a)

with m =m'=0. [Note that the matrix Q" ESU(l, l)/
U(1) which corresponds to the product TT' is Q"
= —iTT'o3(T'T') '=Tg'T '.] We thus conclude that
the functions H„(g)=aoo(r) are the desired eigenfunc-
tions of E.

Following Vilenkin, I write the 00 matrix elements of
the irreducible representations of SU(1„1) in the integral
form

~ p«QQE(g;g') =e ' [co(y)—c~(y)trgg'],

cQ( y ) =y coshy —sinhy, c
~ ( y ) = —,

'
y sinhy

(5.25b)

(5.25c)

2m' dg (cosh'+ sinh~ cos8)", A, =cosh~ .
2m'

Here, Q is not the graded matrix defined in Eq. (2.1) but
is instead given by

T

dp(Q) =dk, dg/2n. . (5.26)

[For notational reasons, I have written u =u (Q) although
u actually depends only on A, &, and I have put
A, 1~k,,p~~p. ] Formally,

Q = iTcr3T —', TISSU(1, 1), QCSU(1, 1)/U(1) .

(5.31)

Among the functions A~„(also known as Legendre func-
tions), those with index v= ——,

' +ip, p real (the so-called
cone functions), play a special role: they correspond to
unitary representations of SU(l, l), they decay as A, ~ ao,
and they are orthogonal and complete in the space of
square-integrable functions F(A, ) over the interval [1,ao ).
The orthogonality and completeness relations for the

, zz+,z(A, ) can be found in Ref. 21. Here, we need only
their asymptotic form for A, &&1 and p «1, which is de-
rived in the Appendix:

(5.27) )y2+~p(cosh7 )= e '~ sin(p'r)
7TP

(5.32)

The present way of writing the integral equation em-
phasizes the H2 symmetry of the problem and is con-
venient for subsequent analysis.

In the region A, «A (recall that A~oo as y~y, ),
where the nonlinear term X is small compared to mu, the
solution u is forced into an eigenfunction of E with eigen-
value tram '. It is therefore useful to introduce' a
(complete) set of eigenfunctions of the kernel E. These
can be obtained from the irreducible representations of the
group SU(1,1), which is seen as follows. Suppose that we
are given a set of functions H„(g) that satisfy an addition
theorem of the form

Q = ircr3T ', Q—'= ir'cr3(T')—

H,„(g)=e'"4'C „(A), &~(g)= &„(Q) .

(5.28a)

(5.28b)

(5.28c)

Because E is invariant on Hz-SU(1, 1)/U(1), functions
with this property are eigenfunctions of E:

f dp(g")E(g;Q")~„(g")
=f dp(Q')E( io3, Q')A~„(rg—'T ')=k„&~„(g),

(5.29)

~here

k =f dp(g')E( io3,Q')H~(g—') . ' (5.30)

Now the addition theorem (5.28a) is precisely the repre-
sentation property for group multiplication in SU(1, 1),

Note also that the A~, &2+,~(A, ) are real and even func-
tions of p H ~y2+ (A ) = P ~y2+ (A ) =H ~y2 (A ).
Using Eq. (5.29), the integral equation for u can now be
transformed into

—1(m —Icp )up=Xp,

where

up ——f dA, H ]/2+~p(A, )u(A, ),
Xp= f dA, H )gp+~p(A, )X(A,,u(A, )),

(5.33)

(5.34)

and vp —k —I/2+& p
Due to the positivity of E, u and X, and the oscillatory

nature of H ~~2+,&(A, ) [see, e.g. , Eq. (5.32)], the functions
ttz, uz, and Xz have maxima at p =0. [Because

, zz+;~(A, ) is analytic in the complex p plane, the point
p=0 is in fact a saddle point of these functions. ] The
behavior of uz can be readily obtained from the numerical
results for u(A. ) shown in Fig. 1. One finds that ue is an
oscillating function with an envelope that decreases as a
power as p~ oo. A crude estimate of the smallest zero of
uz, p=p&, can be had by approximating u (A, ) by
u(A, )=u(1)H, &2(A, ) for A, &A, and by u(A, )=0 for
A, ~ A. Using a1so the asymptotic form I 5.32), we then get
with A =coshVc.

u& = u (1)f de%&yp(A, )H ~y, p+;&(&)

2u (1)
dX X S111X (5.35)

m-2p'

from which we infer that p[ is located in the interval
rr/r, &p, &2m', . [I mention in passing that due to the
asymptotic limit u(A, )=A, ' for A,~ ao, the function u~ is
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analytic 1nslde the strj, p —
2 g Imp g 2 and has poles at

p=+ ,'i—.The existence of these poles is of no conse-

quence for the present analysis and a corresponding term,
originating from the integration range r & r„was omitted
from Eq. (5.35).]

An additional node on the left-hand side (lhs) of the
transformed integral equation is induced by the presence
of the factor (m —xz '); this has important consequences
as will be discussed next. As was stated earlier, ~z takes
its maximum value for real p at p=O. The decrease of a~
as ph oo is qualitatively slower than that of uz because
E( i os—,Q) i's a "short-ranged" function (i.e., A' falls off
exponentially with A, ), while u ()(, ) becomes "long ranged"

at the critical point [i.e., u (A, ) cc A,
'~ for )i. ~~A]. In the

region of extended states, the maximum eigenvalue ao
exceeds m ' and roam ' as y yc. ' For p small and

y close to y„m —xz
' is thus expressed as

m —v ' =bo b2p —+0 (p ), (5.36a)

bp bo(y ——y, )+—O((y y, ) )—, (5.36b)

Xe= I d~(e'~ X)sin(pr),
vrp

(5.37)

where we again have made use of the asymptotic formula
(5.32) and the approximation 2 sinhr=e', valid for large r
Figure 2 shows the logarithm of X=e'~ X as a function

1 t I
(

' t I v

]
I 1 l / f l f \ I 1 I

where bo and b2 are noncritical positive constants that
depend on the coordination number of the tree. (Note
that bo and b2 are connected with the quantities ao and
a2 in Sec. VA through bo —— ma—o, b2 ——+ma2 )The.
function m —~z

' has a zero at po-(bolb2)'~ The cr.iti-
cal behavior of bo forces this zero to approach the origin
in p as y~y„' we shall see that this is the mechanism
that drives the phase transition from extended to localized
states.

If Eq. (5.33) is to be satisfied, then the node at p =po in-
duced by the factor ( m —ir& ') on the lhs must be
matched by a corresponding node on the rhs, To see what
effect the location of this node has on the solution u, we
write Xz in the form

of ~ for several values of y&y, . At small r, where
X=—,'m (m —1gu (A) =const, X increases as e'~, while

at r&~„X=(m —I)/A, so that X=2(m —1)e '~ . The
peak in X=X(r) occurs somewhere near the crossover
point r=v;. Using this observation in Eq. (5.37) we find
that Xz first vanishes at a point po roughly determined by
the condition pox, =m C.omparison with Eq. (5.35) then
shows that po ——po, i.e., po ~pi, and it is the zero po (rather
than pi) that is the correct counterpart to pii. From the
matching condition po =po now follows the important
conclusion that r, behaves as ~, =ir/po=c(y —y, )

near the critical point. This confirms an assumption basic
to the present analysis, namely that the crossover point
A=cosh', moves toward infinity as y~y, .

Efetov has claimed' that the appearance of long-
ranged solutions u is incompatible with the asymptotic
properties of the integral equation (5.19). Roughly speak-
ing, he argues that, after a suitable rescaling, the lhs
would go to zero while the rhs would remain finite for
p=0. His argument is false, however, as I now proceed to
demonstrate.

For large r, the kernel E in Eq. (5.25b) integrated over
((}' depends only on the difference r —v' (or, equivalently,
on the ratio A, /A, '), a fact that was already used in the
analysis of the localized states in Sec. VA. Efetov argues
that due to this asymptotic "translational" invariance of
I(.', the actual solution u to Eq. (5.25a) can be obtained by
translation of a special function us that solves this equa-
tion in the asymptotic domain ~&~ I:

u(cosh')=e 'us(r —r, ) . (5.38)

[The prefactor e ' is required by the conditions
u(A, ~a))=)I. '=2e ' and us(~~~)=2e '.] This is
not at all an absurd idea as is shown by a quick glance at
Fig. 1. However, although Efetov states that Eq. (5.38) is
valid only at large r, he fails to observe that not all r in
tegrals (or A, integrals) in Eqs. (5.33) and (5.34) are dom
inated by this asymptotic domain.

Efetov's arguinent applies without modification to the
rhs of Eq. (5.33) because in this case the dominant contri-
butions to the r integral do come from the region around
r=r, »1, see Fig. 2. Using Eq. (5.21) and the represen-

tation (5.38), we see that X =e 'Xs(r r;), and thus—
—r/2X o =Lo-v, e cg, (5.39)

where c~ is a constant independent of r, The difficul. t
part lies in correctly evaluating the integral

-6O
P.O 80

FIG. 2. The logarithm of the quantity X=e' X as a func-
tion of the variable v. =arccoshkI for m =2.

uo —— dr sinhrA i zi(cosh')u (cosh') .
0

[Important contributions to this integral arise from all
parts of the interval 0& v. & ~, . To see this, recall that the
solution well to the left of the crossover point is essential-

ly given by u ~ H iq2(cosh'}= re ~—. The exponen-—t/2

tial factors from sinhr, H i&2(cosh') and u(cosh') thus
cancel to produce an integral of the type I 7 dr. ] Equa-
tion (5.35} is accurate enough for the present purpose but
we still need to determine the constant u (1). We do this
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by connecting the solution in the region ~&~, with the
asymptotic region r & r, . The dominant variation of u in
the range 1«r&r, comes from the exponential factor
e ' in the asymptotic expansion (5.32). Hence we infer
from Eq. (5.38) that

The second integrand in Eq. (5.42) peaks at v.=r, . More-
'r —T

over, since Y=1—uA, =1—e 'us(r —r, )/2, Y'assumes
a definite shape in the region around r=r, which moves
toward infinity as y~y, . We therefore put
Y'= Fs(r r—, ) and write

/2
u (1)=const X e

which yields

(5.40)
I'"'(0;y)=e ' f dre 'Ys + (r—r, ) . (5.43)

uo-c„e ' f dry =r, e ' c„/3 . (5.41)

Multiplying uo with m —
BIO

'-bo(y —y, ) and using that
r, behaves as r, ~ (y —y, )

'~ we find that the lhs of Eq.—v /2
(5.33) is given for p=0 by ~,e ' times a constant.

We thus see that there exists no confiict between the lhs
and the rhs of Eq. (5.33) and, in fact, both sides behave in
the same way as y~y, and ~,~(x). This shows the
present analysis to be consistent and justifies tt posteriori
the various assumptions made earlier.

It is now straightforward to derive the critical behavior
of the diagonal part of the density-density correlation
function, I'"'(0;y). We recall the relation 1'= I —uA. and
use that

I'"'(0;Y)=A exp[+[8(y y—, )] (5.44)

where A and 8 are nonuniversal constants that depend on
the value of m. The numerical results for I '"'(0;y) quot-
ed at the end of Sec. V 8 1 are fit well by Eq. (5.44).

3. Correlation fttnctions

The term ~, appearing in the integrand can be absorbed
by shifting the integration variable. Hence, I '"'(0;y)
=const&&e ', and together with r, =const X (y —y, )

we obtain the following result:

I'"(0;Y)= f "d~, f '
d~, Y +'(~„~,)

1 —1

dr e'(1 —ue'/2) +' .
0

(5.42)

This subsection has to begin with another apology.
Equation (6.23) of Ref. 15 is not quite correct, and the
correct expressions are given by

«gQQ' =«gQ i i Q'» +«gQ i2Q21 + trgQ21 Q 12+ trgQ22Q22 (5.45)

and

«gQi i Q'11 = —(~1&1—l 2&2) —«'«(A, i
—A2)(A, ', —A2),

«gQ Q' = —(l, ,k', —l,,l,,')+bp'AP(A, , —A2)(A, ', —A'2),

t«Q»Q2i =e ' ' I[({ui)'@1+@212]+I(«'« —&P'&P)[(pi)'p, , —l 2@2]

(5.46a)

(5.46b)

~ ~ct*«~P"~P[(iji")'V1+p2P2]+~ct'~P(pi )'p2+~P'&rtpip'2I, (5.46c)

«gQ21 Q 12 («gQ»Q21 ) (5.46d)

where

'»=T~[(ct*) tz —tz ct ] ix2= 2 [(P*)P PP ] (5.47)—

Equation (6.23) of Ref. 15 differs from Eqs. (5.45), (5.46)
i (y l+y~)

by the phase factor e ' '. The omission of this factor
went undetected because it has no effect for localized
states, which was all that was considered in this reference.

Using Eqs. (5.45) and (5.46) and the integral theorem
(4.3), one shows that the density-density correlation func-
tion I"'"'(x —y;y) can be calculated by the following
steps:

Sy'01(X, ,X2)= Y(X„X2),

5y ' (ki, A2)=(m +1)f dl1. ',dA, 2E(X, , A2;A, ', ,g2)

x Y- -'(X'„l{.;Wy"'(X;, X;),
(5.48)

5y'i"(F1,12)=m f dA'idl2K(k i, k2, A. '1, A2)

X Y '(l1.' A, ')5 "—"(A,' A, ')

oo +1
X(p)I'"'(p;y)= f dk. i f dk2Y™(l{.1,A2)5y'~'(A, i, A2) .
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oo +1 I —Y= J dpi 1 dk2K(k. i, lp', Ai,A2), (5.49)
1

put Y~ Y+5Y, and define 5y =5Y/(A. , —A2).
The analysis of Eqs. (5.48) parallels the analysis of Eqs.

(5.5) in Sec. V A, and I will simply point out the impor-
tant differences. We are seeking the eigenvalues and
eigenfunctions of the linear operator M (A.; A.')
= mK(A. ;A, ') Y '(A, ') with K(A, ;A, ') obtained by integrat-
ing over P' in Eq. (5.25b). (As discussed earlier, we may
ignore all dependence on the compact variable k2, and I
put A, &~A,.) Because M is effectively nonzero only in a fi-
nite interval (1 (A, & A), the relevant part of its spectrum
is now discrete instead of continuous. For A, «A, where
Y '=1, the eigenfunctions of M, denoted by Y„(A,),
must be approximately proportional to the Legendre func-
tions H ~~2+,z(A, ), and we choose the normalization such
that

Y (2) H ]y2+'& (k) (A, «A) (5.50)

The rapid vanishing of Y at A, =A selects as eigen-
functions of M those Legendre functions that have a node
near this point. Using the asymptotic formula (5.32), we
find that the p„are approximately determined by the
"quantization rule"

0=sin(p„v, )~p„=, n =1,2, . . . .
C

(5.51)

The same steps that were performed in Sec. V A now yield
(~x

~

&&1):
00

N(
~

x
~

)I'"'(x;y)= ocn tsX e'r, g n (m~„) '" ',
(5.52)

where mw„ is the eigenvalue of M belonging to the eigen-
function Y„. We will need to know the value of the larg-
est eigenvalue, mi&. From the numerical stability of the
integral equation with respect to small perturbations, we
infer that mx, &1. A lowest-order analytical estimate
based on the matching condition discussed below Eq.
(5.37) and the quantization rule (5.51) gives m~& ——1,
which means that for this quantity one has to work more
accurately than was done in these equations. Instead of
attempting to control the corrections analytically, I have
convinced myself by numerical diagonalization of M that
indeed mx) & I and limy y mx) ——1. For m =2 and

C

10 & y =7. 10, 7.05, 7.00, 6.95, and 6.90, I obtain
—lnmv) ——1.1 F10, 8.1&10,5.8&10, 3.7~10
and 2.0& 10,with an uncertainty of about 1.0X 10 in
all cases. From this and y, =6.803 & 10, I deduce that

/=const ~ (y —y, ), v= 1.50+0.05,

Note that this sequence of integrations is very similar (not
surprisingly so) to the one in Eqs. (5.5). As before, the re-
lationship between 5y' ' and 5y' " is nothing but the
linearized version of the integral equation (5.19). To see
this, we write Eq. (5.19) in the form'

I —YQ=

where g
'= —Inm~&. If the exponent v is really equal to

—, as is suggested by Eq. (5.53), then it should be possible
to derive this result by a refinement of the present
analysis.

Close to the critical point and for
~

x
~

&&g, we can
make a continuum approximation to the sum in Eq. (5.52)
and, consequently,

X(
~

x
~

)I'"'(x;y)=construe '
~x

~

(5.54)

VI. DISCUSSION

In this paper, I have performed an extensive numerical
and analytical study of the two-point Green's functions
for the graded pseudounitary nonlinear o model on the
Bethe lattice. It was shown that at the critical point
y =y, these functions assume a scaling behavior which is
of a form standard in critical phenomena. It came as a
surprise at first that I' (0;y) vanishes discontinuously at

y =@„but it is clear now that this is consistent with the
power-law exponent of —, for the corresponding correla-
tion function. What may seem more surprising is that
I""' has an exponential singularity. This finding is at
odds with results presented by Efetov, who has suggest-
ed' that all thermodynamic observables should be finite
at y =y, . According to the present analysis, there defin-
itely is no such thing as a minimum metallic conductivity
on the Bethe lattice, although, in Efetov's terminology,
there does exist a "maximum dielectric constant. "

It has been asserted in Sec. V that the noncompact sec-
tor SU(1,1)/U(1) C U(1,1/2)/U(1/1)g U(1/1) is of overrid-
ing importance in determining the nature of the phase
transition on the Bethe lattice. Superficially seen, the
function of the compact sector and the Grassmann vari-
ables is simply to ensure the normalization of certain in-

In the opposite limit,
~

x
~

&&g, only the maximum eigen-
value mi& contributes to the sum in (5.52), resulting in a
purely exponential decay,

X(
~

x
~

)I'"'(x;y)=construe 'r, exp( —
~

x
~
/g) . (5.55)

This concludes the discussion of the critical behavior of
the density-density correlation function.

There is one remaining independent two-point Green s
function to evaluate, namely K '(x,y;y, e=O). Unfor-
tunately, for extended states this quantity is much more
difficult to deal with than K"'. The reason is that the
matrix elements Q&z and Qz& appearing in the definition
of K' ' have a more complicated dependence on the
Grassmann variables parametrizing the matrices u and U

and, therefore, execution of the Grassmann integrations
becomes more difficult (not impossible, just messy). How-
ever, if the system is close to y=) „then essentially the
same reasoning that led to Eq. (4.9) for localized states
leads to simplifications here; i.e., it can be shown that
K' '(x,y;y, e=O) behaves like I'"'(x —y„y) as long as

~

x —y ~
&&g. For

~

x —y
~

&&g, K' ~ is expected to be
qualitatively more long ranged. Indeed, according to Eqs.
(3.1b), (3.3), and (4.11), g K' '(x,y;y, e=O) must
diverge, whereas g I'"'(x —y;y) should be finite on
physical grounds.
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2mf L(Q;Q')=ill/A, ')/v'lk' (A, )&1), (6.1)

tegrals. Is that their only function„or do they actually

play a more subtle role? The following paragraphs pro-
vide a partial answer to this question.

I.et us first consider the model which is obtained by re-
stricting the definitions given in Sec. II to the noncompact
sector, SU(1,1)/U(1). On the Bethe lattice, the solution of
such a model again reduces to the solution of an integral
equation of the form (5.1) but now with

Q ESU(1, 1)/U(1). [Care must be taken to insert a nor-
malization factor Z ' which ensures that the solution I'
obeys f dp(Q) 1'(Q) = I.j A little thought shows that we

are running into a difficulty: the model cannot support
localized states. To understand this, note that the kernel
of the integral equation now has the asymptotic form

achieve stability, more degrees of freedom must be added.
If we do this in the form of a second graded vector and
take its bosonic component to the compact (which seems
to be forced by convergence and symmetry arguments),
then we are led back to the graded pseudounitary non-
linear o model studied in the present paper.
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where ? has the property 1(z)=i(z '). The eigenfunc-
tions of L are the Legendre functions A~„, which behave

asymptotically as -A," (Rev) ——,
' ). For real v, the

minimum eigenvalue of L occurs at v= ——, due to the in-

verse square root in Eq. (6.1), and the eigenvalues increase
monotonically with

~
v+ —,

'
~. This has the disastrous

consequence that the constant (symmetry-unbroken) solu-
tion can never be stable against the perturbation induced
by the symmetry-breaking term D ( Q) =exp( —2@i,). [The
culprit is the missing factor (Ai —A2)(A, 'i —Az)=RA,

' which
was generated in Sec. V by integration over the
Grassmann variables; see Eq. (5.22).] Hence, we are
forced to conclude that the system is in the symmetry-
broken phase for all values of the coupling constant.

Since the noncompact space SU(1,1)/U(1) by itself can-
not support a symmetry-unbroken phase, which important
feature is it that has been left out? Is it the graded sym-
metry? To obtain further insight, I have attempted to
grade the coset space SU(1,1)/U(1). This can be done by
taking a complex bosonic variable a ( —oo & Rea,
Ima &+ oo) and supplementing it with a complex fer-
mionic variable r? to form the graded vector

U=, U =(a' 7?) . (6.2)

From this vector, one then constructs the graded 3&3
matrix

r. e. ,

i (1+UU )—'

+i (1+V U)'~

(6.3}

Q e U(1, 1/1)/U(1/1)e U(1) .

This model is still much easier to deal with than the origi-
nal model defined in Sec. II because of the reduced matrix
dimension and because it contains only a single pair of
fermions. Unfortunately, the model (6.3) is not satisfacto-
ry either. The rninimurn eigenvalue of the corresponding
kernel L(Q;Q') now lies at v=O. While this suffices to
stabilize the constant solution for m = 1 (one dimension),
it does not for a general value of m. In order to move the
minimum eigenvalue to positive values of v and thereby

APPENDIX: ASYMPTOTIC BEHAVIOR
OF CONE FUNCTIONS

This appendix contains a derivation of the asymptotic
form (5.32) of the functions P i~2+,&(coshr) in the limit
r»1, p« l. Heavy use of this asymptotic form was
made in the analysis of Sec. V.

By using the identities

a —1/2+ ip 1/2 —ip —azz e
I ( —,

' ip)—
2m' dg e'"""'"' =ID(a sinhr),

2n'

(A 1)

&(Io(z sinhr) . (A3)

As we are interested in the behavior of & ized+, z(coshr}
for large r, it is natural to seek to replace Io(P) by its
asymptotic form for large values of the argument,

e~
Io(p)= (p)&1) .

2~P

But before we can do so, it is necessary to regularize the z
integral the origin; otherwise the term I/u pcc I/O'z in-
troduces a spurious singularity at precisely this point.
Anticipating the final result (5.32), we place a cutoff on
the z integration at z=e '. The error caused by this
modification of the integral is estimated as

l t/2z
I ( — jp) z

—(
2

—Ip)~
1

I e

I ( —, —ip} ( —, ip)—
(A5)

which for p ~~1 and most values for ~ is much smaller
than the expression (5.32).

We now use the asymptotic formula (A4) and the ap-

(Io is the modified Bessel function of zeroth order), the
integral representation (5.31) for H~ i&z+,.&(coshr) can be
cast in the form

1/2 —ipe —z coshs
" dz

—1/2+i p I ( —, —ip)



MARTIN R. ZIRNBAUER 34

proximation 1 ( —,
' i—p)=V tr, valid for p g& 1, to obtain

—T

i/2 —tp
& &2+,p(cosh') = — z

v'tr e-' z &2trz sinhr

—( 1/2+i P j7
oo

z e
—ip —Z

iT 2 r
1. (cosh')= —e '~ dto e 'P' +'—1/2+ip (A7)

strict the m integration to the range —2~ & m & 0, and to
omit the factor e ' from the integrand. The last two ma-
nipulations are justified because, by a similar reasoning as
was used above, contributions to the z integral from z & 1

are small compared to the result (5.32). This yields

The final step is to make the substitution z =e, to re- which equals the expression given in the text.
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